Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2010

01-03-2010

Lung cancer: From single-gene methylation to methylome profiling

Authors: Gerwin Heller, Christoph C. Zielinski, Sabine Zöchbauer-Müller

Published in: Cancer and Metastasis Reviews | Issue 1/2010

Login to get access

Abstract

DNA methylation as part of the epigenetic gene-silencing complex is a universal occurring change in lung cancer. Numerous studies investigated methylation of specific genes in primary tumors, in serum or plasma samples, and in specimens from the aerodigestive tract epithelium of lung cancer patients. In most studies, single genes or small numbers of genes were analyzed. Moreover, it has been observed that methylation of certain genes can already be detected in samples from the upper aerodigestive tract epithelium of cancer-free heavy smokers. These findings indicated that methylation of certain genes may be a useful biomarker for prognosis, disease recurrence, early detection, and lung cancer risk assessment. So far, several genes were identified which seem to be of worse prognostic relevance when they were found to be methylated. In addition, it has been shown that a panel of markers may be relevant to predict disease recurrence after surgery. In comparison to analysis of single or small numbers of genes, methods for genome-wide detection of methylation were developed recently. These approaches are focused on either pharmacological re-activation of methylated genes followed by expression microarray analysis or on microarray analysis of sodium bisulfite-treated or affinity-enriched methylated DNA sequences. With currently available methods for the simultaneous detection of methylation, up to 28,000 CpG islands can be analyzed. Overall, we are just at the beginning of translating these findings into the clinic and there is hope that future patients will benefit from these results.
Literature
1.
go back to reference Travis, W. D., Travis, L. B., & Devesa, S. S. (1995). Lung cancer. Cancer, 75, 191–202.PubMed Travis, W. D., Travis, L. B., & Devesa, S. S. (1995). Lung cancer. Cancer, 75, 191–202.PubMed
2.
go back to reference Shogren-Knaak, M., Ishii, H., Sun, J. M., Pazin, M. J., Davie, J. R., & Peterson, C. L. (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science, 311, 844–847.PubMed Shogren-Knaak, M., Ishii, H., Sun, J. M., Pazin, M. J., Davie, J. R., & Peterson, C. L. (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science, 311, 844–847.PubMed
3.
go back to reference Vettese-Dadey, M., Grant, P. A., Hebbes, T. R., Crane- Robinson, C., Allis, C. D., & Workman, J. L. (1996). Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. Embo Journal, 15, 2508–2518.PubMed Vettese-Dadey, M., Grant, P. A., Hebbes, T. R., Crane- Robinson, C., Allis, C. D., & Workman, J. L. (1996). Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. Embo Journal, 15, 2508–2518.PubMed
4.
go back to reference Esteller, M. (2008). Epigenetics in cancer. New England Journal of Medicine, 358, 1148–1159.PubMed Esteller, M. (2008). Epigenetics in cancer. New England Journal of Medicine, 358, 1148–1159.PubMed
5.
go back to reference Espada, J., Ballestar, E., Fraga, M. F., Villar-Garea, A., Juarranz, A., Stockert, J. C., et al. (2004). Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern. Journal of Biological Chemistry, 279, 37175–37184.PubMed Espada, J., Ballestar, E., Fraga, M. F., Villar-Garea, A., Juarranz, A., Stockert, J. C., et al. (2004). Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern. Journal of Biological Chemistry, 279, 37175–37184.PubMed
6.
go back to reference Ikegami, K., Ohgane, J., Tanaka, S., Yagi, S., & Shiota, K. (2009). Interplay between DNA methylation, histone modification and chromatin remodeling in stem cells and during development. International Journal of Developmental Biology, 53, 203–214.PubMed Ikegami, K., Ohgane, J., Tanaka, S., Yagi, S., & Shiota, K. (2009). Interplay between DNA methylation, histone modification and chromatin remodeling in stem cells and during development. International Journal of Developmental Biology, 53, 203–214.PubMed
7.
go back to reference Eden, S., Hashimshony, T., Keshet, I., Cedar, H., & Thorne, A. W. (1998). DNA methylation models histone acetylation. Nature, 394, 842.PubMed Eden, S., Hashimshony, T., Keshet, I., Cedar, H., & Thorne, A. W. (1998). DNA methylation models histone acetylation. Nature, 394, 842.PubMed
8.
go back to reference Rhee, I., Jair, K. W., Yen, R. W., Lengauer, C., Herman, J. G., Kinzler, K. W., et al. (2000). CpG methylation is maintained in human cancer cells lacking DNMT1. Nature, 404, 1003–1007.PubMed Rhee, I., Jair, K. W., Yen, R. W., Lengauer, C., Herman, J. G., Kinzler, K. W., et al. (2000). CpG methylation is maintained in human cancer cells lacking DNMT1. Nature, 404, 1003–1007.PubMed
9.
go back to reference Gowher, H., & Jeltsch, A. (2001). Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG [correction of non-CpA] sites. Journal of Molecular Biology, 309, 1201–1208.PubMed Gowher, H., & Jeltsch, A. (2001). Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG [correction of non-CpA] sites. Journal of Molecular Biology, 309, 1201–1208.PubMed
10.
go back to reference Okano, M., Xie, S., & Li, E. (1998). Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genetics, 19, 219–220.PubMed Okano, M., Xie, S., & Li, E. (1998). Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genetics, 19, 219–220.PubMed
11.
go back to reference Matsuo, K., Clay, O., Takahashi, T., Silke, J., & Schaffner, W. (1993). Evidence for erosion of mouse CpG islands during mammalian evolution. Somatic Cell and Molecular Genetics, 19, 543–555.PubMed Matsuo, K., Clay, O., Takahashi, T., Silke, J., & Schaffner, W. (1993). Evidence for erosion of mouse CpG islands during mammalian evolution. Somatic Cell and Molecular Genetics, 19, 543–555.PubMed
12.
go back to reference Wang, Y., & Leung, F. C. (2004). An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics, 20, 1170–1177.PubMed Wang, Y., & Leung, F. C. (2004). An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics, 20, 1170–1177.PubMed
13.
go back to reference Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.PubMed Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.PubMed
14.
go back to reference Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351.PubMed Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351.PubMed
15.
go back to reference Bird, A. P. (1986). CpG-rich islands and the function of DNA methylation. Nature, 321, 209–213.PubMed Bird, A. P. (1986). CpG-rich islands and the function of DNA methylation. Nature, 321, 209–213.PubMed
16.
go back to reference Gardiner-Garden, M., & Frommer, M. (1987). CpG islands in vertebrate genomes. Journal of Molecular Biology, 196, 261–282.PubMed Gardiner-Garden, M., & Frommer, M. (1987). CpG islands in vertebrate genomes. Journal of Molecular Biology, 196, 261–282.PubMed
17.
go back to reference Razin, A., & Cedar, H. (1994). DNA methylation and genomic imprinting. Cell, 77, 473–476.PubMed Razin, A., & Cedar, H. (1994). DNA methylation and genomic imprinting. Cell, 77, 473–476.PubMed
18.
go back to reference Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature Reviews. Genetics, 3, 415–428.PubMed Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature Reviews. Genetics, 3, 415–428.PubMed
19.
go back to reference Fraga, M. F., Ballestar, E., Villar-Garea, A., Boix-Chornet, M., Espada, J., Schotta, G., et al. (2005). Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genetics, 37, 391–400.PubMed Fraga, M. F., Ballestar, E., Villar-Garea, A., Boix-Chornet, M., Espada, J., Schotta, G., et al. (2005). Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genetics, 37, 391–400.PubMed
20.
go back to reference Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., & Baylin, S. B. (1999). Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genetics, 21, 103–107.PubMed Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., & Baylin, S. B. (1999). Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genetics, 21, 103–107.PubMed
21.
go back to reference Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews. Cancer, 6, 857–866.PubMed Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews. Cancer, 6, 857–866.PubMed
22.
go back to reference He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews. Genetics, 5, 522–531.PubMed He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews. Genetics, 5, 522–531.PubMed
23.
go back to reference Eulalio, A., Huntzinger, E., & Izaurralde, E. (2008). Getting to the root of miRNA-mediated gene silencing. Cell, 132, 9–14.PubMed Eulalio, A., Huntzinger, E., & Izaurralde, E. (2008). Getting to the root of miRNA-mediated gene silencing. Cell, 132, 9–14.PubMed
24.
go back to reference Bueno, M. J., Perez de Castro, I., Gomez de Cedron, M., Santos, J., Calin, G. A., Cigudosa, J. C., et al. (2008). Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell, 13, 496–506.PubMed Bueno, M. J., Perez de Castro, I., Gomez de Cedron, M., Santos, J., Calin, G. A., Cigudosa, J. C., et al. (2008). Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell, 13, 496–506.PubMed
25.
go back to reference Brueckner, B., Stresemann, C., Kuner, R., Mund, C., Musch, T., Meister, M., et al. (2007). The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Research, 67, 1419–1423.PubMed Brueckner, B., Stresemann, C., Kuner, R., Mund, C., Musch, T., Meister, M., et al. (2007). The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Research, 67, 1419–1423.PubMed
26.
go back to reference Fazi, F., Racanicchi, S., Zardo, G., Starnes, L. M., Mancini, M., Travaglini, L., et al. (2007). Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell, 12, 457–466.PubMed Fazi, F., Racanicchi, S., Zardo, G., Starnes, L. M., Mancini, M., Travaglini, L., et al. (2007). Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell, 12, 457–466.PubMed
27.
go back to reference Lujambio, A., Ropero, S., Ballestar, E., Fraga, M. F., Cerrato, C., Setien, F., et al. (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Research, 67, 1424–1429.PubMed Lujambio, A., Ropero, S., Ballestar, E., Fraga, M. F., Cerrato, C., Setien, F., et al. (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Research, 67, 1424–1429.PubMed
28.
go back to reference Lodygin, D., Tarasov, V., Epanchintsev, A., Berking, C., Knyazeva, T., Korner, H., et al. (2008). Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle, 7, 2591–2600.PubMed Lodygin, D., Tarasov, V., Epanchintsev, A., Berking, C., Knyazeva, T., Korner, H., et al. (2008). Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle, 7, 2591–2600.PubMed
29.
go back to reference Corney, D. C., Flesken-Nikitin, A., Godwin, A. K., Wang, W., & Nikitin, A. Y. (2007). MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Research, 67, 8433–8438.PubMed Corney, D. C., Flesken-Nikitin, A., Godwin, A. K., Wang, W., & Nikitin, A. Y. (2007). MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Research, 67, 8433–8438.PubMed
30.
go back to reference Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., Callegari, E., et al. (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America, 104, 15805–15810.PubMed Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., Callegari, E., et al. (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America, 104, 15805–15810.PubMed
31.
go back to reference Shames, D. S., Minna, J. D., & Gazdar, A. F. (2007). Methods for detecting DNA methylation in tumors: from bench to bedside. Cancer Letters, 251, 187–198.PubMed Shames, D. S., Minna, J. D., & Gazdar, A. F. (2007). Methods for detecting DNA methylation in tumors: from bench to bedside. Cancer Letters, 251, 187–198.PubMed
32.
go back to reference Herman, J. G., & Baylin, S. B. (2001). Methylation-specific PCR. Current Protocols in Human Genetics, Chapter 10, Unit 10 16. Herman, J. G., & Baylin, S. B. (2001). Methylation-specific PCR. Current Protocols in Human Genetics, Chapter 10, Unit 10 16.
33.
go back to reference Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., & Baylin, S. B. (1996). Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proceedings of the National Academy of Sciences of the United States of America, 93, 9821–9826.PubMed Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., & Baylin, S. B. (1996). Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proceedings of the National Academy of Sciences of the United States of America, 93, 9821–9826.PubMed
34.
go back to reference Fraga, M. F., & Esteller, M (2002). DNA methylation: a profile of methods and applications. Biotechniques, 33, 632, 634, 636-649. Fraga, M. F., & Esteller, M (2002). DNA methylation: a profile of methods and applications. Biotechniques, 33, 632, 634, 636-649.
35.
go back to reference Campan, M., Weisenberger, D. J., Trinh, B., & Laird, P. W. (2009). MethyLight. Methods in Molecular Biology, 507, 325–337.PubMed Campan, M., Weisenberger, D. J., Trinh, B., & Laird, P. W. (2009). MethyLight. Methods in Molecular Biology, 507, 325–337.PubMed
36.
go back to reference Dammann, R., Li, C., Yoon, J. H., Chin, P. L., Bates, S., & Pfeifer, G. P. (2000). Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nature Genetics, 25, 315–319.PubMed Dammann, R., Li, C., Yoon, J. H., Chin, P. L., Bates, S., & Pfeifer, G. P. (2000). Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nature Genetics, 25, 315–319.PubMed
37.
go back to reference Esteller, M., Corn, P. G., Baylin, S. B., & Herman, J. G. (2001). A gene hypermethylation profile of human cancer. Cancer Research, 61, 3225–3229.PubMed Esteller, M., Corn, P. G., Baylin, S. B., & Herman, J. G. (2001). A gene hypermethylation profile of human cancer. Cancer Research, 61, 3225–3229.PubMed
38.
go back to reference Zöchbauer-Müller, S., Fong, K. M., Virmani, A. K., Geradts, J., Gazdar, A. F., & Minna, J. D. (2001). Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Research, 61, 249–255.PubMed Zöchbauer-Müller, S., Fong, K. M., Virmani, A. K., Geradts, J., Gazdar, A. F., & Minna, J. D. (2001). Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Research, 61, 249–255.PubMed
39.
go back to reference Virmani, A. K., Rathi, A., Sathyanarayana, U. G., Padar, A., Huang, C. X., Cunnigham, H. T., et al. (2001). Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clinical Cancer Research, 7, 1998–2004.PubMed Virmani, A. K., Rathi, A., Sathyanarayana, U. G., Padar, A., Huang, C. X., Cunnigham, H. T., et al. (2001). Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clinical Cancer Research, 7, 1998–2004.PubMed
40.
go back to reference Virmani, A. K., Rathi, A., Zöchbauer-Müller, S., Sacchi, N., Fukuyama, Y., Bryant, D., et al. (2000). Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas. Journal of the National Cancer Institute, 92, 1303–1307.PubMed Virmani, A. K., Rathi, A., Zöchbauer-Müller, S., Sacchi, N., Fukuyama, Y., Bryant, D., et al. (2000). Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas. Journal of the National Cancer Institute, 92, 1303–1307.PubMed
41.
go back to reference Toyooka, K. O., Toyooka, S., Virmani, A. K., Sathyanarayana, U. G., Euhus, D. M., Gilcrease, M., et al. (2001). Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Research, 61, 4556–4560.PubMed Toyooka, K. O., Toyooka, S., Virmani, A. K., Sathyanarayana, U. G., Euhus, D. M., Gilcrease, M., et al. (2001). Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Research, 61, 4556–4560.PubMed
42.
go back to reference Toyooka, S., Toyooka, K. O., Miyajima, K., Reddy, J. L., Toyota, M., Sathyanarayana, U. G., et al. (2003). Epigenetic down-regulation of death-associated protein kinase in lung cancers. Clinical Cancer Research, 9, 3034–3041.PubMed Toyooka, S., Toyooka, K. O., Miyajima, K., Reddy, J. L., Toyota, M., Sathyanarayana, U. G., et al. (2003). Epigenetic down-regulation of death-associated protein kinase in lung cancers. Clinical Cancer Research, 9, 3034–3041.PubMed
43.
go back to reference Burbee, D. G., Forgacs, E., Zöchbauer-Müller, S., Shivakumar, L., Fong, K. M., Gao, B., et al. (2001). Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. Journal of the National Cancer Institute, 93, 691–699.PubMed Burbee, D. G., Forgacs, E., Zöchbauer-Müller, S., Shivakumar, L., Fong, K. M., Gao, B., et al. (2001). Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. Journal of the National Cancer Institute, 93, 691–699.PubMed
44.
go back to reference Virmani, A., Rathi, A., Sugio, K., Sathyanarayana, U. G., Toyooka, S., Kischel, F. C., et al. (2003). Aberrant methylation of TMS1 in small cell, non small cell lung cancer and breast cancer. International Journal of Cancer, 106, 198–204. Virmani, A., Rathi, A., Sugio, K., Sathyanarayana, U. G., Toyooka, S., Kischel, F. C., et al. (2003). Aberrant methylation of TMS1 in small cell, non small cell lung cancer and breast cancer. International Journal of Cancer, 106, 198–204.
45.
go back to reference Zöchbauer-Müller, S., Fong, K. M., Maitra, A., Lam, S., Geradts, J., Ashfaq, R., et al. (2001). 5′ CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Research, 61, 3581–3585.PubMed Zöchbauer-Müller, S., Fong, K. M., Maitra, A., Lam, S., Geradts, J., Ashfaq, R., et al. (2001). 5′ CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Research, 61, 3581–3585.PubMed
46.
go back to reference Zöchbauer-Müller, S., Fong, K. M., Geradts, J., Xu, X., Seidl, S., End-Pfutzenreuter, A., et al. (2005). Expression of the candidate tumor suppressor gene hSRBC is frequently lost in primary lung cancers with and without DNA methylation. Oncogene, 24, 6249–6255.PubMed Zöchbauer-Müller, S., Fong, K. M., Geradts, J., Xu, X., Seidl, S., End-Pfutzenreuter, A., et al. (2005). Expression of the candidate tumor suppressor gene hSRBC is frequently lost in primary lung cancers with and without DNA methylation. Oncogene, 24, 6249–6255.PubMed
47.
go back to reference Heller, G., Fong, K. M., Girard, L., Seidl, S., End-Pfützenreuter, A., Lang, G., et al. (2006). Expression and methylation pattern of TSLC1 cascade genes in lung carcinomas. Oncogene, 25, 959–968.PubMed Heller, G., Fong, K. M., Girard, L., Seidl, S., End-Pfützenreuter, A., Lang, G., et al. (2006). Expression and methylation pattern of TSLC1 cascade genes in lung carcinomas. Oncogene, 25, 959–968.PubMed
48.
go back to reference Kikuchi, S., Yamada, D., Fukami, T., Masuda, M., Sakurai-Yageta, M., Williams, Y. N., et al. (2005). Promoter methylation of DAL-1/4.1B predicts poor prognosis in non-small cell lung cancer. Clinical Cancer Research, 11, 2954–2961.PubMed Kikuchi, S., Yamada, D., Fukami, T., Masuda, M., Sakurai-Yageta, M., Williams, Y. N., et al. (2005). Promoter methylation of DAL-1/4.1B predicts poor prognosis in non-small cell lung cancer. Clinical Cancer Research, 11, 2954–2961.PubMed
49.
go back to reference Kikuchi, S., Yamada, D., Fukami, T., Maruyama, T., Ito, A., Asamura, H., et al. (2006). Hypermethylation of the TSLC1/IGSF4 promoter is associated with tobacco smoking and a poor prognosis in primary nonsmall cell lung carcinoma. Cancer, 106, 1751–1758.PubMed Kikuchi, S., Yamada, D., Fukami, T., Maruyama, T., Ito, A., Asamura, H., et al. (2006). Hypermethylation of the TSLC1/IGSF4 promoter is associated with tobacco smoking and a poor prognosis in primary nonsmall cell lung carcinoma. Cancer, 106, 1751–1758.PubMed
50.
go back to reference Esteller, M., Sanchez-Cespedes, M., Rosell, R., Sidransky, D., Baylin, S. B., & Herman, J. G. (1999). Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Research, 59, 67–70.PubMed Esteller, M., Sanchez-Cespedes, M., Rosell, R., Sidransky, D., Baylin, S. B., & Herman, J. G. (1999). Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Research, 59, 67–70.PubMed
51.
go back to reference Usadel, H., Brabender, J., Danenberg, K. D., Jeronimo, C., Harden, S., Engles, J., et al. (2002). Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Research, 62, 371–375.PubMed Usadel, H., Brabender, J., Danenberg, K. D., Jeronimo, C., Harden, S., Engles, J., et al. (2002). Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Research, 62, 371–375.PubMed
52.
go back to reference Hsu, H. S., Chen, T. P., Hung, C. H., Wen, C. K., Lin, R. K., Lee, H. C., et al. (2007). Characterization of a multiple epigenetic marker panel for lung cancer detection and risk assessment in plasma. Cancer, 110, 2019–2026.PubMed Hsu, H. S., Chen, T. P., Hung, C. H., Wen, C. K., Lin, R. K., Lee, H. C., et al. (2007). Characterization of a multiple epigenetic marker panel for lung cancer detection and risk assessment in plasma. Cancer, 110, 2019–2026.PubMed
53.
go back to reference Fujiwara, K., Fujimoto, N., Tabata, M., Nishii, K., Matsuo, K., Hotta, K., et al. (2005). Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clinical Cancer Research, 11, 1219–1225.PubMed Fujiwara, K., Fujimoto, N., Tabata, M., Nishii, K., Matsuo, K., Hotta, K., et al. (2005). Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clinical Cancer Research, 11, 1219–1225.PubMed
54.
go back to reference Wang, Y., Yu, Z., Wang, T., Zhang, J., Hong, L., & Chen, L. (2007). Identification of epigenetic aberrant promoter methylation of RASSF1A in serum DNA and its clinicopathological significance in lung cancer. Lung Cancer, 56, 289–294.PubMed Wang, Y., Yu, Z., Wang, T., Zhang, J., Hong, L., & Chen, L. (2007). Identification of epigenetic aberrant promoter methylation of RASSF1A in serum DNA and its clinicopathological significance in lung cancer. Lung Cancer, 56, 289–294.PubMed
55.
go back to reference Belinsky, S. A., Klinge, D. M., Dekker, J. D., Smith, M. W., Bocklage, T. J., Gilliland, F. D., et al. (2005). Gene promoter methylation in plasma and sputum increases with lung cancer risk. Clinical Cancer Research, 11, 6505–6511.PubMed Belinsky, S. A., Klinge, D. M., Dekker, J. D., Smith, M. W., Bocklage, T. J., Gilliland, F. D., et al. (2005). Gene promoter methylation in plasma and sputum increases with lung cancer risk. Clinical Cancer Research, 11, 6505–6511.PubMed
56.
go back to reference Anglim, P. P., Alonzo, T. A., & Laird-Offringa, I. A. (2008). DNA methylation-based biomarkers for early detection of non-small cell lung cancer: an update. Mol Cancer, 7, 81.PubMed Anglim, P. P., Alonzo, T. A., & Laird-Offringa, I. A. (2008). DNA methylation-based biomarkers for early detection of non-small cell lung cancer: an update. Mol Cancer, 7, 81.PubMed
57.
go back to reference Wang, Y. C., Lu, Y. P., Tseng, R. C., Lin, R. K., Chang, J. W., Chen, J. T., et al. (2003). Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. Journal of Clinical Investigation, 111, 887–895.PubMed Wang, Y. C., Lu, Y. P., Tseng, R. C., Lin, R. K., Chang, J. W., Chen, J. T., et al. (2003). Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. Journal of Clinical Investigation, 111, 887–895.PubMed
58.
go back to reference Belinsky, S. A., Liechty, K. C., Gentry, F. D., Wolf, H. J., Rogers, J., Vu, K., et al. (2006). Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Research, 66, 3338–3344.PubMed Belinsky, S. A., Liechty, K. C., Gentry, F. D., Wolf, H. J., Rogers, J., Vu, K., et al. (2006). Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Research, 66, 3338–3344.PubMed
59.
go back to reference Belinsky, S. A., Grimes, M. J., Casas, E., Stidley, C. A., Franklin, W. A., Bocklage, T. J., et al. (2007). Predicting gene promoter methylation in non-small-cell lung cancer by evaluating sputum and serum. British Journal of Cancer, 96, 1278–1283.PubMed Belinsky, S. A., Grimes, M. J., Casas, E., Stidley, C. A., Franklin, W. A., Bocklage, T. J., et al. (2007). Predicting gene promoter methylation in non-small-cell lung cancer by evaluating sputum and serum. British Journal of Cancer, 96, 1278–1283.PubMed
60.
go back to reference Machida, E. O., Brock, M. V., Hooker, C. M., Nakayama, J., Ishida, A., Amano, J., et al. (2006). Hypermethylation of ASC/TMS1 is a sputum marker for late-stage lung cancer. Cancer Research, 66, 6210–6218.PubMed Machida, E. O., Brock, M. V., Hooker, C. M., Nakayama, J., Ishida, A., Amano, J., et al. (2006). Hypermethylation of ASC/TMS1 is a sputum marker for late-stage lung cancer. Cancer Research, 66, 6210–6218.PubMed
61.
go back to reference Shivapurkar, N., Stastny, V., Suzuki, M., Wistuba, I. I., Li, L., Zheng, Y., et al. (2007). Application of a methylation gene panel by quantitative PCR for lung cancers. Cancer Letter, 247, 56–71. Shivapurkar, N., Stastny, V., Suzuki, M., Wistuba, I. I., Li, L., Zheng, Y., et al. (2007). Application of a methylation gene panel by quantitative PCR for lung cancers. Cancer Letter, 247, 56–71.
62.
go back to reference Schmiemann, V., Bocking, A., Kazimirek, M., Onofre, A. S., Gabbert, H. E., Kappes, R., et al. (2005). Methylation assay for the diagnosis of lung cancer on bronchial aspirates: a cohort study. Clinical Cancer Research, 11, 7728–7734.PubMed Schmiemann, V., Bocking, A., Kazimirek, M., Onofre, A. S., Gabbert, H. E., Kappes, R., et al. (2005). Methylation assay for the diagnosis of lung cancer on bronchial aspirates: a cohort study. Clinical Cancer Research, 11, 7728–7734.PubMed
63.
go back to reference Grote, H. J., Schmiemann, V., Geddert, H., Rohr, U. P., Kappes, R., Gabbert, H. E., et al. (2005). Aberrant promoter methylation of p16(INK4a), RARB2 and SEMA3B in bronchial aspirates from patients with suspected lung cancer. International Journal of Cancer, 116, 720–725. Grote, H. J., Schmiemann, V., Geddert, H., Rohr, U. P., Kappes, R., Gabbert, H. E., et al. (2005). Aberrant promoter methylation of p16(INK4a), RARB2 and SEMA3B in bronchial aspirates from patients with suspected lung cancer. International Journal of Cancer, 116, 720–725.
64.
go back to reference Grote, H. J., Schmiemann, V., Kiel, S., Bocking, A., Kappes, R., Gabbert, H. E., et al. (2004). Aberrant methylation of the adenomatous polyposis coli promoter 1A in bronchial aspirates from patients with suspected lung cancer. International Journal of Cancer, 110, 751–755. Grote, H. J., Schmiemann, V., Kiel, S., Bocking, A., Kappes, R., Gabbert, H. E., et al. (2004). Aberrant methylation of the adenomatous polyposis coli promoter 1A in bronchial aspirates from patients with suspected lung cancer. International Journal of Cancer, 110, 751–755.
65.
go back to reference Kim, H., Kwon, Y. M., Kim, J. S., Lee, H., Park, J. H., Shim, Y. M., et al. (2004). Tumor-specific methylation in bronchial lavage for the early detection of non-small-cell lung cancer. Journal of Clinical Oncology, 22, 2363–2370.PubMed Kim, H., Kwon, Y. M., Kim, J. S., Lee, H., Park, J. H., Shim, Y. M., et al. (2004). Tumor-specific methylation in bronchial lavage for the early detection of non-small-cell lung cancer. Journal of Clinical Oncology, 22, 2363–2370.PubMed
66.
go back to reference Chan, E. C., Lam, S. Y., Tsang, K. W., Lam, B., Ho, J. C., Fu, K. H., et al. (2002). Aberrant promoter methylation in Chinese patients with non-small cell lung cancer: patterns in primary tumors and potential diagnostic application in bronchoalevolar lavage. Clinical Cancer Research, 8, 3741–3746.PubMed Chan, E. C., Lam, S. Y., Tsang, K. W., Lam, B., Ho, J. C., Fu, K. H., et al. (2002). Aberrant promoter methylation in Chinese patients with non-small cell lung cancer: patterns in primary tumors and potential diagnostic application in bronchoalevolar lavage. Clinical Cancer Research, 8, 3741–3746.PubMed
67.
go back to reference Han, W., Wang, T., Reilly, A. A., Keller, S. M., & Spivack, S. D. (2009). Gene promoter methylation assayed in exhaled breath, with differences in smokers and lung cancer patients. Respiratory Research, 10, 86.PubMed Han, W., Wang, T., Reilly, A. A., Keller, S. M., & Spivack, S. D. (2009). Gene promoter methylation assayed in exhaled breath, with differences in smokers and lung cancer patients. Respiratory Research, 10, 86.PubMed
68.
go back to reference Toyooka, S., Toyooka, K. O., Maruyama, R., Virmani, A. K., Girard, L., Miyajima, K., et al. (2001). DNA methylation profiles of lung tumors. Mol Cancer Therapeutics, 1, 61–67. Toyooka, S., Toyooka, K. O., Maruyama, R., Virmani, A. K., Girard, L., Miyajima, K., et al. (2001). DNA methylation profiles of lung tumors. Mol Cancer Therapeutics, 1, 61–67.
69.
go back to reference Gu, J., Berman, D., Lu, C., Wistuba, I. I., Roth, J. A., Frazier, M., et al. (2006). Aberrant promoter methylation profile and association with survival in patients with non-small cell lung cancer. Clinical Cancer Research, 12, 7329–7338.PubMed Gu, J., Berman, D., Lu, C., Wistuba, I. I., Roth, J. A., Frazier, M., et al. (2006). Aberrant promoter methylation profile and association with survival in patients with non-small cell lung cancer. Clinical Cancer Research, 12, 7329–7338.PubMed
70.
go back to reference Ehrich, M., Field, J. K., Liloglou, T., Xinarianos, G., Oeth, P., Nelson, M. R., et al. (2006). Cytosine methylation profiles as a molecular marker in non-small cell lung cancer. Cancer Research, 66, 10911–10918.PubMed Ehrich, M., Field, J. K., Liloglou, T., Xinarianos, G., Oeth, P., Nelson, M. R., et al. (2006). Cytosine methylation profiles as a molecular marker in non-small cell lung cancer. Cancer Research, 66, 10911–10918.PubMed
71.
go back to reference Toyooka, S., Tokumo, M., Shigematsu, H., Matsuo, K., Asano, H., Tomii, K., et al. (2006). Mutational and epigenetic evidence for independent pathways for lung adenocarcinomas arising in smokers and never smokers. Cancer Research, 66, 1371–1375.PubMed Toyooka, S., Tokumo, M., Shigematsu, H., Matsuo, K., Asano, H., Tomii, K., et al. (2006). Mutational and epigenetic evidence for independent pathways for lung adenocarcinomas arising in smokers and never smokers. Cancer Research, 66, 1371–1375.PubMed
72.
go back to reference Tang, X., Khuri, F. R., Lee, J. J., Kemp, B. L., Liu, D., Hong, W. K., et al. (2000). Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer. Journal of the National Cancer Institute, 92, 1511–1516.PubMed Tang, X., Khuri, F. R., Lee, J. J., Kemp, B. L., Liu, D., Hong, W. K., et al. (2000). Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer. Journal of the National Cancer Institute, 92, 1511–1516.PubMed
73.
go back to reference Lu, C., Soria, J. C., Tang, X., Xu, X. C., Wang, L., Mao, L., et al. (2004). Prognostic factors in resected stage I non-small-cell lung cancer: a multivariate analysis of six molecular markers. Journal of Clinical Oncology, 22, 4575–4583.PubMed Lu, C., Soria, J. C., Tang, X., Xu, X. C., Wang, L., Mao, L., et al. (2004). Prognostic factors in resected stage I non-small-cell lung cancer: a multivariate analysis of six molecular markers. Journal of Clinical Oncology, 22, 4575–4583.PubMed
74.
go back to reference Kim, D. H., Kim, J. S., Ji, Y. I., Shim, Y. M., Kim, H., Han, J., et al. (2003). Hypermethylation of RASSF1A promoter is associated with the age at starting smoking and a poor prognosis in primary non-small cell lung cancer. Cancer Research, 63, 3743–3746.PubMed Kim, D. H., Kim, J. S., Ji, Y. I., Shim, Y. M., Kim, H., Han, J., et al. (2003). Hypermethylation of RASSF1A promoter is associated with the age at starting smoking and a poor prognosis in primary non-small cell lung cancer. Cancer Research, 63, 3743–3746.PubMed
75.
go back to reference Tomizawa, Y., Kohno, T., Kondo, H., Otsuka, A., Nishioka, M., Niki, T., et al. (2002). Clinicopathological significance of epigenetic inactivation of RASSF1A at 3p21.3 in stage I lung adenocarcinoma. Clinical Cancer Research, 8, 2362–2368.PubMed Tomizawa, Y., Kohno, T., Kondo, H., Otsuka, A., Nishioka, M., Niki, T., et al. (2002). Clinicopathological significance of epigenetic inactivation of RASSF1A at 3p21.3 in stage I lung adenocarcinoma. Clinical Cancer Research, 8, 2362–2368.PubMed
76.
go back to reference Toyooka, S., Suzuki, M., Maruyama, R., Toyooka, K. O., Tsukuda, K., Fukuyama, Y., et al. (2004). The relationship between aberrant methylation and survival in non-small-cell lung cancers. British Journal of Cancer, 91, 771–774.PubMed Toyooka, S., Suzuki, M., Maruyama, R., Toyooka, K. O., Tsukuda, K., Fukuyama, Y., et al. (2004). The relationship between aberrant methylation and survival in non-small-cell lung cancers. British Journal of Cancer, 91, 771–774.PubMed
77.
go back to reference Yanagawa, N., Tamura, G., Oizumi, H., Kanauchi, N., Endoh, M., Sadahiro, M., et al. (2007). Promoter hypermethylation of RASSF1A and RUNX3 genes as an independent prognostic prediction marker in surgically resected non-small cell lung cancers. Lung Cancer, 58, 131–138.PubMed Yanagawa, N., Tamura, G., Oizumi, H., Kanauchi, N., Endoh, M., Sadahiro, M., et al. (2007). Promoter hypermethylation of RASSF1A and RUNX3 genes as an independent prognostic prediction marker in surgically resected non-small cell lung cancers. Lung Cancer, 58, 131–138.PubMed
78.
go back to reference Seng, T. J., Currey, N., Cooper, W. A., Lee, C. S., Chan, C., Horvath, L., et al. (2008). DLEC1 and MLH1 promoter methylation are associated with poor prognosis in non-small cell lung carcinoma. British Journal of Cancer, 99, 375–382.PubMed Seng, T. J., Currey, N., Cooper, W. A., Lee, C. S., Chan, C., Horvath, L., et al. (2008). DLEC1 and MLH1 promoter methylation are associated with poor prognosis in non-small cell lung carcinoma. British Journal of Cancer, 99, 375–382.PubMed
79.
go back to reference Brock, M. V., Hooker, C. M., Ota-Machida, E., Han, Y., Guo, M., Ames, S., et al. (2008). DNA methylation markers and early recurrence in stage I lung cancer. New England Journal of Medicine, 358, 1118–1128.PubMed Brock, M. V., Hooker, C. M., Ota-Machida, E., Han, Y., Guo, M., Ames, S., et al. (2008). DNA methylation markers and early recurrence in stage I lung cancer. New England Journal of Medicine, 358, 1118–1128.PubMed
80.
go back to reference Parkin, D. M., Pisani, P., Lopez, A. D., & Masuyer, E. (1994). At least one in seven cases of cancer is caused by smoking. Global estimates for 1985. International Journal of Cancer, 59, 494–504. Parkin, D. M., Pisani, P., Lopez, A. D., & Masuyer, E. (1994). At least one in seven cases of cancer is caused by smoking. Global estimates for 1985. International Journal of Cancer, 59, 494–504.
81.
go back to reference Sun, S., Schiller, J. H., & Gazdar, A. F. (2007). Lung cancer in never smokers—a different disease. Nature Reviews Cancer, 7, 778–790.PubMed Sun, S., Schiller, J. H., & Gazdar, A. F. (2007). Lung cancer in never smokers—a different disease. Nature Reviews Cancer, 7, 778–790.PubMed
82.
go back to reference Toyooka, S., Maruyama, R., Toyooka, K. O., McLerran, D., Feng, Z., Fukuyama, Y., et al. (2003). Smoke exposure, histologic type and geography-related differences in the methylation profiles of non-small cell lung cancer. International Journal of Cancer, 103, 153–160. Toyooka, S., Maruyama, R., Toyooka, K. O., McLerran, D., Feng, Z., Fukuyama, Y., et al. (2003). Smoke exposure, histologic type and geography-related differences in the methylation profiles of non-small cell lung cancer. International Journal of Cancer, 103, 153–160.
83.
go back to reference Belinsky, S. A., Palmisano, W. A., Gilliland, F. D., Crooks, L. A., Divine, K. K., Winters, S. A., et al. (2002). Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Research, 62, 2370–2377.PubMed Belinsky, S. A., Palmisano, W. A., Gilliland, F. D., Crooks, L. A., Divine, K. K., Winters, S. A., et al. (2002). Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Research, 62, 2370–2377.PubMed
84.
go back to reference Damiani, L. A., Yingling, C. M., Leng, S., Romo, P. E., Nakamura, J., & Belinsky, S. A. (2008). Carcinogen-induced gene promoter hypermethylation is mediated by DNMT1 and causal for transformation of immortalized bronchial epithelial cells. Cancer Research, 68, 9005–9014.PubMed Damiani, L. A., Yingling, C. M., Leng, S., Romo, P. E., Nakamura, J., & Belinsky, S. A. (2008). Carcinogen-induced gene promoter hypermethylation is mediated by DNMT1 and causal for transformation of immortalized bronchial epithelial cells. Cancer Research, 68, 9005–9014.PubMed
85.
go back to reference Shen, H., Spitz, M. R., Qiao, Y., Guo, Z., Wang, L. E., Bosken, C. H., et al. (2003). Smoking, DNA repair capacity and risk of nonsmall cell lung cancer. International Journal of Cancer, 107, 84–88. Shen, H., Spitz, M. R., Qiao, Y., Guo, Z., Wang, L. E., Bosken, C. H., et al. (2003). Smoking, DNA repair capacity and risk of nonsmall cell lung cancer. International Journal of Cancer, 107, 84–88.
86.
go back to reference Leng, S., Stidley, C. A., Willink, R., Bernauer, A., Do, K., Picchi, M. A., et al. (2008). Double-strand break damage and associated DNA repair genes predispose smokers to gene methylation. Cancer Research, 68, 3049–3056.PubMed Leng, S., Stidley, C. A., Willink, R., Bernauer, A., Do, K., Picchi, M. A., et al. (2008). Double-strand break damage and associated DNA repair genes predispose smokers to gene methylation. Cancer Research, 68, 3049–3056.PubMed
87.
go back to reference Kersting, M., Friedl, C., Kraus, A., Behn, M., Pankow, W., & Schuermann, M. (2000). Differential frequencies of p16(INK4a) promoter hypermethylation, p53 mutation, and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. Journal of Clinical Oncology, 18, 3221–3229.PubMed Kersting, M., Friedl, C., Kraus, A., Behn, M., Pankow, W., & Schuermann, M. (2000). Differential frequencies of p16(INK4a) promoter hypermethylation, p53 mutation, and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. Journal of Clinical Oncology, 18, 3221–3229.PubMed
88.
go back to reference Honorio, S., Agathanggelou, A., Schuermann, M., Pankow, W., Viacava, P., Maher, E. R., et al. (2003). Detection of RASSF1A aberrant promoter hypermethylation in sputum from chronic smokers and ductal carcinoma in situ from breast cancer patients. Oncogene, 22, 147–150.PubMed Honorio, S., Agathanggelou, A., Schuermann, M., Pankow, W., Viacava, P., Maher, E. R., et al. (2003). Detection of RASSF1A aberrant promoter hypermethylation in sputum from chronic smokers and ductal carcinoma in situ from breast cancer patients. Oncogene, 22, 147–150.PubMed
89.
go back to reference Lamy, A., Sesboue, R., Bourguignon, J., Dautreaux, B., Metayer, J., Frebourg, T., et al. (2002). Aberrant methylation of the CDKN2a/p16INK4a gene promoter region in preinvasive bronchial lesions: a prospective study in high-risk patients without invasive cancer. International Journal of Cancer, 100, 189–193. Lamy, A., Sesboue, R., Bourguignon, J., Dautreaux, B., Metayer, J., Frebourg, T., et al. (2002). Aberrant methylation of the CDKN2a/p16INK4a gene promoter region in preinvasive bronchial lesions: a prospective study in high-risk patients without invasive cancer. International Journal of Cancer, 100, 189–193.
90.
go back to reference Soria, J. C., Rodriguez, M., Liu, D. D., Lee, J. J., Hong, W. K., & Mao, L. (2002). Aberrant promoter methylation of multiple genes in bronchial brush samples from former cigarette smokers. Cancer Research, 62, 351–355.PubMed Soria, J. C., Rodriguez, M., Liu, D. D., Lee, J. J., Hong, W. K., & Mao, L. (2002). Aberrant promoter methylation of multiple genes in bronchial brush samples from former cigarette smokers. Cancer Research, 62, 351–355.PubMed
91.
go back to reference Zöchbauer-Müller, S., Lam, S., Toyooka, S., Virmani, A. K., Toyooka, K. O., Seidl, S., et al. (2003). Aberrant methylation of multiple genes in the upper aerodigestive tract epithelium of heavy smokers. International Journal of Cancer, 107, 612–616. Zöchbauer-Müller, S., Lam, S., Toyooka, S., Virmani, A. K., Toyooka, K. O., Seidl, S., et al. (2003). Aberrant methylation of multiple genes in the upper aerodigestive tract epithelium of heavy smokers. International Journal of Cancer, 107, 612–616.
92.
go back to reference Bhutani, M., Pathak, A. K., Fan, Y. H., Liu, D. D., Lee, J. J., Tang, H., et al. (2008). Oral epithelium as a surrogate tissue for assessing smoking-induced molecular alterations in the lungs. Cancer Prevention Researcg (Philadelphia, PA), 1, 39–44. Bhutani, M., Pathak, A. K., Fan, Y. H., Liu, D. D., Lee, J. J., Tang, H., et al. (2008). Oral epithelium as a surrogate tissue for assessing smoking-induced molecular alterations in the lungs. Cancer Prevention Researcg (Philadelphia, PA), 1, 39–44.
93.
go back to reference Licchesi, J. D., Westra, W. H., Hooker, C. M., & Herman, J. G. (2008). Promoter hypermethylation of hallmark cancer genes in atypical adenomatous hyperplasia of the lung. Clinical Cancer Research, 14, 2570–2578.PubMed Licchesi, J. D., Westra, W. H., Hooker, C. M., & Herman, J. G. (2008). Promoter hypermethylation of hallmark cancer genes in atypical adenomatous hyperplasia of the lung. Clinical Cancer Research, 14, 2570–2578.PubMed
94.
go back to reference Palmisano, W. A., Divine, K. K., Saccomanno, G., Gilliland, F. D., Baylin, S. B., Herman, J. G., et al. (2000). Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Research, 60, 5954–5958.PubMed Palmisano, W. A., Divine, K. K., Saccomanno, G., Gilliland, F. D., Baylin, S. B., Herman, J. G., et al. (2000). Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Research, 60, 5954–5958.PubMed
96.
go back to reference Kaminskas, E., Farrell, A., Abraham, S., Baird, A., Hsieh, L. S., Lee, S. L., et al. (2005). Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clinical Cancer Research, 11, 3604–3608.PubMed Kaminskas, E., Farrell, A., Abraham, S., Baird, A., Hsieh, L. S., Lee, S. L., et al. (2005). Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clinical Cancer Research, 11, 3604–3608.PubMed
97.
go back to reference Mann, B. S., Johnson, J. R., He, K., Sridhara, R., Abraham, S., Booth, B. P., et al. (2007). Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clinical Cancer Research, 13, 2318–2322.PubMed Mann, B. S., Johnson, J. R., He, K., Sridhara, R., Abraham, S., Booth, B. P., et al. (2007). Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clinical Cancer Research, 13, 2318–2322.PubMed
98.
go back to reference Piekarz R, Wright J, Frye R, Allen SL, Craig M, Geskin L, et al. (2008). Results of a phase 2 NCI multicenter study of romidepsin in patients with relapsed peripheral T-cell lymphoma (PTCL). ASH Annual Meeting Abstracts, 112. Piekarz R, Wright J, Frye R, Allen SL, Craig M, Geskin L, et al. (2008). Results of a phase 2 NCI multicenter study of romidepsin in patients with relapsed peripheral T-cell lymphoma (PTCL). ASH Annual Meeting Abstracts, 112.
99.
go back to reference Juergens, R., Vendetti, F., Coleman, B., Sebree, R., Belinsky, S., Rudek, M., et al. (2009). A phase II-trial of 5-azacitidine (5AC) and entinostat (SNDX-275) in relapsed advanced lung cancer (NSCLC): an interim analysis. Abstract# A6.6, 13th World Conference on Lung Cancer (WCLC). Juergens, R., Vendetti, F., Coleman, B., Sebree, R., Belinsky, S., Rudek, M., et al. (2009). A phase II-trial of 5-azacitidine (5AC) and entinostat (SNDX-275) in relapsed advanced lung cancer (NSCLC): an interim analysis. Abstract# A6.6, 13th World Conference on Lung Cancer (WCLC).
100.
go back to reference Costello, J. F., Fruhwald, M. C., Smiraglia, D. J., Rush, L. J., Robertson, G. P., Gao, X., et al. (2000). Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genetics, 24, 132–138.PubMed Costello, J. F., Fruhwald, M. C., Smiraglia, D. J., Rush, L. J., Robertson, G. P., Gao, X., et al. (2000). Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genetics, 24, 132–138.PubMed
101.
go back to reference Dai, Z., Lakshmanan, R. R., Zhu, W. G., Smiraglia, D. J., Rush, L. J., Fruhwald, M. C., et al. (2001). Global methylation profiling of lung cancer identifies novel methylated genes. Neoplasia, 3, 314–323.PubMed Dai, Z., Lakshmanan, R. R., Zhu, W. G., Smiraglia, D. J., Rush, L. J., Fruhwald, M. C., et al. (2001). Global methylation profiling of lung cancer identifies novel methylated genes. Neoplasia, 3, 314–323.PubMed
102.
go back to reference Brena, R. M., Morrison, C., Liyanarachchi, S., Jarjoura, D., Davuluri, R. V., Otterson, G. A., et al. (2007). Aberrant DNA methylation of OLIG1, a novel prognostic factor in non-small cell lung cancer. PLoS Med, 4, e108.PubMed Brena, R. M., Morrison, C., Liyanarachchi, S., Jarjoura, D., Davuluri, R. V., Otterson, G. A., et al. (2007). Aberrant DNA methylation of OLIG1, a novel prognostic factor in non-small cell lung cancer. PLoS Med, 4, e108.PubMed
103.
go back to reference Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L., et al. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics, 37, 853–862.PubMed Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L., et al. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics, 37, 853–862.PubMed
104.
go back to reference Dammann, R., Yang, G., & Pfeifer, G. P. (2001). Hypermethylation of the cpG island of Ras association domain family 1A (RASSF1A), a putative tumor suppressor gene from the 3p21.3 locus, occurs in a large percentage of human breast cancers. Cancer Research, 61, 3105–3109.PubMed Dammann, R., Yang, G., & Pfeifer, G. P. (2001). Hypermethylation of the cpG island of Ras association domain family 1A (RASSF1A), a putative tumor suppressor gene from the 3p21.3 locus, occurs in a large percentage of human breast cancers. Cancer Research, 61, 3105–3109.PubMed
105.
go back to reference Suzuki, H., Gabrielson, E., Chen, W., Anbazhagan, R., van Engeland, M., Weijenberg, M. P., et al. (2002). A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nature Genetics, 31, 141–149.PubMed Suzuki, H., Gabrielson, E., Chen, W., Anbazhagan, R., van Engeland, M., Weijenberg, M. P., et al. (2002). A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nature Genetics, 31, 141–149.PubMed
106.
go back to reference Shames, D. S., Girard, L., Gao, B., Sato, M., Lewis, C. M., Shivapurkar, N., et al. (2006). A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLoS Medicine, 3, e486.PubMed Shames, D. S., Girard, L., Gao, B., Sato, M., Lewis, C. M., Shivapurkar, N., et al. (2006). A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLoS Medicine, 3, e486.PubMed
107.
go back to reference Zhong, S., Fields, C. R., Su, N., Pan, Y. X., & Robertson, K. D. (2007). Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene, 26, 2621–2634.PubMed Zhong, S., Fields, C. R., Su, N., Pan, Y. X., & Robertson, K. D. (2007). Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene, 26, 2621–2634.PubMed
108.
go back to reference Bestor, T. H. (2003). Unanswered questions about the role of promoter methylation in carcinogenesis. Annals of the New York Academy of Sciences, 983, 22–27.PubMed Bestor, T. H. (2003). Unanswered questions about the role of promoter methylation in carcinogenesis. Annals of the New York Academy of Sciences, 983, 22–27.PubMed
109.
go back to reference Sato, N., Fukushima, N., Maitra, A., Matsubayashi, H., Yeo, C. J., Cameron, J. L., et al. (2003). Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Research, 63, 3735–3742.PubMed Sato, N., Fukushima, N., Maitra, A., Matsubayashi, H., Yeo, C. J., Cameron, J. L., et al. (2003). Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Research, 63, 3735–3742.PubMed
110.
go back to reference Bibikova, M., Lin, Z., Zhou, L., Chudin, E., Garcia, E. W., Wu, B., et al. (2006). High-throughput DNA methylation profiling using universal bead arrays. Genome Research, 16, 383–393.PubMed Bibikova, M., Lin, Z., Zhou, L., Chudin, E., Garcia, E. W., Wu, B., et al. (2006). High-throughput DNA methylation profiling using universal bead arrays. Genome Research, 16, 383–393.PubMed
111.
go back to reference Christensen, B. C., Marsit, C. J., Houseman, E. A., Godleski, J. J., Longacker, J. L., Zheng, S., et al. (2009). Differentiation of lung adenocarcinoma, pleural mesothelioma, and nonmalignant pulmonary tissues using DNA methylation profiles. Cancer Research, 69, 6315–6321.PubMed Christensen, B. C., Marsit, C. J., Houseman, E. A., Godleski, J. J., Longacker, J. L., Zheng, S., et al. (2009). Differentiation of lung adenocarcinoma, pleural mesothelioma, and nonmalignant pulmonary tissues using DNA methylation profiles. Cancer Research, 69, 6315–6321.PubMed
112.
go back to reference Mockler, T. C., Chan, S., Sundaresan, A., Chen, H., Jacobsen, S. E., & Ecker, J. R. (2005). Applications of DNA tiling arrays for whole-genome analysis. Genomics, 85, 1–15.PubMed Mockler, T. C., Chan, S., Sundaresan, A., Chen, H., Jacobsen, S. E., & Ecker, J. R. (2005). Applications of DNA tiling arrays for whole-genome analysis. Genomics, 85, 1–15.PubMed
113.
go back to reference Rauch, T. A., Zhong, X., Wu, X., Wang, M., Kernstine, K. H., Wang, Z., et al. (2008). High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 105, 252–257.PubMed Rauch, T. A., Zhong, X., Wu, X., Wang, M., Kernstine, K. H., Wang, Z., et al. (2008). High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 105, 252–257.PubMed
114.
go back to reference Tessema, M., Willink, R., Do, K., Yu, Y. Y., Yu, W., Machida, E. O., et al. (2008). Promoter methylation of genes in and around the candidate lung cancer susceptibility locus 6q23-25. Cancer Research, 68, 1707–1714.PubMed Tessema, M., Willink, R., Do, K., Yu, Y. Y., Yu, W., Machida, E. O., et al. (2008). Promoter methylation of genes in and around the candidate lung cancer susceptibility locus 6q23-25. Cancer Research, 68, 1707–1714.PubMed
115.
go back to reference Zhang, Z., Tan, S., & Zhang, L. (2006). Prognostic value of apoptosis-associated speck-like protein containing a CARD gene promoter methylation in resectable non-small-cell lung cancer. Clinical Lung Cancer, 8, 62–65.PubMed Zhang, Z., Tan, S., & Zhang, L. (2006). Prognostic value of apoptosis-associated speck-like protein containing a CARD gene promoter methylation in resectable non-small-cell lung cancer. Clinical Lung Cancer, 8, 62–65.PubMed
116.
go back to reference Nakata, S., Sugio, K., Uramoto, H., Oyama, T., Hanagiri, T., Morita, M., et al. (2006). The methylation status and protein expression of CDH1, p16(INK4A), and fragile histidine triad in nonsmall cell lung carcinoma: epigenetic silencing, clinical features, and prognostic significance. Cancer, 106, 2190–2199.PubMed Nakata, S., Sugio, K., Uramoto, H., Oyama, T., Hanagiri, T., Morita, M., et al. (2006). The methylation status and protein expression of CDH1, p16(INK4A), and fragile histidine triad in nonsmall cell lung carcinoma: epigenetic silencing, clinical features, and prognostic significance. Cancer, 106, 2190–2199.PubMed
117.
go back to reference Maruyama, R., Sugio, K., Yoshino, I., Maehara, Y., & Gazdar, A. F. (2004). Hypermethylation of FHIT as a prognostic marker in nonsmall cell lung carcinoma. Cancer, 100, 1472–1477.PubMed Maruyama, R., Sugio, K., Yoshino, I., Maehara, Y., & Gazdar, A. F. (2004). Hypermethylation of FHIT as a prognostic marker in nonsmall cell lung carcinoma. Cancer, 100, 1472–1477.PubMed
118.
go back to reference Brabender, J., Usadel, H., Danenberg, K. D., Metzger, R., Schneider, P. M., Lord, R. V., et al. (2001). Adenomatous polyposis coli gene promoter hypermethylation in non-small cell lung cancer is associated with survival. Oncogene, 20, 3528–3532.PubMed Brabender, J., Usadel, H., Danenberg, K. D., Metzger, R., Schneider, P. M., Lord, R. V., et al. (2001). Adenomatous polyposis coli gene promoter hypermethylation in non-small cell lung cancer is associated with survival. Oncogene, 20, 3528–3532.PubMed
119.
go back to reference Agathanggelou, A., Honorio, S., Macartney, D. P., Martinez, A., Dallol, A., Rader, J., et al. (2001). Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene, 20, 1509–1518.PubMed Agathanggelou, A., Honorio, S., Macartney, D. P., Martinez, A., Dallol, A., Rader, J., et al. (2001). Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene, 20, 1509–1518.PubMed
120.
go back to reference Dammann, R., Takahashi, T., & Pfeifer, G. P. (2001). The CpG island of the novel tumor suppressor gene RASSF1A is intensely methylated in primary small cell lung carcinomas. Oncogene, 20, 3563–3567.PubMed Dammann, R., Takahashi, T., & Pfeifer, G. P. (2001). The CpG island of the novel tumor suppressor gene RASSF1A is intensely methylated in primary small cell lung carcinomas. Oncogene, 20, 3563–3567.PubMed
121.
go back to reference Kashiwabara, K., Oyama, T., Sano, T., Fukuda, T., & Nakajima, T. (1998). Correlation between methylation status of the p16/CDKN2 gene and the expression of p16 and Rb proteins in primary non-small cell lung cancers. International Journal of Cancer, 79, 215–220. Kashiwabara, K., Oyama, T., Sano, T., Fukuda, T., & Nakajima, T. (1998). Correlation between methylation status of the p16/CDKN2 gene and the expression of p16 and Rb proteins in primary non-small cell lung cancers. International Journal of Cancer, 79, 215–220.
122.
go back to reference Kuramochi, M., Fukuhara, H., Nobukuni, T., Kanbe, T., Maruyama, T., Ghosh, H. P., et al. (2001). TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nature Genetics, 27, 427–430.PubMed Kuramochi, M., Fukuhara, H., Nobukuni, T., Kanbe, T., Maruyama, T., Ghosh, H. P., et al. (2001). TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nature Genetics, 27, 427–430.PubMed
123.
go back to reference Brabender, J., Usadel, H., Metzger, R., Schneider, P. M., Park, J., Salonga, D., et al. (2003). Quantitative O(6)-methylguanine DNA methyltransferase methylation analysis in curatively resected non-small cell lung cancer: associations with clinical outcome. Clinical Cancer Research, 9, 223–227.PubMed Brabender, J., Usadel, H., Metzger, R., Schneider, P. M., Park, J., Salonga, D., et al. (2003). Quantitative O(6)-methylguanine DNA methyltransferase methylation analysis in curatively resected non-small cell lung cancer: associations with clinical outcome. Clinical Cancer Research, 9, 223–227.PubMed
Metadata
Title
Lung cancer: From single-gene methylation to methylome profiling
Authors
Gerwin Heller
Christoph C. Zielinski
Sabine Zöchbauer-Müller
Publication date
01-03-2010
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2010
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9203-x

Other articles of this Issue 1/2010

Cancer and Metastasis Reviews 1/2010 Go to the issue

Acknowledgments

Biography—Adi Gazdar

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine