Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2018

Open Access 01-12-2018 | Review

The role of inflammation in the development of epilepsy

Authors: Amna Rana, Alberto E. Musto

Published in: Journal of Neuroinflammation | Issue 1/2018

Login to get access

Abstract

Epilepsy, a neurological disease characterized by recurrent seizures, is often associated with a history of previous lesions in the nervous system. Impaired regulation of the activation and resolution of inflammatory cells and molecules in the injured neuronal tissue is a critical factor to the development of epilepsy. However, it is still unclear as to how that unbalanced regulation of inflammation contributes to epilepsy. Therefore, one of the goals in epilepsy research is to identify and elucidate the interconnected inflammatory pathways in systemic and neurological disorders that may further develop epilepsy progression. In this paper, inflammatory molecules, in neurological and systemic disorders (rheumatoid arthritis, Crohn’s, Type I Diabetes, etc.) that could contribute to epilepsy development, are reviewed.
Understanding the neurobiology of inflammation in epileptogenesis will contribute to the development of new biomarkers for better screening of patients at risk for epilepsy and new therapeutic targets for both prophylaxis and treatment of epilepsy.
Literature
4.
go back to reference Musto A, Gjorstrup P, Bazan N. The omega-3 fatty acid-derived neuroprotectin D1 limits hippocampal hyperexcitability and seizure susceptibility in kindling epileptogenesis. Epilepsia. 2011;52(9):1601–8.PubMedCrossRef Musto A, Gjorstrup P, Bazan N. The omega-3 fatty acid-derived neuroprotectin D1 limits hippocampal hyperexcitability and seizure susceptibility in kindling epileptogenesis. Epilepsia. 2011;52(9):1601–8.PubMedCrossRef
5.
go back to reference Walker LE, Janigro D, Heinemann U, Riikonen R, Bernard C, Patel M. WONOEP appraisal: molecular and cellular biomarkers for epilepsy. Epilepsia. 2016;57:1354–62.PubMedPubMedCentralCrossRef Walker LE, Janigro D, Heinemann U, Riikonen R, Bernard C, Patel M. WONOEP appraisal: molecular and cellular biomarkers for epilepsy. Epilepsia. 2016;57:1354–62.PubMedPubMedCentralCrossRef
7.
go back to reference Vezzani A, Granata T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia. 2005;46:1724–43.PubMedCrossRef Vezzani A, Granata T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia. 2005;46:1724–43.PubMedCrossRef
8.
9.
go back to reference Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatrica. 2016;29(01):1–16.PubMedCrossRef Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatrica. 2016;29(01):1–16.PubMedCrossRef
11.
go back to reference Jung K-H, Chu K, Lee S-T, Kim J-H, Kang K-M, Song E-C, Kim S-J, Park H-K, Kim M, Lee SK, Roh J-K. Region-specific plasticity in the epileptic rat brain: a hippocampal and extrahippocampal analysis. Epilepsia. 2009;50:537–49.PubMedCrossRef Jung K-H, Chu K, Lee S-T, Kim J-H, Kang K-M, Song E-C, Kim S-J, Park H-K, Kim M, Lee SK, Roh J-K. Region-specific plasticity in the epileptic rat brain: a hippocampal and extrahippocampal analysis. Epilepsia. 2009;50:537–49.PubMedCrossRef
16.
go back to reference Han T, Qin Y, Mou C, Wang M, Jiang M, Liu B. Seizure induced synaptic plasticity alteration in hippocampus is mediated by IL-1β receptor through PI3K/Akt pathway. Am J Transl Res. 2016;8(10):4499–509.PubMedPubMedCentral Han T, Qin Y, Mou C, Wang M, Jiang M, Liu B. Seizure induced synaptic plasticity alteration in hippocampus is mediated by IL-1β receptor through PI3K/Akt pathway. Am J Transl Res. 2016;8(10):4499–509.PubMedPubMedCentral
17.
go back to reference Plata-Salaman CR, Ilyin SE, Turrin NP, Gayle D, Flynn MC, Romanovitch AE, et al. Kindling modulates the IL-1βeta system, TNF-αlpha, Tgf-βeta1, and neuropeptide mRNAs in specific brain regions. Brain Res Mol Brain Res. 2000;75:248–58.PubMedCrossRef Plata-Salaman CR, Ilyin SE, Turrin NP, Gayle D, Flynn MC, Romanovitch AE, et al. Kindling modulates the IL-1βeta system, TNF-αlpha, Tgf-βeta1, and neuropeptide mRNAs in specific brain regions. Brain Res Mol Brain Res. 2000;75:248–58.PubMedCrossRef
18.
