Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2010

01-03-2010 | NON-THEMATIC REVIEW

The role of MAP kinases and MAP kinase phosphatase-1 in resistance to breast cancer treatment

Authors: Kelly K. Haagenson, Gen Sheng Wu

Published in: Cancer and Metastasis Reviews | Issue 1/2010

Login to get access

Abstract

Chemotherapy resistance is an important problem often encountered during the course of breast cancer treatment. In order to design rational and efficacious therapies, the molecular mechanisms used by cells to develop resistance must be investigated. One mechanism employed by cancer cells is to alter cell signaling. This review examines the role of mitogen-activated protein kinases (MAPKs) and their endogenous negative regulators, mitogen-activated protein kinase phosphatases (MKPs), in chemotherapy resistance in breast cancer. MAPK signaling is activated in response to both growth factors and cellular stress. MKPs dephosphorylate MAPKs and are part of the dual-specificity family of phosphatases. MAPKs have been shown to be involved in resistance to tamoxifen, and MKPs have been linked to resistance to treatment with doxorubicin, mechlorethamine, paclitaxel, proteasome inhibitors, and oxidative-stress-induced cell death in breast cancer. The role of MKPs in tamoxifen resistance and the elucidation of the mechanisms involved with resistance to standard chemotherapy agents need to be investigated further. Growing evidence suggests that modulating MKP-1 activity could be a viable option to make breast cancer chemotherapy more effective.
Literature
2.
go back to reference Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747–752.CrossRefPubMed Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747–752.CrossRefPubMed
3.
go back to reference Gutierrez, M. C., Detre, S., Johnston, S., Mohsin, S. K., Shou, J. N., Allred, D. C., et al. (2005). Molecular changes in tamoxifen-resistant breast cancer: Relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. Journal of Clinical Oncology, 23(11), 2469–2476.CrossRefPubMed Gutierrez, M. C., Detre, S., Johnston, S., Mohsin, S. K., Shou, J. N., Allred, D. C., et al. (2005). Molecular changes in tamoxifen-resistant breast cancer: Relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. Journal of Clinical Oncology, 23(11), 2469–2476.CrossRefPubMed
4.
go back to reference Riggins, R. B., Schrecengost, R. S., Guerrero, M. S., & Bouton, A. H. (2007). Pathways to tamoxifen resistance. Cancer Letters, 256(1), 1–24.CrossRefPubMed Riggins, R. B., Schrecengost, R. S., Guerrero, M. S., & Bouton, A. H. (2007). Pathways to tamoxifen resistance. Cancer Letters, 256(1), 1–24.CrossRefPubMed
5.
go back to reference Sporn, M. B., & Lipmann, S. M. (2003). Chemoprevention of cancer. In D. W. Kufe, R. E. Pollack, R. R. Weichselbaum, R. C. Bast, T. S. Gansler, J. F. Holland, et al. (Eds.), Cancer medicine (Vol. 6). BC Decker: Hamilton. Sporn, M. B., & Lipmann, S. M. (2003). Chemoprevention of cancer. In D. W. Kufe, R. E. Pollack, R. R. Weichselbaum, R. C. Bast, T. S. Gansler, J. F. Holland, et al. (Eds.), Cancer medicine (Vol. 6). BC Decker: Hamilton.
6.
go back to reference Jordan, V. C. (2003). Estrogens and antiestrogens. In D. W. Kufe, R. E. Pollack, R. R. Weichselbaum, R. C. Bast, T. S. Gansler, J. F. Holland, et al. (Eds.), Cancer medicine (Vol. 6). Hamilton: BC Decker. Jordan, V. C. (2003). Estrogens and antiestrogens. In D. W. Kufe, R. E. Pollack, R. R. Weichselbaum, R. C. Bast, T. S. Gansler, J. F. Holland, et al. (Eds.), Cancer medicine (Vol. 6). Hamilton: BC Decker.
7.
go back to reference Kurebayashi, J. (2005). Resistance to endocrine therapy in breast cancer. Cancer Chemotherapy and Pharmacology, 56(Suppl 1), 39–46.CrossRefPubMed Kurebayashi, J. (2005). Resistance to endocrine therapy in breast cancer. Cancer Chemotherapy and Pharmacology, 56(Suppl 1), 39–46.CrossRefPubMed
