Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

The preoperative SUVmax for 18F-FDG uptake predicts survival in patients with colorectal cancer

Authors: Debing Shi, Guoxiang Cai, Junjie Peng, Dawei Li, Xinxiang Li, Ye Xu, Sanjun Cai

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

The study was to investigate whether 18F-fluorodeoxyglucose (18F-FDG) uptake, analyzed by positron emission tomography (PET), can be used preoperatively to predict survival in Chinese patients with colorectal carcinoma.

Methods

A prospectively maintained colorectal cancer database was retrospectively reviewed between June 2009 and December 2011. All included patients had been newly diagnosed with colorectal cancer (of various stages) and evaluated by 18F-FDG-PET/computed tomography (CT) within the 2 weeks preceding surgery. Univariate and multivariate analyses were used to determine whether the maximal standardized uptake value (SUVmax) and various clinicopathological and immunohistochemical factors were correlated with survival. Receiver operating characteristics (ROC) curve and Kaplan-Meier survival curve analyses were used to explore whether SUVmax could predict survival in these patients.

Results

A total of 107 patients were enrolled in the study (mean age, 59.26 ± 12.66 years; 66.35 % males), with 77 surviving to the end of follow-up (average 60 months). Univariate analysis indicated that tumor size, TNM stage, nodal metastasis, the ratio of metastasized nodes to retrieved nodes, cyclin D1 immunostaining and SUVmax correlated with survival (P < 0.05). Multivariate analysis showed that only TNM stage and SUVmax were associated with survival (P < 0.05). ROC curve analysis determined the optimal SUVmax cutoff for predicting survival to be 11.85 (sensitivity, 73.3 %; specificity, 75.3 %). Survival was significantly longer in patients with preoperative SUVmax ≤11.85 (P < 0.001, log-rank test).

Conclusions

SUVmax, measured by 18F-FDG-PET/CT, provides a useful preoperative prognostic factor for patients with colorectal cancer.
Literature
1.
go back to reference Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71–96.PubMedCrossRef Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71–96.PubMedCrossRef
2.
go back to reference Shanghai Municipal Center for Disease Control and Prevention. Shanghai Cancer Report. Shanghai: SCDC; 2007. Shanghai Municipal Center for Disease Control and Prevention. Shanghai Cancer Report. Shanghai: SCDC; 2007.
3.
go back to reference Van Cutsem E, Nordlinger B, Adam R, Kohne CH, Pozzo C, Poston G, et al. Towards a pan-European consensus on the treatment of patients with colorectal liver metastases. Eur J Cancer. 2006;42:2212–21.PubMedCrossRef Van Cutsem E, Nordlinger B, Adam R, Kohne CH, Pozzo C, Poston G, et al. Towards a pan-European consensus on the treatment of patients with colorectal liver metastases. Eur J Cancer. 2006;42:2212–21.PubMedCrossRef
4.
go back to reference Yoo PS, Lopez-Soler RI, Longo WE, Cha CH. Liver resection for metastatic colorectal cancer in the age of neoadjuvant chemotherapy and bevacizumab. Clin Colorectal Cancer. 2006;6:202–7.PubMedCrossRef Yoo PS, Lopez-Soler RI, Longo WE, Cha CH. Liver resection for metastatic colorectal cancer in the age of neoadjuvant chemotherapy and bevacizumab. Clin Colorectal Cancer. 2006;6:202–7.PubMedCrossRef
5.
go back to reference Pihl E, Hughes ES, McDermott FT, Johnson WR, Katrivessis H. Lung recurrence after curative surgery for colorectal cancer. Dis Colon Rectum. 1987;30:417–9.PubMedCrossRef Pihl E, Hughes ES, McDermott FT, Johnson WR, Katrivessis H. Lung recurrence after curative surgery for colorectal cancer. Dis Colon Rectum. 1987;30:417–9.PubMedCrossRef
6.
go back to reference Foster JH. Treatment of metastatic disease of the liver: a skeptic's view. Semin Liver Dis. 1984;4:170–9.PubMedCrossRef Foster JH. Treatment of metastatic disease of the liver: a skeptic's view. Semin Liver Dis. 1984;4:170–9.PubMedCrossRef
7.
go back to reference O'Connor OJ, McDermott S, Slattery J, Sahani D, Blake MA. The Use of PET-CT in the Assessment of Patients with Colorectal Carcinoma. Int J Surg Oncol. 2011;2011:846512.PubMedPubMedCentral O'Connor OJ, McDermott S, Slattery J, Sahani D, Blake MA. The Use of PET-CT in the Assessment of Patients with Colorectal Carcinoma. Int J Surg Oncol. 2011;2011:846512.PubMedPubMedCentral
8.
go back to reference Farquharson AL, Chopra A, Ford A, Matthews S, Amin SN, De Noronha R. Incidental focal colonic lesions found on (18)Fluorodeoxyglucose positron emission tomography/computed tomography scan: further support for a national guideline on definitive management. Colorectal Dis. 2012;14:e56–63.PubMedCrossRef Farquharson AL, Chopra A, Ford A, Matthews S, Amin SN, De Noronha R. Incidental focal colonic lesions found on (18)Fluorodeoxyglucose positron emission tomography/computed tomography scan: further support for a national guideline on definitive management. Colorectal Dis. 2012;14:e56–63.PubMedCrossRef
9.
go back to reference Jadvar H, Alavi A, Gambhir SS. 18 F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. J Nucl Med. 2009;50:1820–7.PubMedPubMedCentralCrossRef Jadvar H, Alavi A, Gambhir SS. 18 F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. J Nucl Med. 2009;50:1820–7.PubMedPubMedCentralCrossRef
10.
go back to reference Schneider NI, Langner C. Prognostic stratification of colorectal cancer patients: current perspectives. Cancer Manag Res. 2014;6:291–300.PubMedPubMedCentral Schneider NI, Langner C. Prognostic stratification of colorectal cancer patients: current perspectives. Cancer Manag Res. 2014;6:291–300.PubMedPubMedCentral
11.
go back to reference Guzinska-Ustymowicz K, Pryczynicz A, Kemona A, Czyzewska J. Correlation between proliferation markers: PCNA, Ki-67, MCM-2 and antiapoptotic protein Bcl-2 in colorectal cancer. Anticancer Res. 2009;29:3049–52.PubMed Guzinska-Ustymowicz K, Pryczynicz A, Kemona A, Czyzewska J. Correlation between proliferation markers: PCNA, Ki-67, MCM-2 and antiapoptotic protein Bcl-2 in colorectal cancer. Anticancer Res. 2009;29:3049–52.PubMed
12.
go back to reference Wu HW, Gao LD, Wei GH. hMSH2 and nm23 expression in sporadic colorectal cancer and its clinical significance. Asian Pac J Cancer Prev. 2013;14:1995–8.PubMedCrossRef Wu HW, Gao LD, Wei GH. hMSH2 and nm23 expression in sporadic colorectal cancer and its clinical significance. Asian Pac J Cancer Prev. 2013;14:1995–8.PubMedCrossRef
13.
go back to reference Bahnassy AA, Zekri AR, El-Houssini S, El-Shehaby AM, Mahmoud MR, Abdallah S, et al. Cyclin A and cyclin D1 as significant prognostic markers in colorectal cancer patients. BMC Gastroenterol. 2004;4:22.PubMedPubMedCentralCrossRef Bahnassy AA, Zekri AR, El-Houssini S, El-Shehaby AM, Mahmoud MR, Abdallah S, et al. Cyclin A and cyclin D1 as significant prognostic markers in colorectal cancer patients. BMC Gastroenterol. 2004;4:22.PubMedPubMedCentralCrossRef
14.
go back to reference Kikuchi M, Mikami T, Sato T, Tokuyama W, Araki K, Watanabe M, et al. High Ki67, Bax, and thymidylate synthase expression well correlates with response to chemoradiation therapy in locally advanced rectal cancers: proposal of a logistic model for prediction. Br J Cancer. 2009;101:116–23.PubMedPubMedCentralCrossRef Kikuchi M, Mikami T, Sato T, Tokuyama W, Araki K, Watanabe M, et al. High Ki67, Bax, and thymidylate synthase expression well correlates with response to chemoradiation therapy in locally advanced rectal cancers: proposal of a logistic model for prediction. Br J Cancer. 2009;101:116–23.PubMedPubMedCentralCrossRef
15.
go back to reference Tsai HL, Yeh YS, Chang YT, Yang IP, Lin CH, Kuo CH, et al. Co-existence of cyclin D1 and vascular endothelial growth factor protein expression is a poor prognostic factor for UICC stage I-III colorectal cancer patients after curative resection. J Surg Oncol. 2013;107:148–54.PubMedCrossRef Tsai HL, Yeh YS, Chang YT, Yang IP, Lin CH, Kuo CH, et al. Co-existence of cyclin D1 and vascular endothelial growth factor protein expression is a poor prognostic factor for UICC stage I-III colorectal cancer patients after curative resection. J Surg Oncol. 2013;107:148–54.PubMedCrossRef
16.
go back to reference Delektorskaya VV, Perevoshchikov AG, Kushlinskii NE. Immunohistological study of NM 23 and C-erbB-2 expression in primary tumor and metastases of colorectal adenocarcinoma. Bull Exp Biol Med. 2003;135:489–94.PubMedCrossRef Delektorskaya VV, Perevoshchikov AG, Kushlinskii NE. Immunohistological study of NM 23 and C-erbB-2 expression in primary tumor and metastases of colorectal adenocarcinoma. Bull Exp Biol Med. 2003;135:489–94.PubMedCrossRef
17.
go back to reference Statistical PR. R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria; 2009. Statistical PR. R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria; 2009.
19.
go back to reference Pieterman RM, van Putten JW, Meuzelaar JJ, Mooyaart EL, Vaalburg W, Koeter GH, et al. Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med. 2000;343:254–61.PubMedCrossRef Pieterman RM, van Putten JW, Meuzelaar JJ, Mooyaart EL, Vaalburg W, Koeter GH, et al. Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med. 2000;343:254–61.PubMedCrossRef
20.
go back to reference Evangelista L, Cervino AR, Michieletto S, Saibene T, Orvieto E, Bozza F et al. Staging of locally advanced breast cancer and the prediction of response to neoadjuvant chemotherapy: complementary role of scintimammography and 18F-FDG PET/CT. Q J Nucl Med Mol Imaging. 2014. Evangelista L, Cervino AR, Michieletto S, Saibene T, Orvieto E, Bozza F et al. Staging of locally advanced breast cancer and the prediction of response to neoadjuvant chemotherapy: complementary role of scintimammography and 18F-FDG PET/CT. Q J Nucl Med Mol Imaging. 2014.
21.
go back to reference Hsu WH, Hsu PK, Wang SJ, Lin KH, Huang CS, Hsieh CC, et al. Positron emission tomography-computed tomography in predicting locoregional invasion in esophageal squamous cell carcinoma. Ann Thorac Surg. 2009;87:1564–8.PubMedCrossRef Hsu WH, Hsu PK, Wang SJ, Lin KH, Huang CS, Hsieh CC, et al. Positron emission tomography-computed tomography in predicting locoregional invasion in esophageal squamous cell carcinoma. Ann Thorac Surg. 2009;87:1564–8.PubMedCrossRef
22.
go back to reference Johnson GR, Zhuang H, Khan J, Chiang SB, Alavi A. Roles of positron emission tomography with fluorine-18-deoxyglucose in the detection of local recurrent and distant metastatic sarcoma. Clin Nucl Med. 2003;28:815–20.PubMedCrossRef Johnson GR, Zhuang H, Khan J, Chiang SB, Alavi A. Roles of positron emission tomography with fluorine-18-deoxyglucose in the detection of local recurrent and distant metastatic sarcoma. Clin Nucl Med. 2003;28:815–20.PubMedCrossRef
23.
go back to reference Bastiaannet E, Oyen WJ, Meijer S, Hoekstra OS, Wobbes T, Jager PL, et al. Impact of [18 F]fluorodeoxyglucose positron emission tomography on surgical management of melanoma patients. Br J Surg. 2006;93:243–9.PubMedCrossRef Bastiaannet E, Oyen WJ, Meijer S, Hoekstra OS, Wobbes T, Jager PL, et al. Impact of [18 F]fluorodeoxyglucose positron emission tomography on surgical management of melanoma patients. Br J Surg. 2006;93:243–9.PubMedCrossRef
24.
go back to reference Akhurst T, Larson SM. Positron emission tomography imaging of colorectal cancer. Semin Oncol. 1999;26:577–83.PubMed Akhurst T, Larson SM. Positron emission tomography imaging of colorectal cancer. Semin Oncol. 1999;26:577–83.PubMed
25.
go back to reference Sanli Y, Kuyumcu S, Ozkan ZG, Kilic L, Balik E, Turkmen C, et al. The utility of FDG-PET/CT as an effective tool for detecting recurrent colorectal cancer regardless of serum CEA levels. Ann Nucl Med. 2012;26:551–8.PubMedCrossRef Sanli Y, Kuyumcu S, Ozkan ZG, Kilic L, Balik E, Turkmen C, et al. The utility of FDG-PET/CT as an effective tool for detecting recurrent colorectal cancer regardless of serum CEA levels. Ann Nucl Med. 2012;26:551–8.PubMedCrossRef
26.
go back to reference Han A, Xue J, Zhu D, Zheng J, Yue J, Yu J. Clinical value of (18)F-FDG PET/CT in postoperative monitoring for patients with colorectal carcinoma. Cancer Epidemiol. 2011;35:497–500.PubMedCrossRef Han A, Xue J, Zhu D, Zheng J, Yue J, Yu J. Clinical value of (18)F-FDG PET/CT in postoperative monitoring for patients with colorectal carcinoma. Cancer Epidemiol. 2011;35:497–500.PubMedCrossRef
27.
go back to reference Chen LB, Tong JL, Song HZ, Zhu H, Wang YC. (18)F-DG PET/CT in detection of recurrence and metastasis of colorectal cancer. World J Gastroenterol. 2007;13:5025–9.PubMedPubMedCentralCrossRef Chen LB, Tong JL, Song HZ, Zhu H, Wang YC. (18)F-DG PET/CT in detection of recurrence and metastasis of colorectal cancer. World J Gastroenterol. 2007;13:5025–9.PubMedPubMedCentralCrossRef
28.
go back to reference Weston BR, Iyer RB, Qiao W, Lee JH, Bresalier RS, Ross WA. Ability of integrated positron emission and computed tomography to detect significant colonic pathology: the experience of a tertiary cancer center. Cancer. 2010;116:1454–61.PubMedCrossRef Weston BR, Iyer RB, Qiao W, Lee JH, Bresalier RS, Ross WA. Ability of integrated positron emission and computed tomography to detect significant colonic pathology: the experience of a tertiary cancer center. Cancer. 2010;116:1454–61.PubMedCrossRef
29.
go back to reference Andersen KF, Skougaard K, Nielsen AL, Hendel HW. Impact of third-line treatment with irinotecan plus cetuximab on non-tumor standardized uptake values in patients with metastatic colorectal cancer. Oncol Lett. 2012;4:131–4.PubMedPubMedCentral Andersen KF, Skougaard K, Nielsen AL, Hendel HW. Impact of third-line treatment with irinotecan plus cetuximab on non-tumor standardized uptake values in patients with metastatic colorectal cancer. Oncol Lett. 2012;4:131–4.PubMedPubMedCentral
30.
go back to reference Sarikaya I, Bloomston M, Povoski SP, Zhang J, Hall NC, Knopp MV, et al. FDG-PET scan in patients with clinically and/or radiologically suspicious colorectal cancer recurrence but normal CEA. World J Surg Oncol. 2007;5:64.PubMedPubMedCentralCrossRef Sarikaya I, Bloomston M, Povoski SP, Zhang J, Hall NC, Knopp MV, et al. FDG-PET scan in patients with clinically and/or radiologically suspicious colorectal cancer recurrence but normal CEA. World J Surg Oncol. 2007;5:64.PubMedPubMedCentralCrossRef
31.
go back to reference Peng J, He Y, Xu J, Sheng J, Cai S, Zhang Z. Detection of incidental colorectal tumours with 18 F-labelled 2-fluoro-2-deoxyglucose positron emission tomography/computed tomography scans: results of a prospective study. Colorectal Dis. 2011;13:e374–8.PubMedCrossRef Peng J, He Y, Xu J, Sheng J, Cai S, Zhang Z. Detection of incidental colorectal tumours with 18 F-labelled 2-fluoro-2-deoxyglucose positron emission tomography/computed tomography scans: results of a prospective study. Colorectal Dis. 2011;13:e374–8.PubMedCrossRef
