Skip to main content

Advertisement

Log in

Initial Stress-Kick Is Required for Fluid Shear Stress-Induced Rate Dependent Activation of Bone Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The shear stress induced by the loading-mediated flow of interstitial fluid through the lacuno–canalicular network is a likely stimulus for bone cell adaptive responses. Furthermore, the magnitude of the cellular response is related to the rate of mechanical loading rather than its magnitude. Thus, bone cells might be very sensitive to sudden stress-kicks, as occuring e.g., during impact loading. There is evidence that cells change stiffness under stress, which might make them more sensitive to subsequent loading. We studied the influence of a stress-kick on the mechanosensitivity of MC3T3-E1 osteoblast-like cells under different peak shear rate conditions, as measured by nitric oxide production. MC3T3-E1 bone cells were treated with steady or pulsating fluid shear stress (PFSS) for 5 min with different peak rates (9.70, 17.5, and 22.0 Pa Hz) using varying frequencies (5 and 9 Hz), and amplitudes (0.70 and 0.31 Pa). PFSS treatment was done with or without fluid flow pretreatment phase, which removed the initial stress-kick by first applying a slow fluid flow increase. Nitric oxide production in response to fluid shear stress was rate dependent, but necessitated an initial stress-kick to occur. This suggests that high-rate stimuli condition bone cells to be more sensitive for high-frequency, low-amplitude loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajubi, N. E., J. Klein-Nulend, P. J. Nijweide, T. Vrijheid-Lammers, M. J. Alblas, and E. H. Burger. Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes—a cytoskeleton-dependent process. Biochem. Biophys. Res. Comm. 225:62–68, 1996.

    Article  Google Scholar 

  2. Bacabac, R. G., T. H. Smit, S. C. Cowin, J. J. W. A. Van Loon, F. T. M. Nieuwstadt, R. M. Heethaar, and J. Klein-Nulend. Dynamic shear stress in parallel-plate flow chambers. J. Biomech. in press.

  3. Bacabac, R. G., T. H. Smit, R. M. Heethaar, J. J. W. A.Van Loon, M. J. M. B. Pourquie, F. T. M. Nieuwstadt, and J. Klein-Nulend. Characteristics of the parallel-plate flow chamber for mechanical stimulation of bone cells under microgravity. J. Gravitat. Physiol. 9:P181–P182, 2004.

    Google Scholar 

  4. Bacabac, R. G., T. H. Smit, M. G. Mullender, S. J. Dijcks, J. J. W. A. Van Loon, and J. Klein-Nulend. Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem. Biophys. Res. Commun. 315:823–829, 2004.

    Article  Google Scholar 

  5. Bakker, A. D., K. Soejima, J. Klein-Nulend, and E. H. Burger. The production of nitric oxide and prostaglandin E2 by primary bone cells is shear stress dependent. J. Biomech. 34:671–677, 2001.

    Article  Google Scholar 

  6. Burger, E. H., and J. Klein-Nulend. Mechanotransduction in bone-Role of the lacuno-canalicular network. FASEB J. 13:S101–S112, 1999.

    Google Scholar 

  7. Chen, N. X., K. D. Ryder, F. M. Pavalko, C. H. Turner, D. B. Burr, J. Qiu, and R. L. Duncan. Ca2+ regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am. J. Physiol. Cell Physiol. 278:C989–C997, 2000.

    Google Scholar 

  8. Cowin, S. C. Bone poroelasticity. J. Biomech. 32:217–238, 1999.

    Article  Google Scholar 

  9. Forwood, M. R. Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading In vivo. J. Bone Miner. Res. 11:1688–1693, 1996.

    Article  Google Scholar 

  10. Fox, S. W., T. J. Chambers, and J. W. M. Chow. Nitric oxide is an early mediator of the induction of bone formation by mechanical stimulation. Bone 19:687–687, 1996.

    Article  Google Scholar 

  11. Frangos, J. A., and D. Johnson. Fluid flow in bone: Stimulated release at remodeling mediators. Biorheology 32:187–187, 1995.

    Article  Google Scholar 

  12. Fritton, S. P., J. McLeod, and C. T. Rubin. Quantifying the strain history of bone: Spatial uniformity and self-similarity of low-magnitude strains. J. Biomech. 33:317–325, 2000.

    Article  Google Scholar 

  13. Gammaitoni, L. Stochastic resonance. Rev. Mod. Phys. 70:223–287, 1998.

    Article  Google Scholar 

  14. Hung, T., F. D. Allen, S. R. Pollack, and C. T. Brighton. What is the role of the convective current density in the real-time calcium response of cultured bone cells to fluid flow? J. Biomech. 29:1403–1409, 1996.

    Article  Google Scholar 

  15. Jacobs, C. R., C. E. Yellowley, B. R. Davis, Z. Zhou, and H. J. Donahue. Differential effect of steady versus oscillating flow on bone cells. J. Biomech. 31:55–55, 1998.

    Article  Google Scholar 

  16. Johnson, D. L., T. N. McAllister, and J. A. Frangos. Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am. J. Physiol. 271:E205–E208, 1996.

    Google Scholar 

  17. Judex, S., and R. F. Zernicke. High-impact exercise and growing bone: Relation between high strain rates and enhanced bone formation. J. App. Physiol. 88:2183–2191, 2000.

    Google Scholar 

  18. Klein-Nulend, J., J. Roelofsen, J. G. Sterck, C. M. Semeins, and E. H. Burger. Mechanical loading stimulates the release of transforming growth factor-beta activity by cultured mouse calvariae and periosteal cells. J. Cell Physiol. 163:115–119, 1995.

    Google Scholar 

  19. Klein-Nulend, J., P. A. van der, C. M. Semeins, N. E. Ajubi, J. A. Frangos, P. J. Nijweide, and E. H. Burger. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 9:441–445, 1995.

    Google Scholar 

  20. Klein-Nulend, J., C. M. Semeins, N. E. Ajubi, P. J. Nijweide, and E. H. Burger. Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts-Correlation with prostaglandin upregulation. Biochem. Biophys. Res. Comm. 217:640–648, 1995.

    Article  Google Scholar 

  21. Knothe Tate, M. L., P. Niederer, and U. Knothe. In vivo tracer transport through the lacuno-canalicular system of rat bone in an environment devoid of mechanical loading. Bone 22:107–117, 1998.

    Article  Google Scholar 

  22. Knothe Tate, M. L., and U. Knothe. An ex vivo model to study transport processes and fluid flow in loaded bone. J. Biomech. 33:247–254, 2000.

    Article  Google Scholar 

  23. Kodama, H. A., Y. Amagai, H. Sudo, and S. Kasai, S. Yamamoto. Establishment of a clonal osteogenic cell line from newborn mouse calvaria. J. Oral Biol. 23:899–901, 1981.

    Google Scholar 

  24. Kondepudi, D. K. Detection of gravity through nonequilibrium mechanisms. ASGB Bulletin 4:119–124, 1991.

    Google Scholar 

  25. Mosley, J. R., and L. E. Lanyon. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone 23:313–318, 1998.

    Article  CAS  PubMed  Google Scholar 

  26. Mullender, M., A. J. El Haj, Y. Yang, J. Magnay, M. A. van Duin, and J. Klein-Nulend. Fluid flow and mechanical strain induce different responses in human bone cells. Transactions of the 49th Annual Meeting of the Orthopaedic Research Society 28:(abstract), 2003.

  27. Nordstrom, P., U. Pettersson, and R. Lorentzon. Type of physical activity, muscle strength, and pubertal stage as determinants of bone mineral density and bone area in adolescent boys. J. Bone Miner. Res. 13:1141–1148, 1998.

    Google Scholar 

  28. Owan, I., D. B. Burr, C. H. Turner, J. Qiu, Y. Tu, J. E. Onyia, and R. L. Duncan. Mechanotransduction in bone: Osteoblasts are more responsive to fluid forces than mechanical strain. Am. J. Physiol. 273:C810–C815, 1997.

    Google Scholar 

  29. Pavalko, F. M., N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y. F. Hsieh, J. Qiu, and R. L. Duncan. Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am. J. Physiol. 275:C1591–C1601, 1998.

    Google Scholar 

  30. Piekarski, K., and M. Munro. Transport mechanism operating between blood supply and osteocytes in long bones. Nature 269:80–82, 1977.

    CAS  PubMed  Google Scholar 

  31. Pierson, D., and F. Moss. Detecting periodic unstable points in noisy chaotic and limit cycle attractors with applications to biology. PRL 75:2124–2127, 1995.

    Article  Google Scholar 

  32. Rubin, C. T., and L. E. Lanyon. Regulation of bone formation by applied dynamic loads. J. Bone Joint Surg. Am. 66:397–402, 1984.

    Google Scholar 

  33. Rubin, C. T., D. W. Sommerfeldt, S. Judex, and Y. X. Qin. Inhibition of osteopenia by low magnitude, high-frequency mechanical stimuli. Drug Discov. Tod. 6:848–858, 2001.

    Article  Google Scholar 

  34. Smalt, R., F. T. Mitchell, R. L. Howard, and T. J. Chambers. Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain. Am. J. Physiol. 273:E751–E758, 1997.

    Google Scholar 

  35. Smit, T. H., E. H. Burger, and J. M. Huyghe. A case for strain-induced fluid flow as a regulator of BMU-coupling and osteonal alignment. J. Bone Miner. Res. 11:2021–2029, 2002.

    Google Scholar 

  36. Tanaka, M., S. Ejiri, M. Nakajima, S. Kohno, and H. Ozawa. Changes of cancellous bone mass in rat mandibular condyle following ovariectomy. Bone 25:339–347, 1999.

    Article  Google Scholar 

  37. Tanaka, S. M., I. Alam, and C. H. Turner. Stochastic resonance in osteogenic response to mechanical loading. FASEB J. 02–0561fje, 2002.

  38. Turner, C. H., I. Owan, and Y. Takano. Mechanotransduction in bone: Role of strain rate. Am. J. Physiol. 269:E438–E442, 1995.

    Google Scholar 

  39. Turner, C. H., Y. Takano, I. Owan, and G. A. Murrell. Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats. Am. J. Physiol. 270:E634–E639, 1996.

    Google Scholar 

  40. Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127, 1993.

    CAS  PubMed  Google Scholar 

  41. Weinbaum, S., S. C. Cowin, and Y. Zeng. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27:339–360, 1994.

    Article  Google Scholar 

  42. Williams, J. L., J. P. Iannotti, A. Ham, J. Bleuit, and J. H. Chen. Effects of fluid shear stress on bone cells. Biorheology 31:163–170, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenneke Klein-Nulend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacabac, R.G., Smit, T.H., Mullender, M.G. et al. Initial Stress-Kick Is Required for Fluid Shear Stress-Induced Rate Dependent Activation of Bone Cells. Ann Biomed Eng 33, 104–110 (2005). https://doi.org/10.1007/s10439-005-8968-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-8968-5

Navigation