8.
go back to reference Coley, H. M. (2008). Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treatment Reviews, 34(4), 378–390.CrossRefPubMed Coley, H. M. (2008). Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treatment Reviews, 34(4), 378–390.CrossRefPubMed
9.
go back to reference Bonneterre, J., Dieras, V., Tubiana-Hulin, M., Bougnoux, P., Bonneterre, M. E., Delozier, T., et al. (2004). Phase II multicentre randomised study of docetaxel plus epirubicin vs 5-fluorouracil plus epirubicin and cyclophosphamide in metastatic breast cancer. British Journal of Cancer, 91(8), 1466–1471.PubMed Bonneterre, J., Dieras, V., Tubiana-Hulin, M., Bougnoux, P., Bonneterre, M. E., Delozier, T., et al. (2004). Phase II multicentre randomised study of docetaxel plus epirubicin vs 5-fluorouracil plus epirubicin and cyclophosphamide in metastatic breast cancer. British Journal of Cancer, 91(8), 1466–1471.PubMed
10.
go back to reference Vassilomanolakis, M., Koumakis, G., Barbounis, V., Demiri, M., Panopoulos, C., Chrissohoou, M., et al. (2005). First-line chemotherapy with docetaxel and cisplatin in metastatic breast cancer. Breast, 14(2), 136–141.CrossRefPubMed Vassilomanolakis, M., Koumakis, G., Barbounis, V., Demiri, M., Panopoulos, C., Chrissohoou, M., et al. (2005). First-line chemotherapy with docetaxel and cisplatin in metastatic breast cancer. Breast, 14(2), 136–141.CrossRefPubMed
11.
go back to reference Ishikawa, T., Shimizu, S., Inaba, M., Asaga, T., Katayama, K., Fukuda, M., et al. (2004). A multicenter phase II study of docetaxel 60 mg/m2 as first-line chemotherapy in patients with advanced or recurrent breast cancer. Breast Cancer, 11(4), 374–379.CrossRefPubMed Ishikawa, T., Shimizu, S., Inaba, M., Asaga, T., Katayama, K., Fukuda, M., et al. (2004). A multicenter phase II study of docetaxel 60 mg/m2 as first-line chemotherapy in patients with advanced or recurrent breast cancer. Breast Cancer, 11(4), 374–379.CrossRefPubMed
13.
go back to reference Boutros, T., Chevet, E., & Metrakos, P. (2008). Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacological Reviews, 60(3), 261–310.CrossRefPubMed Boutros, T., Chevet, E., & Metrakos, P. (2008). Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacological Reviews, 60(3), 261–310.CrossRefPubMed
14.
go back to reference Wu, G. S. (2007). Role of mitogen-activated protein kinase phosphatases (MKPs) in cancer. Cancer and Metastasis Reviews, 26(3–4), 579–585.CrossRefPubMed Wu, G. S. (2007). Role of mitogen-activated protein kinase phosphatases (MKPs) in cancer. Cancer and Metastasis Reviews, 26(3–4), 579–585.CrossRefPubMed
15.
go back to reference Keyse, S. M. (2008). Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer and Metastasis Reviews, 27(2), 253–261.CrossRefPubMed Keyse, S. M. (2008). Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer and Metastasis Reviews, 27(2), 253–261.CrossRefPubMed
16.
go back to reference McCubrey, J. A., Steelman, L. S., Abrams, S. L., Lee, J. T., Chang, F., Bertrand, F. E., et al. (2006). Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Advances in Enzyme Regulation, 46, 249–279.CrossRefPubMed McCubrey, J. A., Steelman, L. S., Abrams, S. L., Lee, J. T., Chang, F., Bertrand, F. E., et al. (2006). Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Advances in Enzyme Regulation, 46, 249–279.CrossRefPubMed
17.
go back to reference Cui, Y., Parra, I., Zhang, M., Hilsenbeck, S. G., Tsimelzon, A., Furukawa, T., et al. (2006). Elevated expression of mitogen-activated protein kinase phosphatase 3 in breast tumors: A mechanism of tamoxifen resistance. Cancer Research, 66(11), 5950–5959.CrossRefPubMed Cui, Y., Parra, I., Zhang, M., Hilsenbeck, S. G., Tsimelzon, A., Furukawa, T., et al. (2006). Elevated expression of mitogen-activated protein kinase phosphatase 3 in breast tumors: A mechanism of tamoxifen resistance. Cancer Research, 66(11), 5950–5959.CrossRefPubMed
18.
go back to reference Fan, M., Yan, P. S., Hartman-Frey, C., Chen, L., Paik, H., Oyer, S. L., et al. (2006). Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant. Cancer Research, 66(24), 11954–11966.CrossRefPubMed Fan, M., Yan, P. S., Hartman-Frey, C., Chen, L., Paik, H., Oyer, S. L., et al. (2006). Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant. Cancer Research, 66(24), 11954–11966.CrossRefPubMed
19.
go back to reference Kurokawa, H., Lenferink, A. E., Simpson, J. F., Pisacane, P. I., Sliwkowski, M. X., Forbes, J. T., et al. (2000). Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Research, 60(20), 5887–5894.PubMed Kurokawa, H., Lenferink, A. E., Simpson, J. F., Pisacane, P. I., Sliwkowski, M. X., Forbes, J. T., et al. (2000). Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Research, 60(20), 5887–5894.PubMed
20.
go back to reference Massarweh, S., Osborne, C. K., Creighton, C. J., Qin, L., Tsimelzon, A., Huang, S., et al. (2008). Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Research, 68(3), 826–833.CrossRefPubMed Massarweh, S., Osborne, C. K., Creighton, C. J., Qin, L., Tsimelzon, A., Huang, S., et al. (2008). Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Research, 68(3), 826–833.CrossRefPubMed
21.
go back to reference Wang, J., Zhou, J. Y., & Wu, G. S. (2007). ERK-dependent MKP-1-mediated cisplatin resistance in human ovarian cancer cells. Cancer Research, 67(24), 11933–11941.CrossRefPubMed Wang, J., Zhou, J. Y., & Wu, G. S. (2007). ERK-dependent MKP-1-mediated cisplatin resistance in human ovarian cancer cells. Cancer Research, 67(24), 11933–11941.CrossRefPubMed
22.
go back to reference Zhou, J. Y., Liu, Y., & Wu, G. S. (2006). The role of mitogen-activated protein kinase phosphatase-1 in oxidative damage-induced cell death. Cancer Research, 66(9), 4888–4894.CrossRefPubMed Zhou, J. Y., Liu, Y., & Wu, G. S. (2006). The role of mitogen-activated protein kinase phosphatase-1 in oxidative damage-induced cell death. Cancer Research, 66(9), 4888–4894.CrossRefPubMed
24.
go back to reference Hirsch, D. D., & Stork, P. J. (1997). Mitogen-activated protein kinase phosphatases inactivate stress-activated protein kinase pathways in vivo. Journal of Biological Chemistry, 272(7), 4568–4575.CrossRefPubMed Hirsch, D. D., & Stork, P. J. (1997). Mitogen-activated protein kinase phosphatases inactivate stress-activated protein kinase pathways in vivo. Journal of Biological Chemistry, 272(7), 4568–4575.CrossRefPubMed
25.
go back to reference Dickinson, R. J., & Keyse, S. M. (2006). Diverse physiological functions for dual-specificity MAP kinase phosphatases. Journal of Cell Science, 119(Pt 22), 4607–4615.CrossRefPubMed Dickinson, R. J., & Keyse, S. M. (2006). Diverse physiological functions for dual-specificity MAP kinase phosphatases. Journal of Cell Science, 119(Pt 22), 4607–4615.CrossRefPubMed
26.
go back to reference Keyse, S. M., & Ginsburg, M. (1993). Amino acid sequence similarity between CL100, a dual-specificity MAP kinase phosphatase and cdc25. Trends in Biochemical Sciences, 18(10), 377–378.CrossRefPubMed Keyse, S. M., & Ginsburg, M. (1993). Amino acid sequence similarity between CL100, a dual-specificity MAP kinase phosphatase and cdc25. Trends in Biochemical Sciences, 18(10), 377–378.CrossRefPubMed
27.
go back to reference Camps, M., Nichols, A., & Arkinstall, S. (2000). Dual specificity phosphatases: A gene family for control of MAP kinase function. FASEB Journal, 14(1), 6–16.PubMed Camps, M., Nichols, A., & Arkinstall, S. (2000). Dual specificity phosphatases: A gene family for control of MAP kinase function. FASEB Journal, 14(1), 6–16.PubMed
28.
go back to reference Li, M., Zhou, J. Y., Ge, Y., Matherly, L. H., & Wu, G. S. (2003). The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation. Journal of Biological Chemistry, 278(42), 41059–41068.CrossRefPubMed Li, M., Zhou, J. Y., Ge, Y., Matherly, L. H., & Wu, G. S. (2003). The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation. Journal of Biological Chemistry, 278(42), 41059–41068.CrossRefPubMed
29.
go back to reference Liu, Y. X., Wang, J., Guo, J., Wu, J., Lieberman, H. B., & Yin, Y. (2008). DUSP1 is controlled by p53 during the cellular response to oxidative stress. Molecular Cancer Research, 6(4), 624–633.CrossRefPubMed Liu, Y. X., Wang, J., Guo, J., Wu, J., Lieberman, H. B., & Yin, Y. (2008). DUSP1 is controlled by p53 during the cellular response to oxidative stress. Molecular Cancer Research, 6(4), 624–633.CrossRefPubMed
30.
go back to reference Cleator, S., Heller, W., & Coombes, R. C. (2007). Triple-negative breast cancer: Therapeutic options. Lancet Oncology, 8(3), 235–244.CrossRefPubMed Cleator, S., Heller, W., & Coombes, R. C. (2007). Triple-negative breast cancer: Therapeutic options. Lancet Oncology, 8(3), 235–244.CrossRefPubMed
31.
go back to reference Kang, S. P., Martel, M., & Harris, L. N. (2008). Triple negative breast cancer: Current understanding of biology and treatment options. Current Opinion in Obstetrics and Gynecology, 20(1), 40–46.CrossRefPubMed Kang, S. P., Martel, M., & Harris, L. N. (2008). Triple negative breast cancer: Current understanding of biology and treatment options. Current Opinion in Obstetrics and Gynecology, 20(1), 40–46.CrossRefPubMed
32.
go back to reference Stockmans, G., Deraedt, K., Wildiers, H., Moerman, P., & Paridaens, R. (2008). Triple-negative breast cancer. Current Opinion in Oncology, 20(6), 614–620.CrossRefPubMed Stockmans, G., Deraedt, K., Wildiers, H., Moerman, P., & Paridaens, R. (2008). Triple-negative breast cancer. Current Opinion in Oncology, 20(6), 614–620.CrossRefPubMed
33.
go back to reference Carey, L. A., Dees, E. C., Sawyer, L., Gatti, L., Moore, D. T., Collichio, F., et al. (2007). The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clinical Cancer Research, 13(8), 2329–2334.CrossRefPubMed Carey, L. A., Dees, E. C., Sawyer, L., Gatti, L., Moore, D. T., Collichio, F., et al. (2007). The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clinical Cancer Research, 13(8), 2329–2334.CrossRefPubMed
34.
go back to reference Reis-Filho, J. S., & Tutt, A. N. (2008). Triple negative tumours: A critical review. Histopathology, 52(1), 108–118.PubMedCrossRef Reis-Filho, J. S., & Tutt, A. N. (2008). Triple negative tumours: A critical review. Histopathology, 52(1), 108–118.PubMedCrossRef
35.
go back to reference Wang, Z., Xu, J., Zhou, J. Y., Liu, Y., & Wu, G. S. (2006). Mitogen-activated protein kinase phosphatase-1 is required for cisplatin resistance. Cancer Research, 66(17), 8870–8877.CrossRefPubMed Wang, Z., Xu, J., Zhou, J. Y., Liu, Y., & Wu, G. S. (2006). Mitogen-activated protein kinase phosphatase-1 is required for cisplatin resistance. Cancer Research, 66(17), 8870–8877.CrossRefPubMed
36.
go back to reference Wang, H. Y., Cheng, Z., & Malbon, C. C. (2003). Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Letters, 191(2), 229–237.CrossRefPubMed Wang, H. Y., Cheng, Z., & Malbon, C. C. (2003). Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Letters, 191(2), 229–237.CrossRefPubMed
37.
go back to reference Small, G. W., Shi, Y. Y., Higgins, L. S., & Orlowski, R. Z. (2007). Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Research, 67(9), 4459–4466.CrossRefPubMed Small, G. W., Shi, Y. Y., Higgins, L. S., & Orlowski, R. Z. (2007). Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Research, 67(9), 4459–4466.CrossRefPubMed
38.
go back to reference Small, G. W., Somasundaram, S., Moore, D. T., Shi, Y. Y., & Orlowski, R. Z. (2003). Repression of mitogen-activated protein kinase (MAPK) phosphatase-1 by anthracyclines contributes to their antiapoptotic activation of p44/42-MAPK. Journal of Pharmacology and Experimental Therapeutics, 307(3), 861–869.CrossRefPubMed Small, G. W., Somasundaram, S., Moore, D. T., Shi, Y. Y., & Orlowski, R. Z. (2003). Repression of mitogen-activated protein kinase (MAPK) phosphatase-1 by anthracyclines contributes to their antiapoptotic activation of p44/42-MAPK. Journal of Pharmacology and Experimental Therapeutics, 307(3), 861–869.CrossRefPubMed
39.
go back to reference Rojo, F., Gonzalez-Navarrete, I., Bragado, R., Dalmases, A., Menendez, S., Cortes-Sempere, M., et al. (2009). Mitogen-activated protein kinase phosphatase-1 in human breast cancer independently predicts prognosis and is repressed by doxorubicin. Clinical Cancer Research, 15(10), 3530–3539.CrossRefPubMed Rojo, F., Gonzalez-Navarrete, I., Bragado, R., Dalmases, A., Menendez, S., Cortes-Sempere, M., et al. (2009). Mitogen-activated protein kinase phosphatase-1 in human breast cancer independently predicts prognosis and is repressed by doxorubicin. Clinical Cancer Research, 15(10), 3530–3539.CrossRefPubMed
40.
go back to reference Orlowski, R. Z., Small, G. W., & Shi, Y. Y. (2002). Evidence that inhibition of p44/42 mitogen-activated protein kinase signaling is a factor in proteasome inhibitor-mediated apoptosis. Journal of Biological Chemistry, 277(31), 27864–27871.CrossRefPubMed Orlowski, R. Z., Small, G. W., & Shi, Y. Y. (2002). Evidence that inhibition of p44/42 mitogen-activated protein kinase signaling is a factor in proteasome inhibitor-mediated apoptosis. Journal of Biological Chemistry, 277(31), 27864–27871.CrossRefPubMed
41.
go back to reference Small, G. W., Shi, Y. Y., Edmund, N. A., Somasundaram, S., Moore, D. T., & Orlowski, R. Z. (2004). Evidence that mitogen-activated protein kinase phosphatase-1 induction by proteasome inhibitors plays an antiapoptotic role. Molecular Pharmacology, 66(6), 1478–1490.CrossRefPubMed Small, G. W., Shi, Y. Y., Edmund, N. A., Somasundaram, S., Moore, D. T., & Orlowski, R. Z. (2004). Evidence that mitogen-activated protein kinase phosphatase-1 induction by proteasome inhibitors plays an antiapoptotic role. Molecular Pharmacology, 66(6), 1478–1490.CrossRefPubMed
42.
go back to reference Shi, Y. Y., Small, G. W., & Orlowski, R. Z. (2006). Proteasome inhibitors induce a p38 mitogen-activated protein kinase (MAPK)-dependent anti-apoptotic program involving MAPK phosphatase-1 and Akt in models of breast cancer. Breast Cancer Research and Treatment, 100(1), 33–47.CrossRefPubMed Shi, Y. Y., Small, G. W., & Orlowski, R. Z. (2006). Proteasome inhibitors induce a p38 mitogen-activated protein kinase (MAPK)-dependent anti-apoptotic program involving MAPK phosphatase-1 and Akt in models of breast cancer. Breast Cancer Research and Treatment, 100(1), 33–47.CrossRefPubMed
43.
go back to reference Wu, W., Pew, T., Zou, M., Pang, D., & Conzen, S. D. (2005). Glucocorticoid receptor-induced MAPK phosphatase-1 (MPK-1) expression inhibits paclitaxel-associated MAPK activation and contributes to breast cancer cell survival. Journal of Biological Chemistry, 280(6), 4117–4124.CrossRefPubMed Wu, W., Pew, T., Zou, M., Pang, D., & Conzen, S. D. (2005). Glucocorticoid receptor-induced MAPK phosphatase-1 (MPK-1) expression inhibits paclitaxel-associated MAPK activation and contributes to breast cancer cell survival. Journal of Biological Chemistry, 280(6), 4117–4124.CrossRefPubMed
Metadata
Title
The role of MAP kinases and MAP kinase phosphatase-1 in resistance to breast cancer treatment
Authors
Kelly K. Haagenson
Gen Sheng Wu
Publication date
01-03-2010
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2010
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9208-5

Other articles of this Issue 1/2010

Cancer and Metastasis Reviews 1/2010 Go to the issue

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine