Skip to main content
Top
Published in: Vascular Cell 1/2013

Open Access 01-12-2013 | Review

The role of tumor-associated macrophages in tumor vascularization

Authors: Chunqing Guo, Annicole Buranych, Devanand Sarkar, Paul B Fisher, Xiang-Yang Wang

Published in: Vascular Cell | Issue 1/2013

Login to get access

Abstract

Tumor vascularization is a highly complex process that involves the interaction between tumors and their surrounding stroma, as well as many distinct angiogenesis-regulating factors. Tumor associated macrophages (TAMs) represent one of the most abundant cell components in the tumor environment and key contributors to cancer-related inflammation. A large body of evidence supports the notion that TAMs play a critical role in promoting the formation of an abnormal tumor vascular network and subsequent tumor progression and invasion. Clinical and experimental evidence has shown that high levels of infiltrating TAMs are associated with poor patient prognosis and tumor resistance to therapies. In addition to stimulating angiogenesis during tumor growth, TAMs enhance tumor revascularization in response to cytotoxic therapy (e.g., radiotherapy), thereby causing cancer relapse. In this review, we highlight the emerging data related to the phenotype and polarization of TAMs in the tumor microenvironment, as well as the underlying mechanisms of macrophage function in the regulation of the angiogenic switch and tumor vascularization. Additionally, we discuss the potential of targeting pro-angiogenic TAMs, or reprograming TAMs toward a tumoricidal and angiostatic phenotype, to promote normalization of the tumor vasculature to enhance the outcome of cancer therapies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bergers G, Benjamin LE: Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003, 3: 401-410. 10.1038/nrc1093.PubMedCrossRef Bergers G, Benjamin LE: Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003, 3: 401-410. 10.1038/nrc1093.PubMedCrossRef
2.
go back to reference Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100: 57-70. 10.1016/S0092-8674(00)81683-9.PubMedCrossRef Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100: 57-70. 10.1016/S0092-8674(00)81683-9.PubMedCrossRef
3.
4.
go back to reference Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996, 86: 353-364. 10.1016/S0092-8674(00)80108-7.PubMedCrossRef Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996, 86: 353-364. 10.1016/S0092-8674(00)80108-7.PubMedCrossRef
5.
go back to reference Qian BZ, Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 2010, 141: 39-51. 10.1016/j.cell.2010.03.014.PubMedCrossRef Qian BZ, Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 2010, 141: 39-51. 10.1016/j.cell.2010.03.014.PubMedCrossRef
7.
go back to reference Gordon S, Martinez FO: Alternative activation of macrophages: mechanism and functions. Immunity. 2010, 32: 593-604. 10.1016/j.immuni.2010.05.007.PubMedCrossRef Gordon S, Martinez FO: Alternative activation of macrophages: mechanism and functions. Immunity. 2010, 32: 593-604. 10.1016/j.immuni.2010.05.007.PubMedCrossRef
9.
go back to reference de Visser KE, Eichten A, Coussens LM: Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006, 6: 24-37. 10.1038/nrc1782.PubMedCrossRef de Visser KE, Eichten A, Coussens LM: Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006, 6: 24-37. 10.1038/nrc1782.PubMedCrossRef
11.
go back to reference Mantovani A, Allavena P, Sica A, Balkwill F: Cancer-related inflammation. Nature. 2008, 454: 436-444. 10.1038/nature07205.PubMedCrossRef Mantovani A, Allavena P, Sica A, Balkwill F: Cancer-related inflammation. Nature. 2008, 454: 436-444. 10.1038/nature07205.PubMedCrossRef
12.
go back to reference Murdoch C, Muthana M, Coffelt SB, Lewis CE: The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008, 8: 618-631. 10.1038/nrc2444.PubMedCrossRef Murdoch C, Muthana M, Coffelt SB, Lewis CE: The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008, 8: 618-631. 10.1038/nrc2444.PubMedCrossRef
13.
go back to reference Baeriswyl V, Christofori G: The angiogenic switch in carcinogenesis. Seminars Cancer Biol. 2009, 19: 329-337. 10.1016/j.semcancer.2009.05.003.CrossRef Baeriswyl V, Christofori G: The angiogenic switch in carcinogenesis. Seminars Cancer Biol. 2009, 19: 329-337. 10.1016/j.semcancer.2009.05.003.CrossRef
14.
go back to reference Condeelis J, Pollard JW: Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006, 124: 263-266. 10.1016/j.cell.2006.01.007.PubMedCrossRef Condeelis J, Pollard JW: Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006, 124: 263-266. 10.1016/j.cell.2006.01.007.PubMedCrossRef
15.
go back to reference Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A, Politi LS, Gentner B, Brown JL, Naldini L, De Palma M: Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell. 2011, 19: 512-526. 10.1016/j.ccr.2011.02.005.PubMedCrossRef Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A, Politi LS, Gentner B, Brown JL, Naldini L, De Palma M: Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell. 2011, 19: 512-526. 10.1016/j.ccr.2011.02.005.PubMedCrossRef
16.
go back to reference Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G, Van den Bossche J, Mack M, Pipeleers D, In’t Veld P, De Baetselier P, Van Ginderachter JA: Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 2010, 70: 5728-5739. 10.1158/0008-5472.CAN-09-4672.PubMedCrossRef Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G, Van den Bossche J, Mack M, Pipeleers D, In’t Veld P, De Baetselier P, Van Ginderachter JA: Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 2010, 70: 5728-5739. 10.1158/0008-5472.CAN-09-4672.PubMedCrossRef
17.
go back to reference Pucci F, Venneri MA, Biziato D, Nonis A, Moi D, Sica A, Di Serio C, Naldini L, De Palma M: A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “resident” monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood. 2009, 114: 901-914. 10.1182/blood-2009-01-200931.PubMedCrossRef Pucci F, Venneri MA, Biziato D, Nonis A, Moi D, Sica A, Di Serio C, Naldini L, De Palma M: A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “resident” monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood. 2009, 114: 901-914. 10.1182/blood-2009-01-200931.PubMedCrossRef
18.
go back to reference Mantovani A, Allavena P, Sica A: Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer. 2004, 40: 1660-1667. 10.1016/j.ejca.2004.03.016.PubMedCrossRef Mantovani A, Allavena P, Sica A: Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer. 2004, 40: 1660-1667. 10.1016/j.ejca.2004.03.016.PubMedCrossRef
19.
go back to reference Lewis CE, Pollard JW: Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006, 66: 605-612. 10.1158/0008-5472.CAN-05-4005.PubMedCrossRef Lewis CE, Pollard JW: Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006, 66: 605-612. 10.1158/0008-5472.CAN-05-4005.PubMedCrossRef
20.
go back to reference Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, Rimoldi M, Biswas SK, Allavena P, Mantovani A: Macrophage polarization in tumour progression. Seminars Cancer Biol. 2008, 18: 349-355. 10.1016/j.semcancer.2008.03.004.CrossRef Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, Rimoldi M, Biswas SK, Allavena P, Mantovani A: Macrophage polarization in tumour progression. Seminars Cancer Biol. 2008, 18: 349-355. 10.1016/j.semcancer.2008.03.004.CrossRef
21.
go back to reference Mantovani A, Sozzani S, Locati M, Allavena P, Sica A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002, 23: 549-555. 10.1016/S1471-4906(02)02302-5.PubMedCrossRef Mantovani A, Sozzani S, Locati M, Allavena P, Sica A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002, 23: 549-555. 10.1016/S1471-4906(02)02302-5.PubMedCrossRef
22.
go back to reference Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, Bottazzi B, Doni A, Vincenzo B, Pasqualini F, et al: A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood. 2006, 107: 2112-2122. 10.1182/blood-2005-01-0428.PubMedCrossRef Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, Bottazzi B, Doni A, Vincenzo B, Pasqualini F, et al: A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood. 2006, 107: 2112-2122. 10.1182/blood-2005-01-0428.PubMedCrossRef
23.
go back to reference Hagemann T, Biswas SK, Lawrence T, Sica A, Lewis CE: Regulation of macrophage function in tumors: the multifaceted role of NF-kappaB. Blood. 2009, 113: 3139-3146. 10.1182/blood-2008-12-172825.PubMedCentralPubMedCrossRef Hagemann T, Biswas SK, Lawrence T, Sica A, Lewis CE: Regulation of macrophage function in tumors: the multifaceted role of NF-kappaB. Blood. 2009, 113: 3139-3146. 10.1182/blood-2008-12-172825.PubMedCentralPubMedCrossRef
24.
go back to reference Ojalvo LS, Whittaker CA, Condeelis JS, Pollard JW: Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J Immunol. 2010, 184: 702-712. 10.4049/jimmunol.0902360.PubMedCentralPubMedCrossRef Ojalvo LS, Whittaker CA, Condeelis JS, Pollard JW: Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J Immunol. 2010, 184: 702-712. 10.4049/jimmunol.0902360.PubMedCentralPubMedCrossRef
25.
go back to reference Lamagna C, Aurrand-Lions M, Imhof BA: Dual role of macrophages in tumor growth and angiogenesis. J Leukoc Biol. 2006, 80: 705-713. 10.1189/jlb.1105656.PubMedCrossRef Lamagna C, Aurrand-Lions M, Imhof BA: Dual role of macrophages in tumor growth and angiogenesis. J Leukoc Biol. 2006, 80: 705-713. 10.1189/jlb.1105656.PubMedCrossRef
26.
go back to reference Squadrito ML, Pucci F, Magri L, Moi D, Gilfillan GD, Ranghetti A, Casazza A, Mazzone M, Lyle R, Naldini L, De Palma M: miR-511-3p modulates genetic programs of tumor-associated macrophages. Cell Rep. 2012, 1: 141-154. 10.1016/j.celrep.2011.12.005.PubMedCrossRef Squadrito ML, Pucci F, Magri L, Moi D, Gilfillan GD, Ranghetti A, Casazza A, Mazzone M, Lyle R, Naldini L, De Palma M: miR-511-3p modulates genetic programs of tumor-associated macrophages. Cell Rep. 2012, 1: 141-154. 10.1016/j.celrep.2011.12.005.PubMedCrossRef
27.
go back to reference Ruffell B, Au A, Rugo HS, Esserman LJ, Hwang ES, Coussens LM: Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012, 109: 2796-2801. 10.1073/pnas.1104303108.PubMedCentralPubMedCrossRef Ruffell B, Au A, Rugo HS, Esserman LJ, Hwang ES, Coussens LM: Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012, 109: 2796-2801. 10.1073/pnas.1104303108.PubMedCentralPubMedCrossRef
28.
go back to reference Heusinkveld M, van der Burg SH: Identification and manipulation of tumor associated macrophages in human cancers. J Translational Med. 2011, 9: 216-10.1186/1479-5876-9-216.CrossRef Heusinkveld M, van der Burg SH: Identification and manipulation of tumor associated macrophages in human cancers. J Translational Med. 2011, 9: 216-10.1186/1479-5876-9-216.CrossRef
29.
go back to reference Bingle L, Brown NJ, Lewis CE: The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002, 196: 254-265. 10.1002/path.1027.PubMedCrossRef Bingle L, Brown NJ, Lewis CE: The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002, 196: 254-265. 10.1002/path.1027.PubMedCrossRef
30.
go back to reference Clear AJ, Lee AM, Calaminici M, Ramsay AG, Morris KJ, Hallam S, Kelly G, Macdougall F, Lister TA, Gribben JG: Increased angiogenic sprouting in poor prognosis FL is associated with elevated numbers of CD163+ macrophages within the immediate sprouting microenvironment. Blood. 2010, 115: 5053-5056. 10.1182/blood-2009-11-253260.PubMedCentralPubMedCrossRef Clear AJ, Lee AM, Calaminici M, Ramsay AG, Morris KJ, Hallam S, Kelly G, Macdougall F, Lister TA, Gribben JG: Increased angiogenic sprouting in poor prognosis FL is associated with elevated numbers of CD163+ macrophages within the immediate sprouting microenvironment. Blood. 2010, 115: 5053-5056. 10.1182/blood-2009-11-253260.PubMedCentralPubMedCrossRef
31.
go back to reference Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL: Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 1996, 56: 4625-4629.PubMed Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL: Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 1996, 56: 4625-4629.PubMed
32.
go back to reference Chen P, Bonaldo P: Role of macrophage polarization in tumor angiogenesis and vessel normalization: implications for new anticancer therapies. Int Rev Cell Mol Biol. 2013, 301: 1-35.PubMedCrossRef Chen P, Bonaldo P: Role of macrophage polarization in tumor angiogenesis and vessel normalization: implications for new anticancer therapies. Int Rev Cell Mol Biol. 2013, 301: 1-35.PubMedCrossRef
33.
go back to reference Hasita H, Komohara Y, Okabe H, Masuda T, Ohnishi K, Lei XF, Beppu T, Baba H, Takeya M: Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma. Cancer Sci. 2010, 101: 1913-1919. 10.1111/j.1349-7006.2010.01614.x.PubMedCrossRef Hasita H, Komohara Y, Okabe H, Masuda T, Ohnishi K, Lei XF, Beppu T, Baba H, Takeya M: Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma. Cancer Sci. 2010, 101: 1913-1919. 10.1111/j.1349-7006.2010.01614.x.PubMedCrossRef
34.
go back to reference Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H, Ito Y, Inamura T, Ikezaki K, Fukui M, et al: Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res. 1999, 5: 1107-1113.PubMed Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H, Ito Y, Inamura T, Ikezaki K, Fukui M, et al: Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res. 1999, 5: 1107-1113.PubMed
35.
go back to reference Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW: CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011, 475: 222-225. 10.1038/nature10138.PubMedCentralPubMedCrossRef Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW: CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011, 475: 222-225. 10.1038/nature10138.PubMedCentralPubMedCrossRef
36.
go back to reference Ruffell B, Affara NI, Coussens LM: Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012, 33: 119-126. 10.1016/j.it.2011.12.001.PubMedCentralPubMedCrossRef Ruffell B, Affara NI, Coussens LM: Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012, 33: 119-126. 10.1016/j.it.2011.12.001.PubMedCentralPubMedCrossRef
37.
go back to reference Squadrito ML, De Palma M: Macrophage regulation of tumor angiogenesis: implications for cancer therapy. Mol Aspects Med. 2011, 32: 123-145. 10.1016/j.mam.2011.04.005.PubMedCrossRef Squadrito ML, De Palma M: Macrophage regulation of tumor angiogenesis: implications for cancer therapy. Mol Aspects Med. 2011, 32: 123-145. 10.1016/j.mam.2011.04.005.PubMedCrossRef
38.
go back to reference Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR: “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Experiment Med. 2008, 205: 1261-1268. 10.1084/jem.20080108.CrossRef Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR: “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Experiment Med. 2008, 205: 1261-1268. 10.1084/jem.20080108.CrossRef
39.
go back to reference Wang YC, He F, Feng F, Liu XW, Dong GY, Qin HY, Hu XB, Zheng MH, Liang L, Feng L, et al: Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res. 2010, 70: 4840-4849. 10.1158/0008-5472.CAN-10-0269.PubMedCrossRef Wang YC, He F, Feng F, Liu XW, Dong GY, Qin HY, Hu XB, Zheng MH, Liang L, Feng L, et al: Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res. 2010, 70: 4840-4849. 10.1158/0008-5472.CAN-10-0269.PubMedCrossRef
40.
go back to reference Bergenfelz C, Medrek C, Ekstrom E, Jirstrom K, Janols H, Wullt M, Bredberg A, Leandersson K: Wnt5a induces a tolerogenic phenotype of macrophages in sepsis and breast cancer patients. J Immunol. 2012, 188: 5448-5458. 10.4049/jimmunol.1103378.PubMedCrossRef Bergenfelz C, Medrek C, Ekstrom E, Jirstrom K, Janols H, Wullt M, Bredberg A, Leandersson K: Wnt5a induces a tolerogenic phenotype of macrophages in sepsis and breast cancer patients. J Immunol. 2012, 188: 5448-5458. 10.4049/jimmunol.1103378.PubMedCrossRef
41.
go back to reference Bouhlel MA, Derudas B, Rigamonti E, Dievart R, Brozek J, Haulon S, Zawadzki C, Jude B, Torpier G, Marx N, et al: PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell metabolism. 2007, 6: 137-143. 10.1016/j.cmet.2007.06.010.PubMedCrossRef Bouhlel MA, Derudas B, Rigamonti E, Dievart R, Brozek J, Haulon S, Zawadzki C, Jude B, Torpier G, Marx N, et al: PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell metabolism. 2007, 6: 137-143. 10.1016/j.cmet.2007.06.010.PubMedCrossRef
42.
go back to reference Pello OM, De Pizzol M, Mirolo M, Soucek L, Zammataro L, Amabile A, Doni A, Nebuloni M, Swigart LB, Evan GI, et al: Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood. 2012, 119: 411-421. 10.1182/blood-2011-02-339911.PubMedCrossRef Pello OM, De Pizzol M, Mirolo M, Soucek L, Zammataro L, Amabile A, Doni A, Nebuloni M, Swigart LB, Evan GI, et al: Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood. 2012, 119: 411-421. 10.1182/blood-2011-02-339911.PubMedCrossRef
43.
go back to reference Yaddanapudi K, Putty K, Rendon BE, Lamont GJ, Faughn JD, Satoskar A, Lasnik A, Eaton JW, Mitchell RA: Control of tumor-associated macrophage alternative activation by macrophage migration inhibitory factor. J Immunol. 2013, 190: 2984-2993. 10.4049/jimmunol.1201650.PubMedCentralPubMedCrossRef Yaddanapudi K, Putty K, Rendon BE, Lamont GJ, Faughn JD, Satoskar A, Lasnik A, Eaton JW, Mitchell RA: Control of tumor-associated macrophage alternative activation by macrophage migration inhibitory factor. J Immunol. 2013, 190: 2984-2993. 10.4049/jimmunol.1201650.PubMedCentralPubMedCrossRef
44.
go back to reference Zumsteg A, Christofori G: Corrupt policemen: inflammatory cells promote tumor angiogenesis. Curr Opin Oncol. 2009, 21: 60-70. 10.1097/CCO.0b013e32831bed7e.PubMedCrossRef Zumsteg A, Christofori G: Corrupt policemen: inflammatory cells promote tumor angiogenesis. Curr Opin Oncol. 2009, 21: 60-70. 10.1097/CCO.0b013e32831bed7e.PubMedCrossRef
45.
go back to reference Sunderkotter C, Beil W, Roth J, Sorg C: Cellular events associated with inflammatory angiogenesis in the mouse cornea. Am J Pathol. 1991, 138: 931-939.PubMedCentralPubMed Sunderkotter C, Beil W, Roth J, Sorg C: Cellular events associated with inflammatory angiogenesis in the mouse cornea. Am J Pathol. 1991, 138: 931-939.PubMedCentralPubMed
46.
go back to reference Onita T, Ji PG, Xuan JW, Sakai H, Kanetake H, Maxwell PH, Fong GH, Gabril MY, Moussa M, Chin JL: Hypoxia-induced, perinecrotic expression of endothelial Per-ARNT-Sim domain protein-1/hypoxia-inducible factor-2alpha correlates with tumor progression, vascularization, and focal macrophage infiltration in bladder cancer. Clin Cancer Res. 2002, 8: 471-480.PubMed Onita T, Ji PG, Xuan JW, Sakai H, Kanetake H, Maxwell PH, Fong GH, Gabril MY, Moussa M, Chin JL: Hypoxia-induced, perinecrotic expression of endothelial Per-ARNT-Sim domain protein-1/hypoxia-inducible factor-2alpha correlates with tumor progression, vascularization, and focal macrophage infiltration in bladder cancer. Clin Cancer Res. 2002, 8: 471-480.PubMed
47.
go back to reference Lin EY, Nguyen AV, Russell RG, Pollard JW: Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med. 2001, 193: 727-740. 10.1084/jem.193.6.727.PubMedCentralPubMedCrossRef Lin EY, Nguyen AV, Russell RG, Pollard JW: Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med. 2001, 193: 727-740. 10.1084/jem.193.6.727.PubMedCentralPubMedCrossRef
48.
go back to reference Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN, Pollard JW: Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006, 66: 11238-11246. 10.1158/0008-5472.CAN-06-1278.PubMedCrossRef Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN, Pollard JW: Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006, 66: 11238-11246. 10.1158/0008-5472.CAN-06-1278.PubMedCrossRef
49.
go back to reference Zhang W, Zhu XD, Sun HC, Xiong YQ, Zhuang PY, Xu HX, Kong LQ, Wang L, Wu WZ, Tang ZY: Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res. 2010, 16: 3420-3430. 10.1158/1078-0432.CCR-09-2904.PubMedCrossRef Zhang W, Zhu XD, Sun HC, Xiong YQ, Zhuang PY, Xu HX, Kong LQ, Wang L, Wu WZ, Tang ZY: Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res. 2010, 16: 3420-3430. 10.1158/1078-0432.CCR-09-2904.PubMedCrossRef
50.
go back to reference Ojalvo LS, King W, Cox D, Pollard JW: High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am J Pathol. 2009, 174: 1048-1064. 10.2353/ajpath.2009.080676.PubMedCentralPubMedCrossRef Ojalvo LS, King W, Cox D, Pollard JW: High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am J Pathol. 2009, 174: 1048-1064. 10.2353/ajpath.2009.080676.PubMedCentralPubMedCrossRef
51.
go back to reference Lewis JS, Landers RJ, Underwood JC, Harris AL, Lewis CE: Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol. 2000, 192: 150-158. 10.1002/1096-9896(2000)9999:9999<::AID-PATH687>3.0.CO;2-G.PubMedCrossRef Lewis JS, Landers RJ, Underwood JC, Harris AL, Lewis CE: Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol. 2000, 192: 150-158. 10.1002/1096-9896(2000)9999:9999<::AID-PATH687>3.0.CO;2-G.PubMedCrossRef
52.
go back to reference Lin EY, Pollard JW: Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res. 2007, 67: 5064-5066. 10.1158/0008-5472.CAN-07-0912.PubMedCrossRef Lin EY, Pollard JW: Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res. 2007, 67: 5064-5066. 10.1158/0008-5472.CAN-07-0912.PubMedCrossRef
53.
go back to reference Lin EY, Li JF, Bricard G, Wang W, Deng Y, Sellers R, Porcelli SA, Pollard JW: Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol Oncol. 2007, 1: 288-302. 10.1016/j.molonc.2007.10.003.PubMedCentralPubMedCrossRef Lin EY, Li JF, Bricard G, Wang W, Deng Y, Sellers R, Porcelli SA, Pollard JW: Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol Oncol. 2007, 1: 288-302. 10.1016/j.molonc.2007.10.003.PubMedCentralPubMedCrossRef
54.
go back to reference Stockmann C, Doedens A, Weidemann A, Zhang N, Takeda N, Greenberg JI, Cheresh DA, Johnson RS: Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature. 2008, 456: 814-818. 10.1038/nature07445.PubMedCentralPubMedCrossRef Stockmann C, Doedens A, Weidemann A, Zhang N, Takeda N, Greenberg JI, Cheresh DA, Johnson RS: Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature. 2008, 456: 814-818. 10.1038/nature07445.PubMedCentralPubMedCrossRef
55.
go back to reference DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, et al: Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery. 2011, 1: 54-67. 10.1158/2159-8274.CD-10-0028.PubMedCentralPubMedCrossRef DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, et al: Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery. 2011, 1: 54-67. 10.1158/2159-8274.CD-10-0028.PubMedCentralPubMedCrossRef
56.
go back to reference Chatterjee S, Heukamp LC, Siobal M, Schottle J, Wieczorek C, Peifer M, Frasca D, Koker M, Konig K, Meder L, et al: Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. J Clin Invest. 2013, 123: 1732-1740. 10.1172/JCI65385.PubMedCentralPubMedCrossRef Chatterjee S, Heukamp LC, Siobal M, Schottle J, Wieczorek C, Peifer M, Frasca D, Koker M, Konig K, Meder L, et al: Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. J Clin Invest. 2013, 123: 1732-1740. 10.1172/JCI65385.PubMedCentralPubMedCrossRef
57.
go back to reference Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW: Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol. 2006, 80: 1183-1196. 10.1189/jlb.0905495.PubMedCrossRef Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW: Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol. 2006, 80: 1183-1196. 10.1189/jlb.0905495.PubMedCrossRef
58.
go back to reference Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L, Chorianopoulos E, Liesenborghs L, Koch M, De Mol M, et al: Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell. 2007, 131: 463-475. 10.1016/j.cell.2007.08.038.PubMedCrossRef Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L, Chorianopoulos E, Liesenborghs L, Koch M, De Mol M, et al: Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell. 2007, 131: 463-475. 10.1016/j.cell.2007.08.038.PubMedCrossRef
59.
go back to reference Brecht K, Weigert A, Hu J, Popp R, Fisslthaler B, Korff T, Fleming I, Geisslinger G, Brune B: Macrophages programmed by apoptotic cells promote angiogenesis via prostaglandin E2. FASEB J. 2011, 25: 2408-2417. 10.1096/fj.10-179473.PubMedCrossRef Brecht K, Weigert A, Hu J, Popp R, Fisslthaler B, Korff T, Fleming I, Geisslinger G, Brune B: Macrophages programmed by apoptotic cells promote angiogenesis via prostaglandin E2. FASEB J. 2011, 25: 2408-2417. 10.1096/fj.10-179473.PubMedCrossRef
60.
go back to reference Chen P, Huang Y, Bong R, Ding Y, Song N, Wang X, Song X, Luo Y: Tumor-associated macrophages promote angiogenesis and melanoma growth via adrenomedullin in a paracrine and autocrine manner. Clin Ca Res. 2011, 17: 7230-7239. 10.1158/1078-0432.CCR-11-1354.CrossRef Chen P, Huang Y, Bong R, Ding Y, Song N, Wang X, Song X, Luo Y: Tumor-associated macrophages promote angiogenesis and melanoma growth via adrenomedullin in a paracrine and autocrine manner. Clin Ca Res. 2011, 17: 7230-7239. 10.1158/1078-0432.CCR-11-1354.CrossRef
61.
go back to reference Kale S, Raja R, Thorat D, Soundararajan G, Patil TV, Kundu GC: Osteopontin signaling upregulates cyclooxygenase-2 expression in tumor-associated macrophages leading to enhanced angiogenesis and melanoma growth via alpha9beta1 integrin. Oncogene. 2013, in press Kale S, Raja R, Thorat D, Soundararajan G, Patil TV, Kundu GC: Osteopontin signaling upregulates cyclooxygenase-2 expression in tumor-associated macrophages leading to enhanced angiogenesis and melanoma growth via alpha9beta1 integrin. Oncogene. 2013, in press
62.
go back to reference Mason SD, Joyce JA: Proteolytic networks in cancer. Trends Cell Biol. 2011, 21: 228-237. 10.1016/j.tcb.2010.12.002.PubMedCrossRef Mason SD, Joyce JA: Proteolytic networks in cancer. Trends Cell Biol. 2011, 21: 228-237. 10.1016/j.tcb.2010.12.002.PubMedCrossRef
63.
go back to reference Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T, Joyce JA: IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 2010, 24: 241-255. 10.1101/gad.1874010.PubMedCentralPubMedCrossRef Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T, Joyce JA: IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 2010, 24: 241-255. 10.1101/gad.1874010.PubMedCentralPubMedCrossRef
64.
go back to reference Small DM, Burden RE, Jaworski J, Hegarty SM, Spence S, Burrows JF, McFarlane C, Kissenpfennig A, McCarthy HO, Johnston JA, et al: Cathepsin S from both tumor and tumor-associated cells promote cancer growth and neovascularization. Int J Cancer. 2013, 133: 2102-2112. 10.1002/ijc.28238.PubMedCrossRef Small DM, Burden RE, Jaworski J, Hegarty SM, Spence S, Burrows JF, McFarlane C, Kissenpfennig A, McCarthy HO, Johnston JA, et al: Cathepsin S from both tumor and tumor-associated cells promote cancer growth and neovascularization. Int J Cancer. 2013, 133: 2102-2112. 10.1002/ijc.28238.PubMedCrossRef
65.
66.
go back to reference Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D: Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000, 2: 737-744. 10.1038/35036374.PubMedCentralPubMedCrossRef Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D: Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000, 2: 737-744. 10.1038/35036374.PubMedCentralPubMedCrossRef
67.
go back to reference Coussens LM, Tinkle CL, Hanahan D, Werb Z: MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000, 103: 481-490. 10.1016/S0092-8674(00)00139-2.PubMedCentralPubMedCrossRef Coussens LM, Tinkle CL, Hanahan D, Werb Z: MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000, 103: 481-490. 10.1016/S0092-8674(00)00139-2.PubMedCentralPubMedCrossRef
68.
go back to reference Giraudo E, Inoue M, Hanahan D: An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest. 2004, 114: 623-633. 10.1172/JCI200422087.PubMedCentralPubMedCrossRef Giraudo E, Inoue M, Hanahan D: An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest. 2004, 114: 623-633. 10.1172/JCI200422087.PubMedCentralPubMedCrossRef
69.
go back to reference Ahn GO, Brown JM: Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer cell. 2008, 13: 193-205. 10.1016/j.ccr.2007.11.032.PubMedCentralPubMedCrossRef Ahn GO, Brown JM: Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer cell. 2008, 13: 193-205. 10.1016/j.ccr.2007.11.032.PubMedCentralPubMedCrossRef
70.
go back to reference Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegue E, Song H, Vandenberg S, Johnson RS, Werb Z, Bergers G: HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell. 2008, 13: 206-220. 10.1016/j.ccr.2008.01.034.PubMedCentralPubMedCrossRef Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegue E, Song H, Vandenberg S, Johnson RS, Werb Z, Bergers G: HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell. 2008, 13: 206-220. 10.1016/j.ccr.2008.01.034.PubMedCentralPubMedCrossRef
71.
go back to reference Engels K, Fox SB, Whitehouse RM, Gatter KC, Harris AL: Up-regulation of thymidine phosphorylase expression is associated with a discrete pattern of angiogenesis in ductal carcinomas in situ of the breast. J Pathol. 1997, 182: 414-420. 10.1002/(SICI)1096-9896(199708)182:4<414::AID-PATH897>3.0.CO;2-Q.PubMedCrossRef Engels K, Fox SB, Whitehouse RM, Gatter KC, Harris AL: Up-regulation of thymidine phosphorylase expression is associated with a discrete pattern of angiogenesis in ductal carcinomas in situ of the breast. J Pathol. 1997, 182: 414-420. 10.1002/(SICI)1096-9896(199708)182:4<414::AID-PATH897>3.0.CO;2-Q.PubMedCrossRef
72.
go back to reference Goto H, Kohno K, Sone S, Akiyama S, Kuwano M, Ono M: Interferon gamma-dependent induction of thymidine phosphorylase/platelet-derived endothelial growth factor through gamma-activated sequence-like element in human macrophages. Cancer Res. 2001, 61: 469-473.PubMed Goto H, Kohno K, Sone S, Akiyama S, Kuwano M, Ono M: Interferon gamma-dependent induction of thymidine phosphorylase/platelet-derived endothelial growth factor through gamma-activated sequence-like element in human macrophages. Cancer Res. 2001, 61: 469-473.PubMed
73.
go back to reference Hotchkiss KA, Ashton AW, Klein RS, Lenzi ML, Zhu GH, Schwartz EL: Mechanisms by which tumor cells and monocytes expressing the angiogenic factor thymidine phosphorylase mediate human endothelial cell migration. Cancer Res. 2003, 63: 527-533.PubMed Hotchkiss KA, Ashton AW, Klein RS, Lenzi ML, Zhu GH, Schwartz EL: Mechanisms by which tumor cells and monocytes expressing the angiogenic factor thymidine phosphorylase mediate human endothelial cell migration. Cancer Res. 2003, 63: 527-533.PubMed
74.
go back to reference Kawahara A, Hattori S, Akiba J, Nakashima K, Taira T, Watari K, Hosoi F, Uba M, Basaki Y, Koufuji K, et al: Infiltration of thymidine phosphorylase-positive macrophages is closely associated with tumor angiogenesis and survival in intestinal type gastric cancer. Oncology reports. 2010, 24: 405-415.PubMedCrossRef Kawahara A, Hattori S, Akiba J, Nakashima K, Taira T, Watari K, Hosoi F, Uba M, Basaki Y, Koufuji K, et al: Infiltration of thymidine phosphorylase-positive macrophages is closely associated with tumor angiogenesis and survival in intestinal type gastric cancer. Oncology reports. 2010, 24: 405-415.PubMedCrossRef
75.
go back to reference Aharinejad S, Paulus P, Sioud M, Hofmann M, Zins K, Schafer R, Stanley ER, Abraham D: Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res. 2004, 64: 5378-5384. 10.1158/0008-5472.CAN-04-0961.PubMedCrossRef Aharinejad S, Paulus P, Sioud M, Hofmann M, Zins K, Schafer R, Stanley ER, Abraham D: Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res. 2004, 64: 5378-5384. 10.1158/0008-5472.CAN-04-0961.PubMedCrossRef
76.
go back to reference Muramatsu M, Yamamoto S, Osawa T, Shibuya M: Vascular endothelial growth factor receptor-1 signaling promotes mobilization of macrophage lineage cells from bone marrow and stimulates solid tumor growth. Cancer Res. 2010, 70: 8211-8221. 10.1158/0008-5472.CAN-10-0202.PubMedCrossRef Muramatsu M, Yamamoto S, Osawa T, Shibuya M: Vascular endothelial growth factor receptor-1 signaling promotes mobilization of macrophage lineage cells from bone marrow and stimulates solid tumor growth. Cancer Res. 2010, 70: 8211-8221. 10.1158/0008-5472.CAN-10-0202.PubMedCrossRef
77.
go back to reference Linde N, Lederle W, Depner S, van Rooijen N, Gutschalk CM, Mueller MM: Vascular endothelial growth factor-induced skin carcinogenesis depends on recruitment and alternative activation of macrophages. J Pathol. 2012, 227: 17-28. 10.1002/path.3989.PubMedCrossRef Linde N, Lederle W, Depner S, van Rooijen N, Gutschalk CM, Mueller MM: Vascular endothelial growth factor-induced skin carcinogenesis depends on recruitment and alternative activation of macrophages. J Pathol. 2012, 227: 17-28. 10.1002/path.3989.PubMedCrossRef
78.
go back to reference Serbina NV, Pamer EG: Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol. 2006, 7: 311-317.PubMedCrossRef Serbina NV, Pamer EG: Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol. 2006, 7: 311-317.PubMedCrossRef
79.
go back to reference Saji H, Koike M, Yamori T, Saji S, Seiki M, Matsushima K, Toi M: Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer. 2001, 92: 1085-1091. 10.1002/1097-0142(20010901)92:5<1085::AID-CNCR1424>3.0.CO;2-K.PubMedCrossRef Saji H, Koike M, Yamori T, Saji S, Seiki M, Matsushima K, Toi M: Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer. 2001, 92: 1085-1091. 10.1002/1097-0142(20010901)92:5<1085::AID-CNCR1424>3.0.CO;2-K.PubMedCrossRef
80.
go back to reference Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H, Matsushima K: Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res. 2000, 6: 3282-3289.PubMed Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H, Matsushima K: Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res. 2000, 6: 3282-3289.PubMed
81.
go back to reference Murdoch C, Giannoudis A, Lewis CE: Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 2004, 104: 2224-2234. 10.1182/blood-2004-03-1109.PubMedCrossRef Murdoch C, Giannoudis A, Lewis CE: Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 2004, 104: 2224-2234. 10.1182/blood-2004-03-1109.PubMedCrossRef
82.
go back to reference Zhang J, Lu Y, Pienta KJ: Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth. J Natl Cancer Inst. 2010, 102: 522-528. 10.1093/jnci/djq044.PubMedCentralPubMedCrossRef Zhang J, Lu Y, Pienta KJ: Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth. J Natl Cancer Inst. 2010, 102: 522-528. 10.1093/jnci/djq044.PubMedCentralPubMedCrossRef
83.
go back to reference Roca H, Varsos ZS, Sud S, Craig MJ, Ying C, Pienta KJ: CCL2 and interleukin-6 promote survival of human CD11b + peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biologic Chem. 2009, 284: 34342-34354. 10.1074/jbc.M109.042671.CrossRef Roca H, Varsos ZS, Sud S, Craig MJ, Ying C, Pienta KJ: CCL2 and interleukin-6 promote survival of human CD11b + peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biologic Chem. 2009, 284: 34342-34354. 10.1074/jbc.M109.042671.CrossRef
84.
85.
go back to reference Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC: Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004, 10: 858-864. 10.1038/nm1075.PubMedCrossRef Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC: Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004, 10: 858-864. 10.1038/nm1075.PubMedCrossRef
86.
go back to reference Welford AF, Biziato D, Coffelt SB, Nucera S, Fisher M, Pucci F, Di Serio C, Naldini L, De Palma M, Tozer GM, Lewis CE: TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. J Clin Invest. 2011, 121: 1969-1973. 10.1172/JCI44562.PubMedCentralPubMedCrossRef Welford AF, Biziato D, Coffelt SB, Nucera S, Fisher M, Pucci F, Di Serio C, Naldini L, De Palma M, Tozer GM, Lewis CE: TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. J Clin Invest. 2011, 121: 1969-1973. 10.1172/JCI44562.PubMedCentralPubMedCrossRef
87.
go back to reference Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM: Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest. 2010, 120: 694-705. 10.1172/JCI40283.PubMedCentralPubMedCrossRef Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM: Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest. 2010, 120: 694-705. 10.1172/JCI40283.PubMedCentralPubMedCrossRef
88.
go back to reference Kozin SV, Kamoun WS, Huang Y, Dawson MR, Jain RK, Duda DG: Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer research. 2010, 70: 5679-5685. 10.1158/0008-5472.CAN-09-4446.PubMedCentralPubMedCrossRef Kozin SV, Kamoun WS, Huang Y, Dawson MR, Jain RK, Duda DG: Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer research. 2010, 70: 5679-5685. 10.1158/0008-5472.CAN-09-4446.PubMedCentralPubMedCrossRef
89.
go back to reference Sanchez-Martin L, Estecha A, Samaniego R, Sanchez-Ramon S, Vega MA, Sanchez-Mateos P: The chemokine CXCL12 regulates monocyte-macrophage differentiation and RUNX3 expression. Blood. 2011, 117: 88-97. 10.1182/blood-2009-12-258186.PubMedCrossRef Sanchez-Martin L, Estecha A, Samaniego R, Sanchez-Ramon S, Vega MA, Sanchez-Mateos P: The chemokine CXCL12 regulates monocyte-macrophage differentiation and RUNX3 expression. Blood. 2011, 117: 88-97. 10.1182/blood-2009-12-258186.PubMedCrossRef
90.
go back to reference Fischer C, Mazzone M, Jonckx B, Carmeliet P: FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy?. Nat Rev Cancer. 2008, 8: 942-956. 10.1038/nrc2524.PubMedCrossRef Fischer C, Mazzone M, Jonckx B, Carmeliet P: FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy?. Nat Rev Cancer. 2008, 8: 942-956. 10.1038/nrc2524.PubMedCrossRef
91.
go back to reference Van de Veire S, Stalmans I, Heindryckx F, Oura H, Tijeras-Raballand A, Schmidt T, Loges S, Albrecht I, Jonckx B, Vinckier S, et al: Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell. 2010, 141: 178-190. 10.1016/j.cell.2010.02.039.PubMedCrossRef Van de Veire S, Stalmans I, Heindryckx F, Oura H, Tijeras-Raballand A, Schmidt T, Loges S, Albrecht I, Jonckx B, Vinckier S, et al: Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell. 2010, 141: 178-190. 10.1016/j.cell.2010.02.039.PubMedCrossRef
92.
go back to reference Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C, Squadrito ML, Segura I, Li X, Knevels E, et al: HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell. 2011, 19: 31-44. 10.1016/j.ccr.2010.11.009.PubMedCrossRef Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C, Squadrito ML, Segura I, Li X, Knevels E, et al: HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell. 2011, 19: 31-44. 10.1016/j.ccr.2010.11.009.PubMedCrossRef
93.
go back to reference Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H, Yu H: Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest. 2008, 118: 3367-3377. 10.1172/JCI35213.PubMedCentralPubMedCrossRef Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H, Yu H: Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest. 2008, 118: 3367-3377. 10.1172/JCI35213.PubMedCentralPubMedCrossRef
94.
go back to reference Komohara Y, Horlad H, Ohnishi K, Fujiwara Y, Bai B, Nakagawa T, Suzu S, Nakamura H, Kuratsu J, Takeya M: Importance of direct macrophage-tumor cell interaction on progression of human glioma. Cancer Sci. 2012, 103: 2165-2172. 10.1111/cas.12015.PubMedCrossRef Komohara Y, Horlad H, Ohnishi K, Fujiwara Y, Bai B, Nakagawa T, Suzu S, Nakamura H, Kuratsu J, Takeya M: Importance of direct macrophage-tumor cell interaction on progression of human glioma. Cancer Sci. 2012, 103: 2165-2172. 10.1111/cas.12015.PubMedCrossRef
95.
go back to reference Xin H, Herrmann A, Reckamp K, Zhang W, Pal S, Hedvat M, Zhang C, Liang W, Scuto A, Weng S, et al: Antiangiogenic and antimetastatic activity of JAK inhibitor AZD1480. Cancer Res. 2011, 71: 6601-6610. 10.1158/0008-5472.CAN-11-1217.PubMedCentralPubMedCrossRef Xin H, Herrmann A, Reckamp K, Zhang W, Pal S, Hedvat M, Zhang C, Liang W, Scuto A, Weng S, et al: Antiangiogenic and antimetastatic activity of JAK inhibitor AZD1480. Cancer Res. 2011, 71: 6601-6610. 10.1158/0008-5472.CAN-11-1217.PubMedCentralPubMedCrossRef
96.
go back to reference Sevilla L, Aperlo C, Dulic V, Chambard JC, Boutonnet C, Pasquier O, Pognonec P, Boulukos KE: The Ets2 transcription factor inhibits apoptosis induced by colony-stimulating factor 1 deprivation of macrophages through a Bcl-xL-dependent mechanism. Mol Cell Biol. 1999, 19: 2624-2634.PubMedCentralPubMedCrossRef Sevilla L, Aperlo C, Dulic V, Chambard JC, Boutonnet C, Pasquier O, Pognonec P, Boulukos KE: The Ets2 transcription factor inhibits apoptosis induced by colony-stimulating factor 1 deprivation of macrophages through a Bcl-xL-dependent mechanism. Mol Cell Biol. 1999, 19: 2624-2634.PubMedCentralPubMedCrossRef
97.
go back to reference Wei G, Guo J, Doseff AI, Kusewitt DF, Man AK, Oshima RG, Ostrowski MC: Activated Ets2 is required for persistent inflammatory responses in the motheaten viable model. J Immunol. 2004, 173: 1374-1379.PubMedCrossRef Wei G, Guo J, Doseff AI, Kusewitt DF, Man AK, Oshima RG, Ostrowski MC: Activated Ets2 is required for persistent inflammatory responses in the motheaten viable model. J Immunol. 2004, 173: 1374-1379.PubMedCrossRef
98.
go back to reference Zabuawala T, Taffany DA, Sharma SM, Merchant A, Adair B, Srinivasan R, Rosol TJ, Fernandez S, Huang K, Leone G, Ostrowski MC: An ets2-driven transcriptional program in tumor-associated macrophages promotes tumor metastasis. Cancer Res. 2010, 70: 1323-1333. 10.1158/0008-5472.CAN-09-1474.PubMedCentralPubMedCrossRef Zabuawala T, Taffany DA, Sharma SM, Merchant A, Adair B, Srinivasan R, Rosol TJ, Fernandez S, Huang K, Leone G, Ostrowski MC: An ets2-driven transcriptional program in tumor-associated macrophages promotes tumor metastasis. Cancer Res. 2010, 70: 1323-1333. 10.1158/0008-5472.CAN-09-1474.PubMedCentralPubMedCrossRef
99.
go back to reference Wu H, Xu JB, He YL, Peng JJ, Zhang XH, Chen CQ, Li W, Cai SR: Tumor-associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer. J Surg Oncol. 2012, 106: 462-468. 10.1002/jso.23110.PubMedCrossRef Wu H, Xu JB, He YL, Peng JJ, Zhang XH, Chen CQ, Li W, Cai SR: Tumor-associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer. J Surg Oncol. 2012, 106: 462-468. 10.1002/jso.23110.PubMedCrossRef
100.
go back to reference Chen W, Ma T, Shen XN, Xia XF, Xu GD, Bai XL, Liang TB: Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway. Cancer Res. 2012, 72: 1363-1372. 10.1158/0008-5472.CAN-11-2684.PubMedCrossRef Chen W, Ma T, Shen XN, Xia XF, Xu GD, Bai XL, Liang TB: Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway. Cancer Res. 2012, 72: 1363-1372. 10.1158/0008-5472.CAN-11-2684.PubMedCrossRef
101.
go back to reference Kerber M, Reiss Y, Wickersheim A, Jugold M, Kiessling F, Heil M, Tchaikovski V, Waltenberger J, Shibuya M, Plate KH, Machein MR: Flt-1 signaling in macrophages promotes glioma growth in vivo. Cancer Res. 2008, 68: 7342-7351. 10.1158/0008-5472.CAN-07-6241.PubMedCrossRef Kerber M, Reiss Y, Wickersheim A, Jugold M, Kiessling F, Heil M, Tchaikovski V, Waltenberger J, Shibuya M, Plate KH, Machein MR: Flt-1 signaling in macrophages promotes glioma growth in vivo. Cancer Res. 2008, 68: 7342-7351. 10.1158/0008-5472.CAN-07-6241.PubMedCrossRef
102.
go back to reference Yang Y, Sun M, Wang L, Jiao B: HIFs, angiogenesis, and cancer. J Cell Biochem. 2013, 114: 967-974. 10.1002/jcb.24438.PubMedCrossRef Yang Y, Sun M, Wang L, Jiao B: HIFs, angiogenesis, and cancer. J Cell Biochem. 2013, 114: 967-974. 10.1002/jcb.24438.PubMedCrossRef
103.
go back to reference Chan DA, Kawahara TL, Sutphin PD, Chang HY, Chi JT, Giaccia AJ: Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell. 2009, 15: 527-538. 10.1016/j.ccr.2009.04.010.PubMedCentralPubMedCrossRef Chan DA, Kawahara TL, Sutphin PD, Chang HY, Chi JT, Giaccia AJ: Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell. 2009, 15: 527-538. 10.1016/j.ccr.2009.04.010.PubMedCentralPubMedCrossRef
104.
go back to reference Lewis C, Murdoch C: Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol. 2005, 167: 627-635. 10.1016/S0002-9440(10)62038-X.PubMedCentralPubMedCrossRef Lewis C, Murdoch C: Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol. 2005, 167: 627-635. 10.1016/S0002-9440(10)62038-X.PubMedCentralPubMedCrossRef
105.
go back to reference Shen Z, Kauttu T, Seppanen H, Vainionpaa S, Ye Y, Wang S, Mustonen H, Puolakkainen P: Vasohibin-1 and vasohibin-2 expression in gastric cancer cells and TAMs. Med Oncol. 2012, 29: 2718-2726. 10.1007/s12032-012-0212-1.PubMedCrossRef Shen Z, Kauttu T, Seppanen H, Vainionpaa S, Ye Y, Wang S, Mustonen H, Puolakkainen P: Vasohibin-1 and vasohibin-2 expression in gastric cancer cells and TAMs. Med Oncol. 2012, 29: 2718-2726. 10.1007/s12032-012-0212-1.PubMedCrossRef
106.
go back to reference Xu Q, Briggs J, Park S, Niu G, Kortylewski M, Zhang S, Gritsko T, Turkson J, Kay H, Semenza GL, et al: Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene. 2005, 24: 5552-5560. 10.1038/sj.onc.1208719.PubMedCrossRef Xu Q, Briggs J, Park S, Niu G, Kortylewski M, Zhang S, Gritsko T, Turkson J, Kay H, Semenza GL, et al: Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene. 2005, 24: 5552-5560. 10.1038/sj.onc.1208719.PubMedCrossRef
107.
go back to reference Niu G, Briggs J, Deng J, Ma Y, Lee H, Kortylewski M, Kujawski M, Kay H, Cress WD, Jove R, Yu H: Signal transducer and activator of transcription 3 is required for hypoxia-inducible factor-1alpha RNA expression in both tumor cells and tumor-associated myeloid cells. Mol Cancer Res. 2008, 6: 1099-1105. 10.1158/1541-7786.MCR-07-2177.PubMedCentralPubMedCrossRef Niu G, Briggs J, Deng J, Ma Y, Lee H, Kortylewski M, Kujawski M, Kay H, Cress WD, Jove R, Yu H: Signal transducer and activator of transcription 3 is required for hypoxia-inducible factor-1alpha RNA expression in both tumor cells and tumor-associated myeloid cells. Mol Cancer Res. 2008, 6: 1099-1105. 10.1158/1541-7786.MCR-07-2177.PubMedCentralPubMedCrossRef
108.
go back to reference Papadakis AI, Paraskeva E, Peidis P, Muaddi H, Li S, Raptis L, Pantopoulos K, Simos G, Koromilas AE: eIF2{alpha} Kinase PKR modulates the hypoxic response by Stat3-dependent transcriptional suppression of HIF-1{alpha}. Cancer Res. 2010, 70: 7820-7829. 10.1158/0008-5472.CAN-10-0215.PubMedCrossRef Papadakis AI, Paraskeva E, Peidis P, Muaddi H, Li S, Raptis L, Pantopoulos K, Simos G, Koromilas AE: eIF2{alpha} Kinase PKR modulates the hypoxic response by Stat3-dependent transcriptional suppression of HIF-1{alpha}. Cancer Res. 2010, 70: 7820-7829. 10.1158/0008-5472.CAN-10-0215.PubMedCrossRef
109.
go back to reference Jung JE, Lee HG, Cho IH, Chung DH, Yoon SH, Yang YM, Lee JW, Choi S, Park JW, Ye SK, Chung MH: STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. FASEB J. 2005, 19: 1296-1298.PubMed Jung JE, Lee HG, Cho IH, Chung DH, Yoon SH, Yang YM, Lee JW, Choi S, Park JW, Ye SK, Chung MH: STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. FASEB J. 2005, 19: 1296-1298.PubMed
110.
go back to reference Lang SA, Moser C, Gaumann A, Klein D, Glockzin G, Popp FC, Dahlke MH, Piso P, Schlitt HJ, Geissler EK, Stoeltzing O: Targeting heat shock protein 90 in pancreatic cancer impairs insulin-like growth factor-I receptor signaling, disrupts an interleukin-6/signal-transducer and activator of transcription 3/hypoxia-inducible factor-1alpha autocrine loop, and reduces orthotopic tumor growth. Clin Cancer Res. 2007, 13: 6459-6468. 10.1158/1078-0432.CCR-07-1104.PubMedCrossRef Lang SA, Moser C, Gaumann A, Klein D, Glockzin G, Popp FC, Dahlke MH, Piso P, Schlitt HJ, Geissler EK, Stoeltzing O: Targeting heat shock protein 90 in pancreatic cancer impairs insulin-like growth factor-I receptor signaling, disrupts an interleukin-6/signal-transducer and activator of transcription 3/hypoxia-inducible factor-1alpha autocrine loop, and reduces orthotopic tumor growth. Clin Cancer Res. 2007, 13: 6459-6468. 10.1158/1078-0432.CCR-07-1104.PubMedCrossRef
111.
go back to reference Anglesio MS, George J, Kulbe H, Friedlander M, Rischin D, Lemech C, Power J, Coward J, Cowin PA, House CM, et al: IL6-STAT3-HIF signaling and therapeutic response to the angiogenesis inhibitor sunitinib in ovarian clear cell cancer. Clin Cancer Res. 2011, 17: 2538-2548. 10.1158/1078-0432.CCR-10-3314.PubMedCrossRef Anglesio MS, George J, Kulbe H, Friedlander M, Rischin D, Lemech C, Power J, Coward J, Cowin PA, House CM, et al: IL6-STAT3-HIF signaling and therapeutic response to the angiogenesis inhibitor sunitinib in ovarian clear cell cancer. Clin Cancer Res. 2011, 17: 2538-2548. 10.1158/1078-0432.CCR-10-3314.PubMedCrossRef
112.
go back to reference De Palma M, Venneri MA, Roca C, Naldini L: Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med. 2003, 9: 789-795. 10.1038/nm871.PubMedCrossRef De Palma M, Venneri MA, Roca C, Naldini L: Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med. 2003, 9: 789-795. 10.1038/nm871.PubMedCrossRef
113.
go back to reference Geissmann F, Auffray C, Palframan R, Wirrig C, Ciocca A, Campisi L, Narni-Mancinelli E, Lauvau G: Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol Cell Biol. 2008, 86: 398-408. 10.1038/icb.2008.19.PubMedCrossRef Geissmann F, Auffray C, Palframan R, Wirrig C, Ciocca A, Campisi L, Narni-Mancinelli E, Lauvau G: Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol Cell Biol. 2008, 86: 398-408. 10.1038/icb.2008.19.PubMedCrossRef
114.
go back to reference MacDonald KP, Palmer JS, Cronau S, Seppanen E, Olver S, Raffelt NC, Kuns R, Pettit AR, Clouston A, Wainwright B, et al: An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood. 2010, 116: 3955-3963. 10.1182/blood-2010-02-266296.PubMedCrossRef MacDonald KP, Palmer JS, Cronau S, Seppanen E, Olver S, Raffelt NC, Kuns R, Pettit AR, Clouston A, Wainwright B, et al: An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood. 2010, 116: 3955-3963. 10.1182/blood-2010-02-266296.PubMedCrossRef
115.
go back to reference De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L: Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell. 2005, 8: 211-226. 10.1016/j.ccr.2005.08.002.PubMedCrossRef De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L: Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell. 2005, 8: 211-226. 10.1016/j.ccr.2005.08.002.PubMedCrossRef
116.
go back to reference Venneri MA, De Palma M, Ponzoni M, Pucci F, Scielzo C, Zonari E, Mazzieri R, Doglioni C, Naldini L: Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood. 2007, 109: 5276-5285. 10.1182/blood-2006-10-053504.PubMedCrossRef Venneri MA, De Palma M, Ponzoni M, Pucci F, Scielzo C, Zonari E, Mazzieri R, Doglioni C, Naldini L: Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood. 2007, 109: 5276-5285. 10.1182/blood-2006-10-053504.PubMedCrossRef
117.
go back to reference Murdoch C, Tazzyman S, Webster S, Lewis CE: Expression of Tie-2 by human monocytes and their responses to angiopoietin-2. J Immunol. 2007, 178: 7405-7411.PubMedCrossRef Murdoch C, Tazzyman S, Webster S, Lewis CE: Expression of Tie-2 by human monocytes and their responses to angiopoietin-2. J Immunol. 2007, 178: 7405-7411.PubMedCrossRef
118.
go back to reference Matsubara T, Kanto T, Kuroda S, Yoshio S, Higashitani K, Kakita N, Miyazaki M, Sakakibara M, Hiramatsu N, Kasahara A, et al: TIE2-expressing monocytes as a diagnostic marker for hepatocellular carcinoma correlates with angiogenesis. Hepatology. 2013, 57: 1416-1425. 10.1002/hep.25965.PubMedCrossRef Matsubara T, Kanto T, Kuroda S, Yoshio S, Higashitani K, Kakita N, Miyazaki M, Sakakibara M, Hiramatsu N, Kasahara A, et al: TIE2-expressing monocytes as a diagnostic marker for hepatocellular carcinoma correlates with angiogenesis. Hepatology. 2013, 57: 1416-1425. 10.1002/hep.25965.PubMedCrossRef
119.
go back to reference Augustin HG, Koh GY, Thurston G, Alitalo K: Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol. 2009, 10: 165-177. 10.1038/nrm2639.PubMedCrossRef Augustin HG, Koh GY, Thurston G, Alitalo K: Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol. 2009, 10: 165-177. 10.1038/nrm2639.PubMedCrossRef
120.
go back to reference Coffelt SB, Tal AO, Scholz A, De Palma M, Patel S, Urbich C, Biswas SK, Murdoch C, Plate KH, Reiss Y, Lewis CE: Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions. Cancer Res. 2010, 70: 5270-5280. 10.1158/0008-5472.CAN-10-0012.PubMedCrossRef Coffelt SB, Tal AO, Scholz A, De Palma M, Patel S, Urbich C, Biswas SK, Murdoch C, Plate KH, Reiss Y, Lewis CE: Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions. Cancer Res. 2010, 70: 5270-5280. 10.1158/0008-5472.CAN-10-0012.PubMedCrossRef
121.
122.
go back to reference Gabrilovich DI, Ostrand-Rosenberg S, Bronte V: Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012, 12: 253-268. 10.1038/nri3175.PubMedCentralPubMedCrossRef Gabrilovich DI, Ostrand-Rosenberg S, Bronte V: Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012, 12: 253-268. 10.1038/nri3175.PubMedCentralPubMedCrossRef
123.
go back to reference Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC: Expansion of myeloid immune suppressor Gr + CD11b + cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 2004, 6: 409-421. 10.1016/j.ccr.2004.08.031.PubMedCrossRef Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC: Expansion of myeloid immune suppressor Gr + CD11b + cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 2004, 6: 409-421. 10.1016/j.ccr.2004.08.031.PubMedCrossRef
124.
go back to reference Sica A, Bronte V: Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 2007, 117: 1155-1166. 10.1172/JCI31422.PubMedCentralPubMedCrossRef Sica A, Bronte V: Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 2007, 117: 1155-1166. 10.1172/JCI31422.PubMedCentralPubMedCrossRef
125.
go back to reference Kusmartsev S, Gabrilovich DI: STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol. 2005, 174: 4880-4891.PubMedCrossRef Kusmartsev S, Gabrilovich DI: STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol. 2005, 174: 4880-4891.PubMedCrossRef
126.
go back to reference Kusmartsev S, Nagaraj S, Gabrilovich DI: Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol. 2005, 175: 4583-4592.PubMedCentralPubMedCrossRef Kusmartsev S, Nagaraj S, Gabrilovich DI: Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol. 2005, 175: 4583-4592.PubMedCentralPubMedCrossRef
127.
go back to reference Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S: Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol. 2007, 179: 977-983.PubMedCrossRef Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S: Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol. 2007, 179: 977-983.PubMedCrossRef
128.
go back to reference Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, Cho HI, Celis E, Quiceno DG, Padhya T, et al: HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med. 2010, 207: 2439-2453. 10.1084/jem.20100587.PubMedCentralPubMedCrossRef Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, Cho HI, Celis E, Quiceno DG, Padhya T, et al: HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med. 2010, 207: 2439-2453. 10.1084/jem.20100587.PubMedCentralPubMedCrossRef
129.
go back to reference He H, Xu J, Warren CM, Duan D, Li X, Wu L, Iruela-Arispe ML: Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages. Blood. 2012, 120: 3152-3162. 10.1182/blood-2012-04-422758.PubMedCentralPubMedCrossRef He H, Xu J, Warren CM, Duan D, Li X, Wu L, Iruela-Arispe ML: Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages. Blood. 2012, 120: 3152-3162. 10.1182/blood-2012-04-422758.PubMedCentralPubMedCrossRef
130.
go back to reference Carmeliet P, Jain RK: Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Dis. 2011, 10: 417-427. 10.1038/nrd3455.CrossRef Carmeliet P, Jain RK: Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Dis. 2011, 10: 417-427. 10.1038/nrd3455.CrossRef
132.
go back to reference Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, et al: Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 2007, 450: 825-831. 10.1038/nature06348.PubMedCrossRef Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, et al: Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 2007, 450: 825-831. 10.1038/nature06348.PubMedCrossRef
133.
go back to reference Shojaei F, Ferrara N: Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer Res. 2008, 68: 5501-5504. 10.1158/0008-5472.CAN-08-0925.PubMedCrossRef Shojaei F, Ferrara N: Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer Res. 2008, 68: 5501-5504. 10.1158/0008-5472.CAN-08-0925.PubMedCrossRef
134.
go back to reference Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjallman AH, Ballmer-Hofer K, Schwendener RA: Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer. 2006, 95: 272-281. 10.1038/sj.bjc.6603240.PubMedCentralPubMedCrossRef Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjallman AH, Ballmer-Hofer K, Schwendener RA: Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer. 2006, 95: 272-281. 10.1038/sj.bjc.6603240.PubMedCentralPubMedCrossRef
135.
go back to reference Priceman SJ, Sung JL, Shaposhnik Z, Burton JB, Torres-Collado AX, Moughon DL, Johnson M, Lusis AJ, Cohen DA, Iruela-Arispe ML, Wu L: Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood. 2010, 115: 1461-1471. 10.1182/blood-2009-08-237412.PubMedCentralPubMedCrossRef Priceman SJ, Sung JL, Shaposhnik Z, Burton JB, Torres-Collado AX, Moughon DL, Johnson M, Lusis AJ, Cohen DA, Iruela-Arispe ML, Wu L: Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood. 2010, 115: 1461-1471. 10.1182/blood-2009-08-237412.PubMedCentralPubMedCrossRef
136.
go back to reference Paulus P, Stanley ER, Schafer R, Abraham D, Aharinejad S: Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res. 2006, 66: 4349-4356. 10.1158/0008-5472.CAN-05-3523.PubMedCrossRef Paulus P, Stanley ER, Schafer R, Abraham D, Aharinejad S: Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res. 2006, 66: 4349-4356. 10.1158/0008-5472.CAN-05-3523.PubMedCrossRef
137.
go back to reference Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F, et al: Role of macrophage targeting in the antitumor activity of trabectedin. Cancer cell. 2013, 23: 249-262. 10.1016/j.ccr.2013.01.008.PubMedCrossRef Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F, et al: Role of macrophage targeting in the antitumor activity of trabectedin. Cancer cell. 2013, 23: 249-262. 10.1016/j.ccr.2013.01.008.PubMedCrossRef
138.
go back to reference Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, Fuks Z, Kolesnick R: Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003, 300: 1155-1159. 10.1126/science.1082504.PubMedCrossRef Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, Fuks Z, Kolesnick R: Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003, 300: 1155-1159. 10.1126/science.1082504.PubMedCrossRef
139.
go back to reference Shiao SL, Coussens LM: The tumor-immune microenvironment and response to radiation therapy. J Mammary Gland Biol Neoplasia. 2010, 15: 411-421. 10.1007/s10911-010-9194-9.PubMedCentralPubMedCrossRef Shiao SL, Coussens LM: The tumor-immune microenvironment and response to radiation therapy. J Mammary Gland Biol Neoplasia. 2010, 15: 411-421. 10.1007/s10911-010-9194-9.PubMedCentralPubMedCrossRef
140.
go back to reference Milas L, Wike J, Hunter N, Volpe J, Basic I: Macrophage content of murine sarcomas and carcinomas: associations with tumor growth parameters and tumor radiocurability. Cancer Res. 1987, 47: 1069-1075.PubMed Milas L, Wike J, Hunter N, Volpe J, Basic I: Macrophage content of murine sarcomas and carcinomas: associations with tumor growth parameters and tumor radiocurability. Cancer Res. 1987, 47: 1069-1075.PubMed
141.
go back to reference Ahn GO, Tseng D, Liao CH, Dorie MJ, Czechowicz A, Brown JM: Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc Natl Acad Sci U S A. 2010, 107: 8363-8368. 10.1073/pnas.0911378107.PubMedCentralPubMedCrossRef Ahn GO, Tseng D, Liao CH, Dorie MJ, Czechowicz A, Brown JM: Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc Natl Acad Sci U S A. 2010, 107: 8363-8368. 10.1073/pnas.0911378107.PubMedCentralPubMedCrossRef
142.
go back to reference Chiang CS, Fu SY, Wang SC, Yu CF, Chen FH, Lin CM, Hong JH: Irradiation promotes an m2 macrophage phenotype in tumor hypoxia. Front Oncol. 2012, 2: 89-PubMedCentralPubMedCrossRef Chiang CS, Fu SY, Wang SC, Yu CF, Chen FH, Lin CM, Hong JH: Irradiation promotes an m2 macrophage phenotype in tumor hypoxia. Front Oncol. 2012, 2: 89-PubMedCentralPubMedCrossRef
143.
go back to reference Xu J, Escamilla J, Mok S, David J, Priceman S, West B, Bollag G, McBride W, Wu L: CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 2013, 73: 2782-2794. 10.1158/0008-5472.CAN-12-3981.PubMedCentralPubMedCrossRef Xu J, Escamilla J, Mok S, David J, Priceman S, West B, Bollag G, McBride W, Wu L: CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 2013, 73: 2782-2794. 10.1158/0008-5472.CAN-12-3981.PubMedCentralPubMedCrossRef
144.
go back to reference De Palma M, Lewis CE: Cancer: Macrophages limit chemotherapy. Nature. 2011, 472: 303-304. 10.1038/472303a.PubMedCrossRef De Palma M, Lewis CE: Cancer: Macrophages limit chemotherapy. Nature. 2011, 472: 303-304. 10.1038/472303a.PubMedCrossRef
145.
go back to reference Szlosarek PW, Balkwill FR: Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol. 2003, 4: 565-573. 10.1016/S1470-2045(03)01196-3.PubMedCrossRef Szlosarek PW, Balkwill FR: Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol. 2003, 4: 565-573. 10.1016/S1470-2045(03)01196-3.PubMedCrossRef
146.
go back to reference Hagemann T, Wilson J, Burke F, Kulbe H, Li NF, Pluddemann A, Charles K, Gordon S, Balkwill FR: Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol. 2006, 176: 5023-5032.PubMedCrossRef Hagemann T, Wilson J, Burke F, Kulbe H, Li NF, Pluddemann A, Charles K, Gordon S, Balkwill FR: Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol. 2006, 176: 5023-5032.PubMedCrossRef
147.
go back to reference Sangaletti S, Tripodo C, Ratti C, Piconese S, Porcasi R, Salcedo R, Trinchieri G, Colombo MP, Chiodoni C: Oncogene-driven intrinsic inflammation induces leukocyte production of tumor necrosis factor that critically contributes to mammary carcinogenesis. Cancer Res. 2010, 70: 7764-7775. 10.1158/0008-5472.CAN-10-0471.PubMedCrossRef Sangaletti S, Tripodo C, Ratti C, Piconese S, Porcasi R, Salcedo R, Trinchieri G, Colombo MP, Chiodoni C: Oncogene-driven intrinsic inflammation induces leukocyte production of tumor necrosis factor that critically contributes to mammary carcinogenesis. Cancer Res. 2010, 70: 7764-7775. 10.1158/0008-5472.CAN-10-0471.PubMedCrossRef
148.
go back to reference De Palma M, Mazzieri R, Politi LS, Pucci F, Zonari E, Sitia G, Mazzoleni S, Moi D, Venneri MA, Indraccolo S, et al: Tumor-targeted interferon-alpha delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell. 2008, 14: 299-311. 10.1016/j.ccr.2008.09.004.PubMedCrossRef De Palma M, Mazzieri R, Politi LS, Pucci F, Zonari E, Sitia G, Mazzoleni S, Moi D, Venneri MA, Indraccolo S, et al: Tumor-targeted interferon-alpha delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell. 2008, 14: 299-311. 10.1016/j.ccr.2008.09.004.PubMedCrossRef
149.
go back to reference Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S, Korets L, Lam J, Tawfik D, DeNardo DG, et al: FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell. 2010, 17: 121-134. 10.1016/j.ccr.2009.12.019.PubMedCentralPubMedCrossRef Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S, Korets L, Lam J, Tawfik D, DeNardo DG, et al: FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell. 2010, 17: 121-134. 10.1016/j.ccr.2009.12.019.PubMedCentralPubMedCrossRef
150.
go back to reference Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005, 307: 58-62. 10.1126/science.1104819.PubMedCrossRef Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005, 307: 58-62. 10.1126/science.1104819.PubMedCrossRef
151.
go back to reference Garber K: Targeting vessel abnormalization in cancer. J Natl Cancer Inst. 2007, 99: 991-995. 10.1093/jnci/djm056.PubMedCrossRef Garber K: Targeting vessel abnormalization in cancer. J Natl Cancer Inst. 2007, 99: 991-995. 10.1093/jnci/djm056.PubMedCrossRef
152.
go back to reference De Bock K, Cauwenberghs S, Carmeliet P: Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications. Curr Opin Genet Dev. 2011, 21: 73-79. 10.1016/j.gde.2010.10.008.PubMedCrossRef De Bock K, Cauwenberghs S, Carmeliet P: Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications. Curr Opin Genet Dev. 2011, 21: 73-79. 10.1016/j.gde.2010.10.008.PubMedCrossRef
153.
go back to reference Squadrito ML, De Palma MD: Macrophage regulation of tumor angiogenesis: Implications for cancer therapy. Mol Aspects Med. 2011, 32: 123-145. 10.1016/j.mam.2011.04.005.PubMedCrossRef Squadrito ML, De Palma MD: Macrophage regulation of tumor angiogenesis: Implications for cancer therapy. Mol Aspects Med. 2011, 32: 123-145. 10.1016/j.mam.2011.04.005.PubMedCrossRef
154.
go back to reference Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL, et al: CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011, 331: 1612-1616. 10.1126/science.1198443.PubMedCentralPubMedCrossRef Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL, et al: CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011, 331: 1612-1616. 10.1126/science.1198443.PubMedCentralPubMedCrossRef
Metadata
Title
The role of tumor-associated macrophages in tumor vascularization
Authors
Chunqing Guo
Annicole Buranych
Devanand Sarkar
Paul B Fisher
Xiang-Yang Wang
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Vascular Cell / Issue 1/2013
Electronic ISSN: 2045-824X
DOI
https://doi.org/10.1186/2045-824X-5-20

Other articles of this Issue 1/2013

Vascular Cell 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.