go back to reference Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, Binaglia M, Corsini E, Di Luca M, Galli CL, Marinovich M. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci. 2003;23:8692–700.PubMedCrossRef Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, Binaglia M, Corsini E, Di Luca M, Galli CL, Marinovich M. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci. 2003;23:8692–700.PubMedCrossRef
19.
go back to reference Postnikova T, Zubareva O, Kovalenko A, Kim K, Magazanik L, Zaitsev A. Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors. Biochem Mosc. 2017;82(3):282–90.CrossRef Postnikova T, Zubareva O, Kovalenko A, Kim K, Magazanik L, Zaitsev A. Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors. Biochem Mosc. 2017;82(3):282–90.CrossRef
20.
go back to reference Roseti C, van Vliet E, Cifelli P, et al. GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis. Neurobiol Dis. 2015;82:311–20.PubMedCrossRef Roseti C, van Vliet E, Cifelli P, et al. GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis. Neurobiol Dis. 2015;82:311–20.PubMedCrossRef
21.
go back to reference Shi L, Chen R, Zhang H, Jiang C, Gong J. Cerebrospinal fluid neuron specific enolase, interleukin-1β and erythropoietin concentrations in children after seizures. Childs Nerv Syst. 2017;33(5):805–11.PubMedCrossRef Shi L, Chen R, Zhang H, Jiang C, Gong J. Cerebrospinal fluid neuron specific enolase, interleukin-1β and erythropoietin concentrations in children after seizures. Childs Nerv Syst. 2017;33(5):805–11.PubMedCrossRef
22.
go back to reference Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-αlpha. Nature. 2006;440:1054–9.PubMedCrossRef Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-αlpha. Nature. 2006;440:1054–9.PubMedCrossRef
23.
go back to reference Kubota K, Inoue K, Hashimoto R, et al. Tumor necrosis factor receptor-associated protein 1 regulates cell adhesion and synaptic morphology via modulation of N-cadherin expression. J Neurochem. 2009;110(2):496–508.PubMedCrossRef Kubota K, Inoue K, Hashimoto R, et al. Tumor necrosis factor receptor-associated protein 1 regulates cell adhesion and synaptic morphology via modulation of N-cadherin expression. J Neurochem. 2009;110(2):496–508.PubMedCrossRef
24.
go back to reference Takeuchi H, Jin S, Wang J, et al. Tumor necrosis factor- induces neurotoxicity via glutamate release from Hemichannels of activated microglia in an autocrine manner. J Biol Chem. 2006;281(30):21362–8.PubMedCrossRef Takeuchi H, Jin S, Wang J, et al. Tumor necrosis factor- induces neurotoxicity via glutamate release from Hemichannels of activated microglia in an autocrine manner. J Biol Chem. 2006;281(30):21362–8.PubMedCrossRef
26.
go back to reference Stellwagen D. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci. 2005;25(12):3219–28.PubMedCrossRef Stellwagen D. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci. 2005;25(12):3219–28.PubMedCrossRef
27.
go back to reference Xu Y, Zeng K, Han Y, et al. Altered expression of CX3CL1 in patients with epilepsy and in a rat model. Am J Pathol. 2012;180(5):1950–62.PubMedCrossRef Xu Y, Zeng K, Han Y, et al. Altered expression of CX3CL1 in patients with epilepsy and in a rat model. Am J Pathol. 2012;180(5):1950–62.PubMedCrossRef
30.
go back to reference Levin S, Godukhin O. Modulating effect of cytokines on mechanisms of synaptic plasticity in the brain. Biochem Mosc. 2017;82(3):264–74.CrossRef Levin S, Godukhin O. Modulating effect of cytokines on mechanisms of synaptic plasticity in the brain. Biochem Mosc. 2017;82(3):264–74.CrossRef
31.
go back to reference Zaretsky M, Alexander J, Byrd W, Bawdon R. Transfer of inflammatory cytokines across the placenta. Obstet Gynecol. 2004;103(3):546–50.PubMedCrossRef Zaretsky M, Alexander J, Byrd W, Bawdon R. Transfer of inflammatory cytokines across the placenta. Obstet Gynecol. 2004;103(3):546–50.PubMedCrossRef
32.
go back to reference Dahlgren J, Samuelsson A, Jansson T, Holmäng A. Interleukin-6 in the maternal circulation reaches the rat fetus in mid-gestation. Pediatr Res. 2006;60(2):147–51.PubMedCrossRef Dahlgren J, Samuelsson A, Jansson T, Holmäng A. Interleukin-6 in the maternal circulation reaches the rat fetus in mid-gestation. Pediatr Res. 2006;60(2):147–51.PubMedCrossRef
33.
go back to reference Samuelsson A. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABAA dysregulation and impaired spatial learning. AJP. 2005;290(5):R1345–56. Samuelsson A. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABAA dysregulation and impaired spatial learning. AJP. 2005;290(5):R1345–56.
36.
go back to reference Sayyah M, Javad-Pour M, Ghazi-Khansari M. The bacterial endotoxin lipopolysaccharide enhances seizure susceptibility in mice: involvement of proinflammatory factors: nitric oxide and prostaglandins. Neuroscience. 2003;122(4):1073–80.PubMedCrossRef Sayyah M, Javad-Pour M, Ghazi-Khansari M. The bacterial endotoxin lipopolysaccharide enhances seizure susceptibility in mice: involvement of proinflammatory factors: nitric oxide and prostaglandins. Neuroscience. 2003;122(4):1073–80.PubMedCrossRef
37.
go back to reference Cimino PJ, Keene CD, Breyer RM, Montine KS, Montine TJ. Therapeutic targets in prostaglandin E2 signaling for neurologic disease. Curr Med Chem. 2008;15(19):1863–9.PubMedPubMedCentralCrossRef Cimino PJ, Keene CD, Breyer RM, Montine KS, Montine TJ. Therapeutic targets in prostaglandin E2 signaling for neurologic disease. Curr Med Chem. 2008;15(19):1863–9.PubMedPubMedCentralCrossRef
38.
go back to reference Jiang J, Ganesh T, Du Y, et al. Small molecule antagonist reveals seizure-induced mediation of neuronal injury by prostaglandin E2 receptor subtype EP2. Proc Natl Acad Sci U S A. 2012;109(8):3149–54.PubMedPubMedCentralCrossRef Jiang J, Ganesh T, Du Y, et al. Small molecule antagonist reveals seizure-induced mediation of neuronal injury by prostaglandin E2 receptor subtype EP2. Proc Natl Acad Sci U S A. 2012;109(8):3149–54.PubMedPubMedCentralCrossRef
39.
go back to reference Chung J, Kim A, Lee S, Baik E. Seizure susceptibility in immature brain due to lack of COX-2-induced PGF2α. Exp Neurol. 2013;249:95–103.PubMedCrossRef Chung J, Kim A, Lee S, Baik E. Seizure susceptibility in immature brain due to lack of COX-2-induced PGF2α. Exp Neurol. 2013;249:95–103.PubMedCrossRef
44.
go back to reference Marcheselli VL, Rossowska MJ, Domingo MT, Braquet P, Bazan NG. Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J Biol Chem. 1990;265:9140–9145 RefID.PubMed Marcheselli VL, Rossowska MJ, Domingo MT, Braquet P, Bazan NG. Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J Biol Chem. 1990;265:9140–9145 RefID.PubMed
47.
go back to reference Panetta T, Marcheselli V, Braquet P, Spinnewyn B, Bazan N. Effects of a platelet activating factor antagonist (BN 52021) on free fatty acids, diacylglycerols, polyphosphoinositides and blood flow in the gerbil brain: inhibition of ischemia-reperfusion induced cerebral injury. Biochem Biophys Res Commun. 1987;149(2):580–7. https://doi.org/10.1016/0006-291x(87)90407-4.PubMedCrossRef Panetta T, Marcheselli V, Braquet P, Spinnewyn B, Bazan N. Effects of a platelet activating factor antagonist (BN 52021) on free fatty acids, diacylglycerols, polyphosphoinositides and blood flow in the gerbil brain: inhibition of ischemia-reperfusion induced cerebral injury. Biochem Biophys Res Commun. 1987;149(2):580–7. https://​doi.​org/​10.​1016/​0006-291x(87)90407-4.PubMedCrossRef
48.
go back to reference Belayev L, Khoutorova L, Atkins K, Gordon W, Alvarez-Builla K, Bazan NG. LAU-0901 a novel platelet-activating factor antagonist is highly neuroprotective in cerebral ischemia. Exp Neurol. 2008;214(2):253–8.PubMedPubMedCentralCrossRef Belayev L, Khoutorova L, Atkins K, Gordon W, Alvarez-Builla K, Bazan NG. LAU-0901 a novel platelet-activating factor antagonist is highly neuroprotective in cerebral ischemia. Exp Neurol. 2008;214(2):253–8.PubMedPubMedCentralCrossRef
49.
go back to reference Boetkjaer A, Boedker M, Cui JG, Zhao Y, Lukiw WJ. Synergism in the repression of COX-2 and TNF-Αlpha induction in platelet activating factor stressed human neural cells. Neurosci Lett. 2007;426:59–63 RefID.PubMedPubMedCentralCrossRef Boetkjaer A, Boedker M, Cui JG, Zhao Y, Lukiw WJ. Synergism in the repression of COX-2 and TNF-Αlpha induction in platelet activating factor stressed human neural cells. Neurosci Lett. 2007;426:59–63 RefID.PubMedPubMedCentralCrossRef
50.
53.
go back to reference Borges K, McDermott D, Dingledine R. Reciprocal changes of CD44 and GAP-43 expression in the dentate gyrus inner molecular layer after status epilepticus in mice. Exp Neurol. 2004;188(1):1–10.PubMedCrossRef Borges K, McDermott D, Dingledine R. Reciprocal changes of CD44 and GAP-43 expression in the dentate gyrus inner molecular layer after status epilepticus in mice. Exp Neurol. 2004;188(1):1–10.PubMedCrossRef
54.
go back to reference Lee T-S, Mane S, Eid T, et al. Gene expression in temporal lobe epilepsy is consistent with increased release of glutamate by astrocytes. Mol Med. 2007;13(1–2):1–13.PubMedPubMedCentral Lee T-S, Mane S, Eid T, et al. Gene expression in temporal lobe epilepsy is consistent with increased release of glutamate by astrocytes. Mol Med. 2007;13(1–2):1–13.PubMedPubMedCentral
55.
go back to reference Perosa S, Porcionatto M, Cukiert A, et al. Glycosaminoglycan levels and proteoglycan expression are altered in the hippocampus of patients with mesial temporal lobe epilepsy. Brain Res Bull. 2002;58(5):509–16.PubMedCrossRef Perosa S, Porcionatto M, Cukiert A, et al. Glycosaminoglycan levels and proteoglycan expression are altered in the hippocampus of patients with mesial temporal lobe epilepsy. Brain Res Bull. 2002;58(5):509–16.PubMedCrossRef
56.
go back to reference Bausch S. Potential roles for hyaluronan and CD44 in kainic acid-induced mossy fiber sprouting in organotypic hippocampal slice cultures. Neuroscience. 2006;143(1):339–50.PubMedCrossRef Bausch S. Potential roles for hyaluronan and CD44 in kainic acid-induced mossy fiber sprouting in organotypic hippocampal slice cultures. Neuroscience. 2006;143(1):339–50.PubMedCrossRef
57.
go back to reference Bronisz E, Kurkowska-Jastrzębska I. Matrix metalloproteinase 9 in epilepsy: the role of neuroinflammation in seizure development. Mediat Inflamm. 2016;2016:7369020.CrossRef Bronisz E, Kurkowska-Jastrzębska I. Matrix metalloproteinase 9 in epilepsy: the role of neuroinflammation in seizure development. Mediat Inflamm. 2016;2016:7369020.CrossRef
58.
go back to reference Acar G, Tanriover G, Acar F, Demir R. Increased expression of matrix metalloproteinase-9 in patients with temporal lobe epilepsy. Turkish Neurosurgery. 2015;25(5):749–756. Acar G, Tanriover G, Acar F, Demir R. Increased expression of matrix metalloproteinase-9 in patients with temporal lobe epilepsy. Turkish Neurosurgery. 2015;25(5):749–756.
59.
go back to reference Konopka A, Grajkowska W, Ziemiańska K, et al. Matrix metalloproteinase-9 (MMP-9) in human intractable epilepsy caused by focal cortical dysplasia. Epilepsy Res. 2013;104(1–2):45–58.PubMedCrossRef Konopka A, Grajkowska W, Ziemiańska K, et al. Matrix metalloproteinase-9 (MMP-9) in human intractable epilepsy caused by focal cortical dysplasia. Epilepsy Res. 2013;104(1–2):45–58.PubMedCrossRef
60.
go back to reference Hanke ML, Kielian T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (London). 2011;121(9):367–87.CrossRef Hanke ML, Kielian T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (London). 2011;121(9):367–87.CrossRef
61.
go back to reference Gross A, Benninger F, Madar R, et al. Toll-like receptor 3 deficiency decreases epileptogenesis in a pilocarpine model of SE-induced epilepsy in mice. Epilepsia. 2017;58(4):586–96.PubMedCrossRef Gross A, Benninger F, Madar R, et al. Toll-like receptor 3 deficiency decreases epileptogenesis in a pilocarpine model of SE-induced epilepsy in mice. Epilepsia. 2017;58(4):586–96.PubMedCrossRef
65.
go back to reference Bozzi Y, Caleo M. Epilepsy, seizures, and inflammation: role of the C-C motif ligand 2 chemokine. DNA Cell Biol. 2016;35(6):257–60.PubMedCrossRef Bozzi Y, Caleo M. Epilepsy, seizures, and inflammation: role of the C-C motif ligand 2 chemokine. DNA Cell Biol. 2016;35(6):257–60.PubMedCrossRef
67.
go back to reference Li R, Ma L, Huang H, et al. Altered expression of CXCL13 and CXCR5 in intractable temporal lobe epilepsy patients and pilocarpine-induced epileptic rats. Neurochem Res. 2016;42(2):526–40.PubMedCrossRef Li R, Ma L, Huang H, et al. Altered expression of CXCL13 and CXCR5 in intractable temporal lobe epilepsy patients and pilocarpine-induced epileptic rats. Neurochem Res. 2016;42(2):526–40.PubMedCrossRef
68.
go back to reference Podjaski C, Alvarez JI, Bourbonniere L, et al. Netrin 1 regulates blood–brain barrier function and neuroinflammation. Brain. 2015;138(Pt 6):1598–612.PubMedPubMedCentralCrossRef Podjaski C, Alvarez JI, Bourbonniere L, et al. Netrin 1 regulates blood–brain barrier function and neuroinflammation. Brain. 2015;138(Pt 6):1598–612.PubMedPubMedCentralCrossRef
69.
go back to reference Wilson C, Finch C, Cohen H. Cytokines and cognition-the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc. 2002;50(12):2041–56.PubMedCrossRef Wilson C, Finch C, Cohen H. Cytokines and cognition-the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc. 2002;50(12):2041–56.PubMedCrossRef
70.
go back to reference Sanchez-Muñoz F, Dominguez-Lopez A, Yamamoto-Furusho JK. Role of cytokines in inflammatory bowel disease. World J Gastroenterol. 2008;14(27):4280–8.PubMedPubMedCentralCrossRef Sanchez-Muñoz F, Dominguez-Lopez A, Yamamoto-Furusho JK. Role of cytokines in inflammatory bowel disease. World J Gastroenterol. 2008;14(27):4280–8.PubMedPubMedCentralCrossRef
71.
go back to reference Yarlagadda A, Alfson E, Clayton AH. The blood brain barrier and the role of cytokines in neuropsychiatry. Psychiatry (Edgmont). 2009;6(11):18–22. Yarlagadda A, Alfson E, Clayton AH. The blood brain barrier and the role of cytokines in neuropsychiatry. Psychiatry (Edgmont). 2009;6(11):18–22.
74.
go back to reference Zattoni M, Mura M, Deprez F, et al. Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J Neurosci. 2011;31(11):4037–50.PubMedCrossRef Zattoni M, Mura M, Deprez F, et al. Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J Neurosci. 2011;31(11):4037–50.PubMedCrossRef
75.
go back to reference Bonder CS, Clark SR, Norman MU, Johnson P, Kubes P. Use of CD44 by CD4+ Th1 and Th2 lymphocytes to roll and adhere. Blood. 2006;107:4798–806.PubMedCrossRef Bonder CS, Clark SR, Norman MU, Johnson P, Kubes P. Use of CD44 by CD4+ Th1 and Th2 lymphocytes to roll and adhere. Blood. 2006;107:4798–806.PubMedCrossRef
76.
go back to reference Weiss N, Miller F, Cazaubon S, Couraud P. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta Biomembr. 2009;1788(4):842–57.CrossRef Weiss N, Miller F, Cazaubon S, Couraud P. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta Biomembr. 2009;1788(4):842–57.CrossRef
77.
go back to reference Khan A, Kerfoot S, Heit B, et al. Role of CD44 and Hyaluronan in neutrophil recruitment. J Immunol. 2004;173(12):7594–601.PubMedCrossRef Khan A, Kerfoot S, Heit B, et al. Role of CD44 and Hyaluronan in neutrophil recruitment. J Immunol. 2004;173(12):7594–601.PubMedCrossRef
82.
go back to reference Otto V, Heinzel-Pleines U, Gloor S, Trentz O, Kossmann T, Morganti-Kossmann M. sICAM-1 and TNF-? Induce MIP-2 with distinct kinetics in astrocytes and brain microvascular endothelial cells. J Neurosci Res. 2000;60(6):733–42. doi:10.1002/1097-4547(20000615)60:6<733::aid-jnr5>3.0.co;2-x. Otto V, Heinzel-Pleines U, Gloor S, Trentz O, Kossmann T, Morganti-Kossmann M. sICAM-1 and TNF-? Induce MIP-2 with distinct kinetics in astrocytes and brain microvascular endothelial cells. J Neurosci Res. 2000;60(6):733–42. doi:10.1002/1097-4547(20000615)60:6<733::aid-jnr5>3.0.co;2-x.
88.
go back to reference Ho Y-H, Lin Y-T, Wu C-WJ, Chao Y-M, Chang AYW, Chan JYH. Peripheral inflammation increases seizure susceptibility via the induction of neuroinflammation and oxidative stress in the hippocampus. J Biomed Sci. 2015;22(1):46.PubMedPubMedCentralCrossRef Ho Y-H, Lin Y-T, Wu C-WJ, Chao Y-M, Chang AYW, Chan JYH. Peripheral inflammation increases seizure susceptibility via the induction of neuroinflammation and oxidative stress in the hippocampus. J Biomed Sci. 2015;22(1):46.PubMedPubMedCentralCrossRef
90.
go back to reference Cerri C, Genovesi S, Allegra M, et al. The chemokine CCL2 mediates the seizure-enhancing effects of systemic inflammation. J Neurosci. 2016;36(13):3777–88.PubMedCrossRef Cerri C, Genovesi S, Allegra M, et al. The chemokine CCL2 mediates the seizure-enhancing effects of systemic inflammation. J Neurosci. 2016;36(13):3777–88.PubMedCrossRef
92.
go back to reference Lin Z, Si Q, Xiaoyi Z. Association between epilepsy and systemic autoimmune diseases: a meta-analysis. Seizure. 2016;41:160–6.PubMedCrossRef Lin Z, Si Q, Xiaoyi Z. Association between epilepsy and systemic autoimmune diseases: a meta-analysis. Seizure. 2016;41:160–6.PubMedCrossRef
97.
go back to reference Dar S, Janahi E, Haque S, et al. Superantigen influence in conjunction with cytokine polymorphism potentiates autoimmunity in systemic lupus erythematosus patients. Immunol Res. 2015;64(4):1001–12.CrossRef Dar S, Janahi E, Haque S, et al. Superantigen influence in conjunction with cytokine polymorphism potentiates autoimmunity in systemic lupus erythematosus patients. Immunol Res. 2015;64(4):1001–12.CrossRef
99.
go back to reference Yang J, Li Q, Yang X, Li M. Increased serum level of prolactin is related to autoantibody production in systemic lupus erythematosus. Lupus. 2016;25(5):513–9.PubMedCrossRef Yang J, Li Q, Yang X, Li M. Increased serum level of prolactin is related to autoantibody production in systemic lupus erythematosus. Lupus. 2016;25(5):513–9.PubMedCrossRef
100.
101.
go back to reference Wang J-B, Li H, Wang L-L, Liang H-D, Zhao L, Dong J. Role of IL-1β, IL-6, IL-8 and IFN-γ in pathogenesis of central nervous system neuropsychiatric systemic lupus erythematous. Int J Clin Exp Med. 2015;8(9):16658–63.PubMedPubMedCentral Wang J-B, Li H, Wang L-L, Liang H-D, Zhao L, Dong J. Role of IL-1β, IL-6, IL-8 and IFN-γ in pathogenesis of central nervous system neuropsychiatric systemic lupus erythematous. Int J Clin Exp Med. 2015;8(9):16658–63.PubMedPubMedCentral
102.
go back to reference Ho R, Thiaghu C, Ong H, et al. A meta-analysis of serum and cerebrospinal fluid autoantibodies in neuropsychiatric systemic lupus erythematosus. Autoimmun Rev. 2016;15(2):124–38.PubMedCrossRef Ho R, Thiaghu C, Ong H, et al. A meta-analysis of serum and cerebrospinal fluid autoantibodies in neuropsychiatric systemic lupus erythematosus. Autoimmun Rev. 2016;15(2):124–38.PubMedCrossRef
106.
go back to reference Watemberg N, Greenstein D, Levine A. Topical review: encephalopathy associated with Hashimoto thyroiditis: pediatric perspective. J Child Neurol. 2006;21(1):1–5.PubMedCrossRef Watemberg N, Greenstein D, Levine A. Topical review: encephalopathy associated with Hashimoto thyroiditis: pediatric perspective. J Child Neurol. 2006;21(1):1–5.PubMedCrossRef
109.
go back to reference Joseph F, Scolding N. Neuro-Behçet's disease in Caucasians: a study of 22 patients. Eur J Neurol. 2007;14(2):174–80.PubMedCrossRef Joseph F, Scolding N. Neuro-Behçet's disease in Caucasians: a study of 22 patients. Eur J Neurol. 2007;14(2):174–80.PubMedCrossRef
110.
go back to reference Keezer M, Novy J, Sander J. Type 1 diabetes mellitus in people with pharmacoresistant epilepsy: prevalence and clinical characteristics. Epilepsy Res. 2015;115:55–7.PubMedCrossRef Keezer M, Novy J, Sander J. Type 1 diabetes mellitus in people with pharmacoresistant epilepsy: prevalence and clinical characteristics. Epilepsy Res. 2015;115:55–7.PubMedCrossRef
111.
go back to reference Falip M, Carreño M, Miró J, et al. Prevalence and immunological spectrum of temporal lobe epilepsy with glutamic acid decarboxylase antibodies. Eur J Neurol. 2012;19(6):827–33.PubMedCrossRef Falip M, Carreño M, Miró J, et al. Prevalence and immunological spectrum of temporal lobe epilepsy with glutamic acid decarboxylase antibodies. Eur J Neurol. 2012;19(6):827–33.PubMedCrossRef
112.
go back to reference Ganelin-Cohen E, Modan-Moses D, Hemi R, Kanety H, Ben-zeev B, Hampe C. Epilepsy and behavioral changes, type 1 diabetes mellitus and a high titer of glutamic acid decarboxylase antibodies. Pediatr Diabetes. 2015;17(8):617–22.PubMedPubMedCentralCrossRef Ganelin-Cohen E, Modan-Moses D, Hemi R, Kanety H, Ben-zeev B, Hampe C. Epilepsy and behavioral changes, type 1 diabetes mellitus and a high titer of glutamic acid decarboxylase antibodies. Pediatr Diabetes. 2015;17(8):617–22.PubMedPubMedCentralCrossRef
113.
go back to reference YOSHIMOTO T, DOI M, FUKAI N, et al. Type 1 diabetes mellitus and drug-resistant epilepsy: presence of high titer of anti-glutamic acid decarboxylase autoantibodies in serum and cerebrospinal fluid. Intern Med. 2005;44(11):1174–7.PubMedCrossRef YOSHIMOTO T, DOI M, FUKAI N, et al. Type 1 diabetes mellitus and drug-resistant epilepsy: presence of high titer of anti-glutamic acid decarboxylase autoantibodies in serum and cerebrospinal fluid. Intern Med. 2005;44(11):1174–7.PubMedCrossRef
114.
go back to reference Solimena M, Folli F, Denis-Donini S, et al. Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type I diabetes mellitus. N Engl J Med. 1988;318(16):1012–20.PubMedCrossRef Solimena M, Folli F, Denis-Donini S, et al. Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type I diabetes mellitus. N Engl J Med. 1988;318(16):1012–20.PubMedCrossRef
115.
go back to reference Vincent A, Crino P. Systemic and neurologic autoimmune disorders associated with seizures or epilepsy. Epilepsia. 2011;52:12–7.PubMedCrossRef Vincent A, Crino P. Systemic and neurologic autoimmune disorders associated with seizures or epilepsy. Epilepsia. 2011;52:12–7.PubMedCrossRef
116.
go back to reference Fazeli Farsani S, Souverein P, van der Vorst M, Knibbe C, de Boer A, Mantel-Teeuwisse A. Chronic comorbidities in children with type 1 diabetes: a population-based cohort study. Arch Dis Child. 2015;100(8):763–8.PubMedCrossRef Fazeli Farsani S, Souverein P, van der Vorst M, Knibbe C, de Boer A, Mantel-Teeuwisse A. Chronic comorbidities in children with type 1 diabetes: a population-based cohort study. Arch Dis Child. 2015;100(8):763–8.PubMedCrossRef
117.
118.
go back to reference Damjanovich L, Volkó J, Forgács A, Hohenberger W, Bene L. Crohn’s disease alters MHC-rafts in CD4+ T-cells. Cytometry Part A. 2011;81A(2):149–64.CrossRef Damjanovich L, Volkó J, Forgács A, Hohenberger W, Bene L. Crohn’s disease alters MHC-rafts in CD4+ T-cells. Cytometry Part A. 2011;81A(2):149–64.CrossRef
119.
go back to reference Liimatainen S, Peltola M, Fallah M, Kharazmi E, Haapala A, Peltola J. The high prevalence of antiphospholipid antibodies in refractory focal epilepsy is related to recurrent seizures. Eur J Neurol. 2009;16(1):134–41.PubMedCrossRef Liimatainen S, Peltola M, Fallah M, Kharazmi E, Haapala A, Peltola J. The high prevalence of antiphospholipid antibodies in refractory focal epilepsy is related to recurrent seizures. Eur J Neurol. 2009;16(1):134–41.PubMedCrossRef
122.
go back to reference Akasbi M, Berenguer J, Saiz A, et al. White matter abnormalities in primary Sjogren syndrome. QJM. 2011;105(5):433–43.PubMedCrossRef Akasbi M, Berenguer J, Saiz A, et al. White matter abnormalities in primary Sjogren syndrome. QJM. 2011;105(5):433–43.PubMedCrossRef
123.
124.
go back to reference Bansal S, Sawhney I, Chopra J. Epilepsia partialis continua in Sjögren’s syndrome. Epilepsia. 1987;28(4):362–3.PubMedCrossRef Bansal S, Sawhney I, Chopra J. Epilepsia partialis continua in Sjögren’s syndrome. Epilepsia. 1987;28(4):362–3.PubMedCrossRef
125.
go back to reference Matsuo K, Saburi M, Ishikawa H, et al. Sjögren syndrome presenting with encephalopathy mimicking Creutzfeldt–Jakob disease. J Neurol Sci. 2013;326(1–2):100–3.PubMedCrossRef Matsuo K, Saburi M, Ishikawa H, et al. Sjögren syndrome presenting with encephalopathy mimicking Creutzfeldt–Jakob disease. J Neurol Sci. 2013;326(1–2):100–3.PubMedCrossRef
126.
go back to reference Zois C, Katsanos K, Kosmidou M, Tsianos E. Neurologic manifestations in inflammatory bowel diseases: current knowledge and novel insights. J Crohn's Colitis. 2010;4:115–24.CrossRef Zois C, Katsanos K, Kosmidou M, Tsianos E. Neurologic manifestations in inflammatory bowel diseases: current knowledge and novel insights. J Crohn's Colitis. 2010;4:115–24.CrossRef
127.
128.
go back to reference Uludag I, Duksal T, Tiftikcioglu B, Zorlu Y, Ozkaya F, Kirkali G. IL-1β, IL-6 and IL1Ra levels in temporal lobe epilepsy. Seizure. 2015;26:22–5.PubMedCrossRef Uludag I, Duksal T, Tiftikcioglu B, Zorlu Y, Ozkaya F, Kirkali G. IL-1β, IL-6 and IL1Ra levels in temporal lobe epilepsy. Seizure. 2015;26:22–5.PubMedCrossRef
129.
130.
go back to reference Chang K-H, Hsu Y-C, Chang M-Y, et al. A large-scale study indicates increase in the risk of epilepsy in patients with different risk factors, including rheumatoid arthritis. Medicine. 2015;94(36):e1485.PubMedPubMedCentralCrossRef Chang K-H, Hsu Y-C, Chang M-Y, et al. A large-scale study indicates increase in the risk of epilepsy in patients with different risk factors, including rheumatoid arthritis. Medicine. 2015;94(36):e1485.PubMedPubMedCentralCrossRef
133.
go back to reference Jackson JR, Eaton WW, Cascella NG, Fasano A, Kelly DL. Neurologic and psychiatric manifestations of celiac disease and gluten sensitivity. Psychiatric Q. 2012;83(1):91–102.CrossRef Jackson JR, Eaton WW, Cascella NG, Fasano A, Kelly DL. Neurologic and psychiatric manifestations of celiac disease and gluten sensitivity. Psychiatric Q. 2012;83(1):91–102.CrossRef
134.
go back to reference Díaz-Marcaccio R, González-Rabelino G, Delfino A. Epilepsy, cerebral calcifications and coeliac disease. The importance of an early diagnosis. Rev Neurol. 2005;40(07):417–20. Díaz-Marcaccio R, González-Rabelino G, Delfino A. Epilepsy, cerebral calcifications and coeliac disease. The importance of an early diagnosis. Rev Neurol. 2005;40(07):417–20.
135.
go back to reference Peltola M, Kaukinen K, Dastidar P, et al. Hippocampal sclerosis in refractory temporal lobe epilepsy is associated with gluten sensitivity. J Neurol Neurosurg Psychiatry. 2009;80(6):626–30.PubMedCrossRef Peltola M, Kaukinen K, Dastidar P, et al. Hippocampal sclerosis in refractory temporal lobe epilepsy is associated with gluten sensitivity. J Neurol Neurosurg Psychiatry. 2009;80(6):626–30.PubMedCrossRef
136.
go back to reference Bashiri H, Afshari D, Babaei N, Ghadami M. Celiac disease and epilepsy: the effect of gluten-free diet on seizure control. Adv Clin Exp Med. 2016;25(4):751–4.PubMedCrossRef Bashiri H, Afshari D, Babaei N, Ghadami M. Celiac disease and epilepsy: the effect of gluten-free diet on seizure control. Adv Clin Exp Med. 2016;25(4):751–4.PubMedCrossRef
143.
go back to reference Chou I, Wang C, Lin W, Tsai F, Lin C, Kao C. Risk of epilepsy in type 1 diabetes mellitus: a population-based cohort study. Diabetologia. 2016;59(6):1196–203.PubMedCrossRef Chou I, Wang C, Lin W, Tsai F, Lin C, Kao C. Risk of epilepsy in type 1 diabetes mellitus: a population-based cohort study. Diabetologia. 2016;59(6):1196–203.PubMedCrossRef
Metadata
Title
The role of inflammation in the development of epilepsy
Authors
Amna Rana
Alberto E. Musto
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2018
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-018-1192-7

Other articles of this Issue 1/2018

Journal of Neuroinflammation 1/2018 Go to the issue