Skip to main content
Top
Published in: Osteoporosis International 6/2009

Open Access 01-06-2009 | Bone Quality Seminars: Ultrastructure

The role of osteocytes in bone mechanotransduction

Authors: A. Santos, A. D. Bakker, J. Klein-Nulend

Published in: Osteoporosis International | Issue 6/2009

Login to get access

Excerpt

Bones are subjected to a variety of mechanical loads during daily activities. In the nineteenth century, Julius Wolff proposed that bones adapt their mass and 3D structure to the loading conditions in order to optimize their load-bearing capacity, and that this process is driven by mechanical stress [1]. For the past centuries, an increasing number of theoretical and experimental results reveal that osteocytes are the pivotal cells orchestrating this biomechanical regulation of bone mass and structure, which is accomplished by the process of bone remodeling [25] …
Literature
1.
go back to reference Wolff JD (1892) Das Gesetz der Transformation der Knochen. A Hirschwald, Berlin Wolff JD (1892) Das Gesetz der Transformation der Knochen. A Hirschwald, Berlin
2.
go back to reference Cowin SC, Moss-Salentijn L, Moss ML (1991) Candidates for the mechanosensory system in bone. J Biomed Eng 113:191–197 Cowin SC, Moss-Salentijn L, Moss ML (1991) Candidates for the mechanosensory system in bone. J Biomed Eng 113:191–197
3.
go back to reference Mullender MG, Huiskes R (1995) Proposal for the regulatory mechanism of Wolff’s law. J Orthop Res 13:503–512PubMedCrossRef Mullender MG, Huiskes R (1995) Proposal for the regulatory mechanism of Wolff’s law. J Orthop Res 13:503–512PubMedCrossRef
4.
go back to reference Mullender MG, Huiskes R (1997) Osteocytes and bone lining cells: which are the best candidates for mechano-sensors in cancellous bone? Bone 20:527–532PubMedCrossRef Mullender MG, Huiskes R (1997) Osteocytes and bone lining cells: which are the best candidates for mechano-sensors in cancellous bone? Bone 20:527–532PubMedCrossRef
5.
go back to reference Klein-Nulend J, Van der Plas A, Semeins CM et al (1995) Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J 9:441–445PubMed Klein-Nulend J, Van der Plas A, Semeins CM et al (1995) Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J 9:441–445PubMed
6.
go back to reference Gowen LC, Petersen DN, Mansolf AL et al (2003) Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem 278:1998–2007PubMedCrossRef Gowen LC, Petersen DN, Mansolf AL et al (2003) Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem 278:1998–2007PubMedCrossRef
7.
go back to reference Balemans W, Ebeling M, Patel N et al (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10:537–543PubMedCrossRef Balemans W, Ebeling M, Patel N et al (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10:537–543PubMedCrossRef
8.
go back to reference Feng JQ, Ward LM, Liu S et al (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310–1315PubMedCrossRef Feng JQ, Ward LM, Liu S et al (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310–1315PubMedCrossRef
9.
go back to reference Vatsa A, Smit TH, Klein-Nulend J (2007) Extracellular NO signalling from a mechanically stimulated osteocyte. J Biomech 40:S89–S95PubMedCrossRef Vatsa A, Smit TH, Klein-Nulend J (2007) Extracellular NO signalling from a mechanically stimulated osteocyte. J Biomech 40:S89–S95PubMedCrossRef
10.
go back to reference Skerry TM, Bitensky L, Chayen J et al (1989) Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo. J Bone Miner Res 4:783–788PubMed Skerry TM, Bitensky L, Chayen J et al (1989) Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo. J Bone Miner Res 4:783–788PubMed
11.
go back to reference El-Haj AJ, Minter SL, Rawlinson SCF et al (1990) Cellular responses to mechanical loading in vitro. J Bone Miner Res 5:923–932PubMed El-Haj AJ, Minter SL, Rawlinson SCF et al (1990) Cellular responses to mechanical loading in vitro. J Bone Miner Res 5:923–932PubMed
