Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2018

Open Access 01-12-2018 | Research

Preemptive intrathecal administration of endomorphins relieves inflammatory pain in male mice via inhibition of p38 MAPK signaling and regulation of inflammatory cytokines

Authors: Ting Zhang, Nan Zhang, Run Zhang, Weidong Zhao, Yong Chen, Zilong Wang, Biao Xu, Mengna Zhang, Xuerui Shi, Qinqin Zhang, Yuanyuan Guo, Jian Xiao, Dan Chen, Quan Fang

Published in: Journal of Neuroinflammation | Issue 1/2018

Login to get access

Abstract

Background

Preemptive administration of analgesic drugs reduces perceived pain and prolongs duration of antinociceptive action. Whereas several lines of evidence suggest that endomorphins, the endogenous mu-opioid agonists, attenuate acute and chronic pain at the spinal level, their preemptive analgesic effects remain to be determined. In this study, we evaluated the anti-allodynic activities of endomorphins and explored their mechanisms of action after preemptive administration in a mouse model of inflammatory pain.

Methods

The anti-allodynic activities of preemptive intrathecal administration of endomorphin-1 and endomorphin-2 were investigated in complete Freund’s adjuvant (CFA)-induced inflammatory pain model and paw incision-induced postoperative pain model. The modulating effects of endomorphins on the expression of p38 mitogen-activated protein kinase (p38 MAPK) and inflammatory mediators in dorsal root ganglion (DRG) of CFA-treated mice were assayed by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, or immunofluorescence staining.

Results

Preemptive intrathecal injection of endomorphins dose-dependently attenuated CFA-induced mechanical allodynia via the mu-opioid receptor and significantly reversed paw incision-induced allodynia. In addition, CFA-caused increase of phosphorylated p38 MAPK in DRG was dramatically reduced by preemptive administration of endomorphins. Repeated intrathecal application of the specific p38 MAPK inhibitor SB203580 reduced CFA-induced mechanical allodynia as well. Further RT-PCR assay showed that endomorphins regulated the mRNA expression of inflammatory cytokines in DRGs induced by peripheral inflammation.

Conclusions

Our findings reveal a novel mechanism by which preemptive treatment of endomorphins attenuates inflammatory pain through regulating the production of inflammatory cytokines in DRG neurons via inhibition of p38 MAPK phosphorylation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zadina JE, Hackler L, Ge LJ, Kastin AJ. A potent and selective endogenous agonist for the mu-opiate receptor. Nature. 1997;386:499–502.CrossRef Zadina JE, Hackler L, Ge LJ, Kastin AJ. A potent and selective endogenous agonist for the mu-opiate receptor. Nature. 1997;386:499–502.CrossRef
2.
go back to reference Hao S, Wolfe D, Glorioso JC, Mata M, Fink DJ. Effects of transgene-mediated endomorphin-2 in inflammatory pain. Eur J Pain. 2009;13:380–6.CrossRef Hao S, Wolfe D, Glorioso JC, Mata M, Fink DJ. Effects of transgene-mediated endomorphin-2 in inflammatory pain. Eur J Pain. 2009;13:380–6.CrossRef
3.
go back to reference Xie H, Woods JH, Traynor JR, Ko MC. The spinal antinociceptive effects of endomorphins in rats: behavioral and G protein functional studies. Anesth Analg. 2008;106:1873–81.CrossRef Xie H, Woods JH, Traynor JR, Ko MC. The spinal antinociceptive effects of endomorphins in rats: behavioral and G protein functional studies. Anesth Analg. 2008;106:1873–81.CrossRef
4.
go back to reference Przewlocka B, Mika J, Labuz D, Toth G, Przewlocki R. Spinal analgesic action of endomorphins in acute, inflammatory and neuropathic pain in rats. Eur J Pharmacol. 1999;367:189–96.CrossRef Przewlocka B, Mika J, Labuz D, Toth G, Przewlocki R. Spinal analgesic action of endomorphins in acute, inflammatory and neuropathic pain in rats. Eur J Pharmacol. 1999;367:189–96.CrossRef
5.
go back to reference Soignier RD, Vaccarino AL, Brennan AM, Kastin AJ, Zadina JE. Analgesic effects of endomorphin-1 and endomorphin-2 in the formalin test in mice. Life Sci. 2000;67:907–12.CrossRef Soignier RD, Vaccarino AL, Brennan AM, Kastin AJ, Zadina JE. Analgesic effects of endomorphin-1 and endomorphin-2 in the formalin test in mice. Life Sci. 2000;67:907–12.CrossRef
6.
go back to reference McDougall JJ, Baker CL, Hermann PM. Attenuation of knee joint inflammation by peripherally administered endomorphin-1. J Mol Neurosci. 2004;22:125–37.CrossRef McDougall JJ, Baker CL, Hermann PM. Attenuation of knee joint inflammation by peripherally administered endomorphin-1. J Mol Neurosci. 2004;22:125–37.CrossRef
7.
go back to reference Feehan AK, Morgenweck J, Zhang X, Amgott-Kwan AT, Zadina JE. Novel endomorphin analogs are more potent and longer-lasting analgesics in neuropathic, inflammatory, postoperative, and visceral pain relative to morphine. J Pain. 2017;18:1526–41.PubMed Feehan AK, Morgenweck J, Zhang X, Amgott-Kwan AT, Zadina JE. Novel endomorphin analogs are more potent and longer-lasting analgesics in neuropathic, inflammatory, postoperative, and visceral pain relative to morphine. J Pain. 2017;18:1526–41.PubMed
8.
go back to reference Mousa SA, Machelska H, Schafer M, Stein C. Immunohistochemical localization of endomorphin-1 and endomorphin-2 in immune cells and spinal cord in a model of inflammatory pain. J Neuroimmunol. 2002;126:5–15.CrossRef Mousa SA, Machelska H, Schafer M, Stein C. Immunohistochemical localization of endomorphin-1 and endomorphin-2 in immune cells and spinal cord in a model of inflammatory pain. J Neuroimmunol. 2002;126:5–15.CrossRef
9.
go back to reference Obara I, Przewlocki R, Przewlocka B. Local peripheral effects of mu-opioid receptor agonists in neuropathic pain in rats. Neurosci Lett. 2004;360:85–9.CrossRef Obara I, Przewlocki R, Przewlocka B. Local peripheral effects of mu-opioid receptor agonists in neuropathic pain in rats. Neurosci Lett. 2004;360:85–9.CrossRef
10.
go back to reference Przewlocki R, Labuz D, Mika J, Przewlocka B, Tomboly C, Toth G. Pain inhibition by endomorphins. Ann N Y Acad Sci. 1999;897:154–64.CrossRef Przewlocki R, Labuz D, Mika J, Przewlocka B, Tomboly C, Toth G. Pain inhibition by endomorphins. Ann N Y Acad Sci. 1999;897:154–64.CrossRef
11.
go back to reference Czapla MA, Gozal D, Alea OA, Beckerman RC, Zadina JE. Differential cardiorespiratory effects of endomorphin 1, endomorphin 2, DAMGO, and morphine. Am J Respir Crit Care Med. 2000;162:994–9.CrossRef Czapla MA, Gozal D, Alea OA, Beckerman RC, Zadina JE. Differential cardiorespiratory effects of endomorphin 1, endomorphin 2, DAMGO, and morphine. Am J Respir Crit Care Med. 2000;162:994–9.CrossRef
12.
go back to reference Wilson AM, Soignier RD, Zadina JE, Kastin AJ, Nores WL, Olson RD, Olson GA. Dissociation of analgesic and rewarding effects of endomorphin-1 in rats. Peptides. 2000;21:1871–4.CrossRef Wilson AM, Soignier RD, Zadina JE, Kastin AJ, Nores WL, Olson RD, Olson GA. Dissociation of analgesic and rewarding effects of endomorphin-1 in rats. Peptides. 2000;21:1871–4.CrossRef
13.
go back to reference Mizoguchi H, Watanabe H, Hayashi T, Sakurada W, Sawai T, Fujimura T, Sakurada T, Sakurada S. Possible involvement of dynorphin A-(1-17) release via mu1-opioid receptors in spinal antinociception by endomorphin-2. J Pharmacol Exp Ther. 2006;317:362–8.CrossRef Mizoguchi H, Watanabe H, Hayashi T, Sakurada W, Sawai T, Fujimura T, Sakurada T, Sakurada S. Possible involvement of dynorphin A-(1-17) release via mu1-opioid receptors in spinal antinociception by endomorphin-2. J Pharmacol Exp Ther. 2006;317:362–8.CrossRef
14.
go back to reference Wu HE, Hung KC, Mizoguchi H, Fujimoto JM, Tseng LF. Acute antinociceptive tolerance and asymmetric cross-tolerance between endomorphin-1 and endomorphin-2 given intracerebroventricularly in the mouse. J Pharmacol Exp Ther. 2001;299:1120–5.PubMed Wu HE, Hung KC, Mizoguchi H, Fujimoto JM, Tseng LF. Acute antinociceptive tolerance and asymmetric cross-tolerance between endomorphin-1 and endomorphin-2 given intracerebroventricularly in the mouse. J Pharmacol Exp Ther. 2001;299:1120–5.PubMed
15.
go back to reference Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267–84.CrossRef Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267–84.CrossRef
16.
go back to reference Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity. Nature. 1983;306:686–8.CrossRef Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity. Nature. 1983;306:686–8.CrossRef
17.
go back to reference Chen Y, Sommer C. Activation of the nociceptin opioid system in rat sensory neurons produces antinociceptive effects in inflammatory pain: involvement of inflammatory mediators. J Neurosci Res. 2007;85:1478–88.CrossRef Chen Y, Sommer C. Activation of the nociceptin opioid system in rat sensory neurons produces antinociceptive effects in inflammatory pain: involvement of inflammatory mediators. J Neurosci Res. 2007;85:1478–88.CrossRef
18.
go back to reference Gu ZH, Wang B, Kou ZZ, Bai Y, Chen T, Dong YL, Li H, Li YQ. Endomorphins: promising endogenous opioid peptides for the development of novel analgesics. Neurosignals. 2017;25:98–116.CrossRef Gu ZH, Wang B, Kou ZZ, Bai Y, Chen T, Dong YL, Li H, Li YQ. Endomorphins: promising endogenous opioid peptides for the development of novel analgesics. Neurosignals. 2017;25:98–116.CrossRef
19.
go back to reference Li JL, Ding YQ, Li YQ, Li JS, Nomura S, Kaneko T, Mizuno N. Immunocytochemical localization of mu-opioid receptor in primary afferent neurons containing substance P or calcitonin gene-related peptide. A light and electron microscope study in the rat. Brain Res. 1998;794:347–52.CrossRef Li JL, Ding YQ, Li YQ, Li JS, Nomura S, Kaneko T, Mizuno N. Immunocytochemical localization of mu-opioid receptor in primary afferent neurons containing substance P or calcitonin gene-related peptide. A light and electron microscope study in the rat. Brain Res. 1998;794:347–52.CrossRef
20.
go back to reference Greenwell TN, Martin-Schild S, Inglis FM, Zadina JE. Colocalization and shared distribution of endomorphins with substance P, calcitonin gene-related peptide, gamma-aminobutyric acid, and the mu opioid receptor. J Comp Neurol. 2007;503:319–33.CrossRef Greenwell TN, Martin-Schild S, Inglis FM, Zadina JE. Colocalization and shared distribution of endomorphins with substance P, calcitonin gene-related peptide, gamma-aminobutyric acid, and the mu opioid receptor. J Comp Neurol. 2007;503:319–33.CrossRef
21.
go back to reference Borzsei R, Pozsgai G, Bagoly T, Elekes K, Pinter E, Szolcsanyi J, Helyes Z. Inhibitory action of endomorphin-1 on sensory neuropeptide release and neurogenic inflammation in rats and mice. Neuroscience. 2008;152:82–8.CrossRef Borzsei R, Pozsgai G, Bagoly T, Elekes K, Pinter E, Szolcsanyi J, Helyes Z. Inhibitory action of endomorphin-1 on sensory neuropeptide release and neurogenic inflammation in rats and mice. Neuroscience. 2008;152:82–8.CrossRef
22.
go back to reference Abbadie C, Bhangoo S, De Koninck Y, Malcangio M, Melik-Parsadaniantz S, White FA. Chemokines and pain mechanisms. Brain Res Rev. 2009;60:125–34.CrossRef Abbadie C, Bhangoo S, De Koninck Y, Malcangio M, Melik-Parsadaniantz S, White FA. Chemokines and pain mechanisms. Brain Res Rev. 2009;60:125–34.CrossRef
23.
go back to reference DeLeo JAY, Yezierski RP. The role of neuroinflammation and neuroimmune activation in persistent pain. Pain. 2001;90:1–6.CrossRef DeLeo JAY, Yezierski RP. The role of neuroinflammation and neuroimmune activation in persistent pain. Pain. 2001;90:1–6.CrossRef
24.
go back to reference Kawasaki Y, Zhang L, Cheng JK, Ji RR. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci. 2008;28:5189–94.CrossRef Kawasaki Y, Zhang L, Cheng JK, Ji RR. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci. 2008;28:5189–94.CrossRef
25.
go back to reference Ji RR, Gereau RWT, Malcangio M, Strichartz GR. MAP kinase and pain. Brain Res Rev. 2009;60:135–48.CrossRef Ji RR, Gereau RWT, Malcangio M, Strichartz GR. MAP kinase and pain. Brain Res Rev. 2009;60:135–48.CrossRef
26.
go back to reference Svensson CI, Marsala M, Westerlund A, Calcutt NA, Campana WM, Freshwater JD, Catalano R, Feng Y, Protter AA, Scott B, Yaksh TL. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem. 2003;86:1534–44.CrossRef Svensson CI, Marsala M, Westerlund A, Calcutt NA, Campana WM, Freshwater JD, Catalano R, Feng Y, Protter AA, Scott B, Yaksh TL. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem. 2003;86:1534–44.CrossRef
27.
go back to reference Azuma Y, Ohura K. Endomorphin-2 modulates productions of TNF-alpha, IL-1beta, IL-10, and IL-12, and alters functions related to innate immune of macrophages. Inflammation. 2002;26:223–32.CrossRef Azuma Y, Ohura K. Endomorphin-2 modulates productions of TNF-alpha, IL-1beta, IL-10, and IL-12, and alters functions related to innate immune of macrophages. Inflammation. 2002;26:223–32.CrossRef
28.
go back to reference Azuma Y, Ohura K. Endomorphins 1 and 2 inhibit IL-10 and IL-12 production and innate immune functions, and potentiate NF-kappa B DNA binding in THP-1 differentiated to macrophage-like cells. Scand J Immunol. 2002;56:260–9.CrossRef Azuma Y, Ohura K. Endomorphins 1 and 2 inhibit IL-10 and IL-12 production and innate immune functions, and potentiate NF-kappa B DNA binding in THP-1 differentiated to macrophage-like cells. Scand J Immunol. 2002;56:260–9.CrossRef
29.
go back to reference Li WY, Yang JJ, Zhu SH, Liu HJ, Xu JG. Endomorphins and ohmefentanyl in the inhibition of immunosuppressant function in rat peritoneal macrophages: an experimental in vitro study. Curr Ther Res Clin Exp. 2008;69:56–64.CrossRef Li WY, Yang JJ, Zhu SH, Liu HJ, Xu JG. Endomorphins and ohmefentanyl in the inhibition of immunosuppressant function in rat peritoneal macrophages: an experimental in vitro study. Curr Ther Res Clin Exp. 2008;69:56–64.CrossRef
30.
go back to reference Li ZH, Chu NS, Shan LD, Gong S, Yin QZ, Jiang XH. Inducible expression of functional mu opioid receptors in murine dendritic cells. J NeuroImmune Pharmacol. 2009;4:359–67.CrossRef Li ZH, Chu NS, Shan LD, Gong S, Yin QZ, Jiang XH. Inducible expression of functional mu opioid receptors in murine dendritic cells. J NeuroImmune Pharmacol. 2009;4:359–67.CrossRef
31.
go back to reference Liu J, Yan L, Niu R, Tian L, Zhang Q, Quan J, Liu H, Wei S, Guo Q. Protection effect of endomorphins on advanced glycation end products induced injury in endothelial cells. J Diabetes Res. 2013; 2013:105780. Liu J, Yan L, Niu R, Tian L, Zhang Q, Quan J, Liu H, Wei S, Guo Q. Protection effect of endomorphins on advanced glycation end products induced injury in endothelial cells. J Diabetes Res. 2013; 2013:105780.
32.
go back to reference Wang ZL, Li N, Wang P, Tang HH, Han ZL, Song JJ, Li XH, Yu HP, Zhang T, Zhang R, et al. Pharmacological characterization of EN-9, a novel chimeric peptide of endomorphin-2 and neuropeptide FF that produces potent antinociceptive activity and limited tolerance. Neuropharmacology. 2016;108:364–72.CrossRef Wang ZL, Li N, Wang P, Tang HH, Han ZL, Song JJ, Li XH, Yu HP, Zhang T, Zhang R, et al. Pharmacological characterization of EN-9, a novel chimeric peptide of endomorphin-2 and neuropeptide FF that produces potent antinociceptive activity and limited tolerance. Neuropharmacology. 2016;108:364–72.CrossRef
33.
go back to reference Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, Group NCRRGW. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010;160:1577–9.CrossRef Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, Group NCRRGW. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010;160:1577–9.CrossRef
34.
go back to reference Hylden JL, Wilcox GL. Intrathecal morphine in mice: a new technique. Eur J Pharmacol. 1980;67:313–6.CrossRef Hylden JL, Wilcox GL. Intrathecal morphine in mice: a new technique. Eur J Pharmacol. 1980;67:313–6.CrossRef
35.
go back to reference Stein C, Millan MJ, Herz A. Unilateral inflammation of the hindpaw in rats as a model of prolonged noxious-stimulation - alterations in behavior and nociceptive thresholds. Pharmacol Biochem Behav. 1988;31:445–51.CrossRef Stein C, Millan MJ, Herz A. Unilateral inflammation of the hindpaw in rats as a model of prolonged noxious-stimulation - alterations in behavior and nociceptive thresholds. Pharmacol Biochem Behav. 1988;31:445–51.CrossRef
36.
go back to reference Clark JD, Qiao YL, Li XQ, Shi XY, Angst MS, Yeomans DC. Blockade of the complement C5a receptor reduces incisional allodynia, edema, and cytokine expression. Anesthesiology. 2006;104:1274–82.CrossRef Clark JD, Qiao YL, Li XQ, Shi XY, Angst MS, Yeomans DC. Blockade of the complement C5a receptor reduces incisional allodynia, edema, and cytokine expression. Anesthesiology. 2006;104:1274–82.CrossRef
37.
go back to reference Liang DY, Li X, Shi X, Sun Y, Sahbaie P, Li WW, Clark JD. The complement component C5a receptor mediates pain and inflammation in a postsurgical pain model. Pain. 2012;153:366–72.CrossRef Liang DY, Li X, Shi X, Sun Y, Sahbaie P, Li WW, Clark JD. The complement component C5a receptor mediates pain and inflammation in a postsurgical pain model. Pain. 2012;153:366–72.CrossRef
38.
go back to reference Sun Y, Li XQ, Sahbaie P, Shi XY, Li WW, Liang DY, Clark JD. miR-203 regulates nociceptive sensitization after incision by controlling phospholipase A2 activating protein expression. Anesthesiology. 2012;117:626–38.CrossRef Sun Y, Li XQ, Sahbaie P, Shi XY, Li WW, Liang DY, Clark JD. miR-203 regulates nociceptive sensitization after incision by controlling phospholipase A2 activating protein expression. Anesthesiology. 2012;117:626–38.CrossRef
39.
go back to reference Chen Y, Kanju P, Fang Q, Lee SH, Parekh PK, Lee W, Moore C, Brenner D, Gereau RWT, Wang F, Liedtke W. TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor. Pain. 2014;155:2662–72.CrossRef Chen Y, Kanju P, Fang Q, Lee SH, Parekh PK, Lee W, Moore C, Brenner D, Gereau RWT, Wang F, Liedtke W. TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor. Pain. 2014;155:2662–72.CrossRef
40.
go back to reference Chen JJ, Dai L, Zhao LX, Zhu X, Cao S, Gao YJ. Intrathecal curcumin attenuates pain hypersensitivity and decreases spinal neuroinflammation in rat model of monoarthritis. Sci Rep. 2015;5:10278.CrossRef Chen JJ, Dai L, Zhao LX, Zhu X, Cao S, Gao YJ. Intrathecal curcumin attenuates pain hypersensitivity and decreases spinal neuroinflammation in rat model of monoarthritis. Sci Rep. 2015;5:10278.CrossRef
41.
go back to reference Ji RR, Zhang Q, Law PY, Low HH, Elde R, Hokfelt T. Expression of mu-, delta-, and kappa-opioid receptor-like immunoreactivities in rat dorsal root ganglia after carrageenan-induced inflammation. J Neurosci. 1995;15:8156–66.CrossRef Ji RR, Zhang Q, Law PY, Low HH, Elde R, Hokfelt T. Expression of mu-, delta-, and kappa-opioid receptor-like immunoreactivities in rat dorsal root ganglia after carrageenan-induced inflammation. J Neurosci. 1995;15:8156–66.CrossRef
42.
go back to reference Chen Y, Geis C, Sommer C. Activation of TRPV1 contributes to morphine tolerance: involvement of the mitogen-activated protein kinase signaling pathway. J Neurosci. 2008;28:5836–45.CrossRef Chen Y, Geis C, Sommer C. Activation of TRPV1 contributes to morphine tolerance: involvement of the mitogen-activated protein kinase signaling pathway. J Neurosci. 2008;28:5836–45.CrossRef
43.
go back to reference Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45:27–37.CrossRef Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45:27–37.CrossRef
44.
go back to reference Zadina JE, Nilges MR, Morgenweck J, Zhang X, Hackler L, Fasold MB. Endomorphin analog analgesics with reduced abuse liability, respiratory depression, motor impairment, tolerance, and glial activation relative to morphine. Neuropharmacology. 2016;105:215–27.CrossRef Zadina JE, Nilges MR, Morgenweck J, Zhang X, Hackler L, Fasold MB. Endomorphin analog analgesics with reduced abuse liability, respiratory depression, motor impairment, tolerance, and glial activation relative to morphine. Neuropharmacology. 2016;105:215–27.CrossRef
45.
go back to reference Yamamoto T, Ohtori S, Chiba T. Effects of pre-emptively administered nociceptin on the development of thermal hyperalgesia induced by two models of experimental mononeuropathy in the rat. Brain Res. 2000;871:192–200.CrossRef Yamamoto T, Ohtori S, Chiba T. Effects of pre-emptively administered nociceptin on the development of thermal hyperalgesia induced by two models of experimental mononeuropathy in the rat. Brain Res. 2000;871:192–200.CrossRef
46.
go back to reference Woolf CJ, Chong MS. Preemptive analgesia--treating postoperative pain by preventing the establishment of central sensitization. Anesth Analg. 1993;77:362–79.CrossRef Woolf CJ, Chong MS. Preemptive analgesia--treating postoperative pain by preventing the establishment of central sensitization. Anesth Analg. 1993;77:362–79.CrossRef
47.
go back to reference Przewlocki R, Hassan AH, Lason W, Epplen C, Herz A, Stein C. Gene expression and localization of opioid peptides in immune cells of inflamed tissue: functional role in antinociception. Neuroscience. 1992;48:491–500.CrossRef Przewlocki R, Hassan AH, Lason W, Epplen C, Herz A, Stein C. Gene expression and localization of opioid peptides in immune cells of inflamed tissue: functional role in antinociception. Neuroscience. 1992;48:491–500.CrossRef
48.
go back to reference Sakurada S, Hayashi T, Yuhki M, Orito T, Zadina JE, Kastin AJ, Fujimura T, Murayama K, Sakurada C, Sakurada T, et al. Differential antinociceptive effects induced by intrathecally administered endomorphin-1 and endomorphin-2 in the mouse. Eur J Pharmacol. 2001;427:203–10.CrossRef Sakurada S, Hayashi T, Yuhki M, Orito T, Zadina JE, Kastin AJ, Fujimura T, Murayama K, Sakurada C, Sakurada T, et al. Differential antinociceptive effects induced by intrathecally administered endomorphin-1 and endomorphin-2 in the mouse. Eur J Pharmacol. 2001;427:203–10.CrossRef
49.
go back to reference Puehler W, Zollner C, Brack A, Shaqura MA, Krause H, Schafer M, Stein C. Rapid upregulation of mu opioid receptor mRNA in dorsal root ganglia in response to peripheral inflammation depends on neuronal conduction. Neuroscience. 2004;129:473–9.CrossRef Puehler W, Zollner C, Brack A, Shaqura MA, Krause H, Schafer M, Stein C. Rapid upregulation of mu opioid receptor mRNA in dorsal root ganglia in response to peripheral inflammation depends on neuronal conduction. Neuroscience. 2004;129:473–9.CrossRef
50.
go back to reference Jin SX, Zhuang ZY, Woolf CJ, Ji RR. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci. 2003;23:4017–22.CrossRef Jin SX, Zhuang ZY, Woolf CJ, Ji RR. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci. 2003;23:4017–22.CrossRef
51.
go back to reference Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, Koizumi S, Inoue K. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia. 2004;45:89–95.CrossRef Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, Koizumi S, Inoue K. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia. 2004;45:89–95.CrossRef
52.
go back to reference Zhuang ZY, Gerner P, Woolf CJ, Ji RR. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain. 2005;114:149–59.CrossRef Zhuang ZY, Gerner P, Woolf CJ, Ji RR. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain. 2005;114:149–59.CrossRef
53.
go back to reference Macey TA, Lowe JD, Chavkin C. Mu opioid receptor activation of ERK1/2 is GRK3 and arrestin dependent in striatal neurons. J Biol Chem. 2006;281:34515–24.CrossRef Macey TA, Lowe JD, Chavkin C. Mu opioid receptor activation of ERK1/2 is GRK3 and arrestin dependent in striatal neurons. J Biol Chem. 2006;281:34515–24.CrossRef
54.
go back to reference Belcheva MM, Haas PD, Tan Y, Heaton VM, Coscia CJ. The fibroblast growth factor receptor is at the site of convergence between mu-opioid receptor and growth factor signaling pathways in rat C6 glioma cells. J Pharmacol Exp Ther. 2002;303:909–18.CrossRef Belcheva MM, Haas PD, Tan Y, Heaton VM, Coscia CJ. The fibroblast growth factor receptor is at the site of convergence between mu-opioid receptor and growth factor signaling pathways in rat C6 glioma cells. J Pharmacol Exp Ther. 2002;303:909–18.CrossRef
55.
go back to reference Messmer D, Hatsukari I, Hitosugi N, Schmidt-Wolf IGH, Singhal PC. Morphine reciprocally regulates IL-10 and IL-12 production by monocyte-derived human dendritic cells and enhances T cell activation. Mol Med. 2006;12:284–90.PubMedPubMedCentral Messmer D, Hatsukari I, Hitosugi N, Schmidt-Wolf IGH, Singhal PC. Morphine reciprocally regulates IL-10 and IL-12 production by monocyte-derived human dendritic cells and enhances T cell activation. Mol Med. 2006;12:284–90.PubMedPubMedCentral
56.
go back to reference Ji RR, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology. 2018;129:343–66.CrossRef Ji RR, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology. 2018;129:343–66.CrossRef
57.
go back to reference Ji RR, Xu ZZ, Gao YJ. Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov. 2014;13:533–48.CrossRef Ji RR, Xu ZZ, Gao YJ. Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov. 2014;13:533–48.CrossRef
58.
go back to reference DeLeo JA, Yezierski RP. The role of neuroinflammation and neuroimmune activation in persistent pain. Pain. 2001;90:1–6.CrossRef DeLeo JA, Yezierski RP. The role of neuroinflammation and neuroimmune activation in persistent pain. Pain. 2001;90:1–6.CrossRef
59.
go back to reference Hanisch UK. Microglia as a source and target of cytokines. Glia. 2002;40:140–55.CrossRef Hanisch UK. Microglia as a source and target of cytokines. Glia. 2002;40:140–55.CrossRef
60.
go back to reference Xu JT, Xin WJ, Zang Y, Wu CY, Liu XG. The role of tumor necrosis factor-alpha in the neuropathic pain induced by lumbar 5 ventral root transection in rat. Pain. 2006;123:306–21.CrossRef Xu JT, Xin WJ, Zang Y, Wu CY, Liu XG. The role of tumor necrosis factor-alpha in the neuropathic pain induced by lumbar 5 ventral root transection in rat. Pain. 2006;123:306–21.CrossRef
61.
go back to reference Sweitzer S, Martin D, DeLeo JA. Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain. Neuroscience. 2001;103:529–39.CrossRef Sweitzer S, Martin D, DeLeo JA. Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain. Neuroscience. 2001;103:529–39.CrossRef
62.
go back to reference Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain. 2013;154(Suppl 1):S10–28.CrossRef Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain. 2013;154(Suppl 1):S10–28.CrossRef
63.
go back to reference Kiguchi N, Maeda T, Kobayashi Y, Fukazawa Y, Kishioka S. Macrophage inflammatory protein-1alpha mediates the development of neuropathic pain following peripheral nerve injury through interleukin-1beta up-regulation. Pain. 2010;149:305–15.CrossRef Kiguchi N, Maeda T, Kobayashi Y, Fukazawa Y, Kishioka S. Macrophage inflammatory protein-1alpha mediates the development of neuropathic pain following peripheral nerve injury through interleukin-1beta up-regulation. Pain. 2010;149:305–15.CrossRef
64.
go back to reference Old EA, Nadkarni S, Grist J, Gentry C, Bevan S, Kim KW, Mogg AJ, Perretti M, Malcangio M. Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. J Clin Invest. 2014;124:2023–36.CrossRef Old EA, Nadkarni S, Grist J, Gentry C, Bevan S, Kim KW, Mogg AJ, Perretti M, Malcangio M. Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. J Clin Invest. 2014;124:2023–36.CrossRef
65.
go back to reference Melik Parsadaniantz S, Rivat C, Rostene W, Reaux-Le Goazigo A. Opioid and chemokine receptor crosstalk: a promising target for pain therapy? Nat Rev Neurosci. 2015;16:69–78.CrossRef Melik Parsadaniantz S, Rivat C, Rostene W, Reaux-Le Goazigo A. Opioid and chemokine receptor crosstalk: a promising target for pain therapy? Nat Rev Neurosci. 2015;16:69–78.CrossRef
Metadata
Title
Preemptive intrathecal administration of endomorphins relieves inflammatory pain in male mice via inhibition of p38 MAPK signaling and regulation of inflammatory cytokines
Authors
Ting Zhang
Nan Zhang
Run Zhang
Weidong Zhao
Yong Chen
Zilong Wang
Biao Xu
Mengna Zhang
Xuerui Shi
Qinqin Zhang
Yuanyuan Guo
Jian Xiao
Dan Chen
Quan Fang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2018
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-018-1358-3

Other articles of this Issue 1/2018

Journal of Neuroinflammation 1/2018 Go to the issue