12.
go back to reference Dallas SL, Zaman G, Pead MJ et al (1993) Early strain-related changes in cultured embryonic chick tibiotarsi parallel those associated with adaptive modeling in vivo. J Bone Miner Res 8:251–259PubMed Dallas SL, Zaman G, Pead MJ et al (1993) Early strain-related changes in cultured embryonic chick tibiotarsi parallel those associated with adaptive modeling in vivo. J Bone Miner Res 8:251–259PubMed
13.
go back to reference Lean JM, Jagger CJ, Chambers TJ et al (1995) Increased insulin-like growth factor I mRNA expression in rat osteocytes in response to mechanical stimulation. Am J Physiol 268:E318–E327PubMed Lean JM, Jagger CJ, Chambers TJ et al (1995) Increased insulin-like growth factor I mRNA expression in rat osteocytes in response to mechanical stimulation. Am J Physiol 268:E318–E327PubMed
14.
go back to reference Forwood MR, Kelly WL, Worth NF (1998) Localization of prostaglandin endoperoxidase H synthase (PGHS)-1 and PGHS-2 in bone following mechanical loading in vivo. Anat Rec 252:580–586PubMedCrossRef Forwood MR, Kelly WL, Worth NF (1998) Localization of prostaglandin endoperoxidase H synthase (PGHS)-1 and PGHS-2 in bone following mechanical loading in vivo. Anat Rec 252:580–586PubMedCrossRef
15.
go back to reference Terai K, Takano-Yamamoto T, Ohba Y et al (1999) Role of osteopontin in bone remodeling caused by mechanical stress. J Bone Miner Res 14:839–849PubMedCrossRef Terai K, Takano-Yamamoto T, Ohba Y et al (1999) Role of osteopontin in bone remodeling caused by mechanical stress. J Bone Miner Res 14:839–849PubMedCrossRef
16.
go back to reference Tatsumi S, Ishi K, Amizuka N et al (2007) Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab 5:464–475PubMedCrossRef Tatsumi S, Ishi K, Amizuka N et al (2007) Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab 5:464–475PubMedCrossRef
17.
go back to reference Cowin SC, Weinbaum S, Zeng Y (1995) A case for bone canaliculi as the anatomical site of strain generated potentials. J Biomech 28:1281–1297PubMedCrossRef Cowin SC, Weinbaum S, Zeng Y (1995) A case for bone canaliculi as the anatomical site of strain generated potentials. J Biomech 28:1281–1297PubMedCrossRef
18.
go back to reference You J, Yellowley CE, Donahue HJ et al (2000) Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading induced oscillating fluid flow. J Biomech Eng 122:387–393PubMedCrossRef You J, Yellowley CE, Donahue HJ et al (2000) Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading induced oscillating fluid flow. J Biomech Eng 122:387–393PubMedCrossRef
19.
go back to reference Vatsa A, Breuls RG, Semeins CM et al (2008) Osteocyte morphology in fibula and calvaria—is there a role for mechanosensing? Bone 43(3):452–458PubMedCrossRef Vatsa A, Breuls RG, Semeins CM et al (2008) Osteocyte morphology in fibula and calvaria—is there a role for mechanosensing? Bone 43(3):452–458PubMedCrossRef
20.
go back to reference Vatsa A, Semeins CM, Smit TH et al (2008) Paxillin localisation in osteocytes—is it determined by the direction of loading? Biochem Biophys Res Commun 377(4)):1019–1024PubMedCrossRef Vatsa A, Semeins CM, Smit TH et al (2008) Paxillin localisation in osteocytes—is it determined by the direction of loading? Biochem Biophys Res Commun 377(4)):1019–1024PubMedCrossRef
21.
go back to reference Wang Y, McNamara LM, Schaffler MB et al (2007) A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci USA 104:15846–15941 Wang Y, McNamara LM, Schaffler MB et al (2007) A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci USA 104:15846–15941
22.
go back to reference Han Y, Cowin SC, Schaffler MB et al (2004) Mechanotransduction and strain amplification in osteocyte cell processes. Proc Natl Acad Sci USA 101:16689–16694PubMedCrossRef Han Y, Cowin SC, Schaffler MB et al (2004) Mechanotransduction and strain amplification in osteocyte cell processes. Proc Natl Acad Sci USA 101:16689–16694PubMedCrossRef
23.
go back to reference Vatsa A, Mizuno D, Smit TH et al (2006) Bio imaging of intracellular NO production in single bone cells after mechanical stimulation. J Bone Miner Res 21:1722–1728PubMedCrossRef Vatsa A, Mizuno D, Smit TH et al (2006) Bio imaging of intracellular NO production in single bone cells after mechanical stimulation. J Bone Miner Res 21:1722–1728PubMedCrossRef
24.
go back to reference Turner CH, Owan I, Jacobs DS et al (1997) Effects of nitric oxide synthase inhibitors on bone formation in rats. Bone 21:487–490PubMedCrossRef Turner CH, Owan I, Jacobs DS et al (1997) Effects of nitric oxide synthase inhibitors on bone formation in rats. Bone 21:487–490PubMedCrossRef
25.
go back to reference Chow JW, Fox SW, Lean JM et al (1998) Role of nitric oxide and prostaglandins in mechanically induced bone formation. J Bone Miner Res 13:1039–1044PubMedCrossRef Chow JW, Fox SW, Lean JM et al (1998) Role of nitric oxide and prostaglandins in mechanically induced bone formation. J Bone Miner Res 13:1039–1044PubMedCrossRef
26.
go back to reference Xiao Z, Zhang S, Mahlios J et al (2006) Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and runx2 expression. J Biol Chem 281:30884–30895PubMedCrossRef Xiao Z, Zhang S, Mahlios J et al (2006) Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and runx2 expression. J Biol Chem 281:30884–30895PubMedCrossRef
27.
go back to reference Malone AM, Anderson CT, Tummala P et al (2007) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci USA 104:13325–13330PubMedCrossRef Malone AM, Anderson CT, Tummala P et al (2007) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci USA 104:13325–13330PubMedCrossRef
28.
go back to reference Nordstrom P, Pettersson U, Lorentzon R (1998) Type of physical activity, muscle strength, and pubertal stage as determinants of bone mineral density and bone area in adolescent boys. J Bone Miner Res 13:1141–1148PubMedCrossRef Nordstrom P, Pettersson U, Lorentzon R (1998) Type of physical activity, muscle strength, and pubertal stage as determinants of bone mineral density and bone area in adolescent boys. J Bone Miner Res 13:1141–1148PubMedCrossRef
29.
go back to reference Bacabac RG, Smit TH, Mullender MG et al (2004) Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun 315:823–829PubMedCrossRef Bacabac RG, Smit TH, Mullender MG et al (2004) Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun 315:823–829PubMedCrossRef
30.
go back to reference Bacabac RG, Smit TH, Van Loon JJWA et al (2006) Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm? FASEB J 20:858–864PubMedCrossRef Bacabac RG, Smit TH, Van Loon JJWA et al (2006) Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm? FASEB J 20:858–864PubMedCrossRef
31.
go back to reference Mullender MG, Dijcks SJ, Bacabac RG et al (2006) Release of nitric oxide, but not prostaglandin E2, by bone cells depends on fluid flow frequency. J Orthop Res 24:1170–1177PubMedCrossRef Mullender MG, Dijcks SJ, Bacabac RG et al (2006) Release of nitric oxide, but not prostaglandin E2, by bone cells depends on fluid flow frequency. J Orthop Res 24:1170–1177PubMedCrossRef
32.
go back to reference Bacabac RG, Smit TH, Mullender MG et al (2005) Initial stress-kick is required for fluid shear stress-induced rate dependent activation of bone cells. Ann Biomed Eng 33:104–110PubMedCrossRef Bacabac RG, Smit TH, Mullender MG et al (2005) Initial stress-kick is required for fluid shear stress-induced rate dependent activation of bone cells. Ann Biomed Eng 33:104–110PubMedCrossRef
33.
go back to reference Bacabac RG, Mizuno D, Schmidt CF et al (2006) Microrheology and force traction of mechanosensitive bone cells. J Biomech 39(Suppl. 1):S231–S232CrossRef Bacabac RG, Mizuno D, Schmidt CF et al (2006) Microrheology and force traction of mechanosensitive bone cells. J Biomech 39(Suppl. 1):S231–S232CrossRef
34.
go back to reference Bacabac RG, Mizuno D, Schmidt CF et al (2008) Bone cell morphology, elasticity, and mechanosensing. J Biomech 41:1590–1598PubMedCrossRef Bacabac RG, Mizuno D, Schmidt CF et al (2008) Bone cell morphology, elasticity, and mechanosensing. J Biomech 41:1590–1598PubMedCrossRef
35.
go back to reference Hung CT, Pollack SR, Reilly TM et al (1995) Realtime calcium response of cultured bone cells to fluid flow. Clin Orthop Rel Res 313:256–269 Hung CT, Pollack SR, Reilly TM et al (1995) Realtime calcium response of cultured bone cells to fluid flow. Clin Orthop Rel Res 313:256–269
36.
go back to reference Hung CT, Allen FD, Pollack SR et al (1996) Intracellular calcium stores and extracellular calcium are required in the real-time calcium response of bone cells experiencing fluid flow. J Biomech 29:1411–1417PubMedCrossRef Hung CT, Allen FD, Pollack SR et al (1996) Intracellular calcium stores and extracellular calcium are required in the real-time calcium response of bone cells experiencing fluid flow. J Biomech 29:1411–1417PubMedCrossRef
37.
go back to reference Hung CT, Allen FD, Pollack SR et al (1996) What is the role of the convective current density in the real-time calcium response of cultured bone cells to fluid flow? J Biomech 29:1403–1409PubMedCrossRef Hung CT, Allen FD, Pollack SR et al (1996) What is the role of the convective current density in the real-time calcium response of cultured bone cells to fluid flow? J Biomech 29:1403–1409PubMedCrossRef
38.
go back to reference Ajubi NE, Klein-Nulend J, Alblas MJ et al (1999) Signal transduction pathways involved in fluid flow-induced prostaglandin E2 production by cultured osteocytes. Am J Physiol 276:E171–E178PubMed Ajubi NE, Klein-Nulend J, Alblas MJ et al (1999) Signal transduction pathways involved in fluid flow-induced prostaglandin E2 production by cultured osteocytes. Am J Physiol 276:E171–E178PubMed
39.
go back to reference Chen NX, Ryder KD, Pavalko FM et al (2000) Ca(2+) regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am J Physiol 278:C989–C997 Chen NX, Ryder KD, Pavalko FM et al (2000) Ca(2+) regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am J Physiol 278:C989–C997
40.
go back to reference Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4:285–294PubMedCrossRef Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4:285–294PubMedCrossRef
41.
go back to reference Genetos DC, Kephart CJ, Zhang Y et al (2007) Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol 212:207–214PubMedCrossRef Genetos DC, Kephart CJ, Zhang Y et al (2007) Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol 212:207–214PubMedCrossRef
42.
go back to reference Klein-Nulend J, Semeins CM, Ajubi NE et al (1995) Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts—correlation with prostaglandin upregulation. Biochem Biophys Res Commun 217:640–648PubMedCrossRef Klein-Nulend J, Semeins CM, Ajubi NE et al (1995) Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts—correlation with prostaglandin upregulation. Biochem Biophys Res Commun 217:640–648PubMedCrossRef
43.
go back to reference Ajubi NE, Klein-Nulend J, Nijweide PJ et al (1996) Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes—a cytoskeleton-dependent process. Biochem Biophys Res Commun 225:62–68PubMedCrossRef Ajubi NE, Klein-Nulend J, Nijweide PJ et al (1996) Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes—a cytoskeleton-dependent process. Biochem Biophys Res Commun 225:62–68PubMedCrossRef
44.
go back to reference Klein-Nulend J, Burger EH, Semeins CM et al (1997) Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J Bone Miner Res 12:45–51PubMedCrossRef Klein-Nulend J, Burger EH, Semeins CM et al (1997) Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J Bone Miner Res 12:45–51PubMedCrossRef
45.
go back to reference Bakker AD, Klein-Nulend J, Burger EH (2003) Mechanotransduction in bone cells proceeds via activation of COX-2 but not COX-1. Biochem Biophys Res Commun 305:677–683PubMedCrossRef Bakker AD, Klein-Nulend J, Burger EH (2003) Mechanotransduction in bone cells proceeds via activation of COX-2 but not COX-1. Biochem Biophys Res Commun 305:677–683PubMedCrossRef
46.
go back to reference Westbroek I, Ajubi NE, Alblas MJ et al (2000) Differential stimulation of prostaglandin G/H synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow. Biochem Biophys Res Commun 268:414–419PubMedCrossRef Westbroek I, Ajubi NE, Alblas MJ et al (2000) Differential stimulation of prostaglandin G/H synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow. Biochem Biophys Res Commun 268:414–419PubMedCrossRef
47.
go back to reference Forwood MR (1996) Inducible cyclooxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J Bone Miner Res 11:1688–1693PubMedCrossRef Forwood MR (1996) Inducible cyclooxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J Bone Miner Res 11:1688–1693PubMedCrossRef
48.
go back to reference Gong Y, Slee RB, Fukai N et al (2001) LDL-receptor related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523PubMedCrossRef Gong Y, Slee RB, Fukai N et al (2001) LDL-receptor related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523PubMedCrossRef
49.
go back to reference Boyden LM, Mao J, Belsky J et al (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513–1521PubMedCrossRef Boyden LM, Mao J, Belsky J et al (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513–1521PubMedCrossRef
50.
go back to reference Babij P, Zhao W, Small C et al (2003) High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res 18:960–974PubMedCrossRef Babij P, Zhao W, Small C et al (2003) High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res 18:960–974PubMedCrossRef
51.
go back to reference Santos A, Bakker AD, Zandieh-Doulabi B et al (2008) Pulsating fluid flow modulates gene expression of proteins involved in Wnt signaling pathways in osteocytes. Trans 54rth Ann Meeting Orthop Res Soc 33: abstract # 0160 Santos A, Bakker AD, Zandieh-Doulabi B et al (2008) Pulsating fluid flow modulates gene expression of proteins involved in Wnt signaling pathways in osteocytes. Trans 54rth Ann Meeting Orthop Res Soc 33: abstract # 0160
52.
go back to reference Vezeridis PS, Semeins CM, Chen Q et al (2005) Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation. Biochem Biophys Res Commun 348:1082–1088CrossRef Vezeridis PS, Semeins CM, Chen Q et al (2005) Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation. Biochem Biophys Res Commun 348:1082–1088CrossRef
53.
go back to reference Tan SD, de Vries TJ, Kuijpers-Jagtman AM et al (2007) Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone 41:745–751PubMedCrossRef Tan SD, de Vries TJ, Kuijpers-Jagtman AM et al (2007) Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone 41:745–751PubMedCrossRef
Metadata
Title
The role of osteocytes in bone mechanotransduction
Authors
A. Santos
A. D. Bakker
J. Klein-Nulend
Publication date
01-06-2009
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 6/2009
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-009-0858-5

Other articles of this Issue 6/2009

Osteoporosis International 6/2009 Go to the issue

Bone Quality Seminars: Ultrastructure

Bone microdamage

Bone Quality Seminars: Ultrastructure

Bone strength and ultrastructure