32.
go back to reference Abdel-Nabi H, Doerr RJ, Lamonica DM, Cronin VR, Galantowicz PJ, Carbone GM, et al. Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology. 1998;206:755–60.PubMedCrossRef Abdel-Nabi H, Doerr RJ, Lamonica DM, Cronin VR, Galantowicz PJ, Carbone GM, et al. Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology. 1998;206:755–60.PubMedCrossRef
33.
go back to reference Mukai M, Sadahiro S, Yasuda S, Ishida H, Tokunaga N, Tajima T, et al. Preoperative evaluation by whole-body 18 F-fluorodeoxyglucose positron emission tomography in patients with primary colorectal cancer. Oncol Rep. 2000;7:85–7.PubMed Mukai M, Sadahiro S, Yasuda S, Ishida H, Tokunaga N, Tajima T, et al. Preoperative evaluation by whole-body 18 F-fluorodeoxyglucose positron emission tomography in patients with primary colorectal cancer. Oncol Rep. 2000;7:85–7.PubMed
34.
go back to reference Yu L, Tian M, Gao X, Wang D, Qin Y, Geng J. The method and efficacy of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography for diagnosing the lymphatic metastasis of colorectal carcinoma. Acad Radiol. 2012;19:427–33.PubMedCrossRef Yu L, Tian M, Gao X, Wang D, Qin Y, Geng J. The method and efficacy of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography for diagnosing the lymphatic metastasis of colorectal carcinoma. Acad Radiol. 2012;19:427–33.PubMedCrossRef
35.
go back to reference O'Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst. 2004;96:1420–5.PubMedCrossRef O'Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst. 2004;96:1420–5.PubMedCrossRef
36.
go back to reference Kornprat P, Pollheimer MJ, Lindtner RA, Schlemmer A, Rehak P, Langner C. Value of tumor size as a prognostic variable in colorectal cancer: a critical reappraisal. Am J Clin Oncol. 2011;34:43–9.PubMedCrossRef Kornprat P, Pollheimer MJ, Lindtner RA, Schlemmer A, Rehak P, Langner C. Value of tumor size as a prognostic variable in colorectal cancer: a critical reappraisal. Am J Clin Oncol. 2011;34:43–9.PubMedCrossRef
37.
go back to reference Fodor IK, Hutchins GG, Espiritu C, Quirke P, Jubb AM. Prognostic and predictive significance of proliferation in 867 colorectal cancers. J Clin Pathol. 2012;65:989–95.PubMedCrossRef Fodor IK, Hutchins GG, Espiritu C, Quirke P, Jubb AM. Prognostic and predictive significance of proliferation in 867 colorectal cancers. J Clin Pathol. 2012;65:989–95.PubMedCrossRef
38.
go back to reference McKay JA, Douglas JJ, Ross VG, Curran S, Loane JF, Ahmed FY, et al. Analysis of key cell-cycle checkpoint proteins in colorectal tumours. J Pathol. 2002;196:386–93.PubMedCrossRef McKay JA, Douglas JJ, Ross VG, Curran S, Loane JF, Ahmed FY, et al. Analysis of key cell-cycle checkpoint proteins in colorectal tumours. J Pathol. 2002;196:386–93.PubMedCrossRef
39.
go back to reference Crowe PJ, Yang JL, Berney CR, Erskine C, Ham JM, Fisher R, et al. Genetic markers of survival and liver recurrence after resection of liver metastases from colorectal cancer. World J Surg. 2001;25:996–1001.PubMedCrossRef Crowe PJ, Yang JL, Berney CR, Erskine C, Ham JM, Fisher R, et al. Genetic markers of survival and liver recurrence after resection of liver metastases from colorectal cancer. World J Surg. 2001;25:996–1001.PubMedCrossRef
40.
go back to reference Ioachim E. Expression patterns of cyclins D1, E and cyclin-dependent kinase inhibitors p21waf1/cip1, p27kip1 in colorectal carcinoma: correlation with other cell cycle regulators (pRb, p53 and Ki-67 and PCNA) and clinicopathological features. Int J Clin Pract. 2008;62:1736–43.PubMedCrossRef Ioachim E. Expression patterns of cyclins D1, E and cyclin-dependent kinase inhibitors p21waf1/cip1, p27kip1 in colorectal carcinoma: correlation with other cell cycle regulators (pRb, p53 and Ki-67 and PCNA) and clinicopathological features. Int J Clin Pract. 2008;62:1736–43.PubMedCrossRef
Metadata
Title
The preoperative SUVmax for 18F-FDG uptake predicts survival in patients with colorectal cancer
Authors
Debing Shi
Guoxiang Cai
Junjie Peng
Dawei Li
Xinxiang Li
Ye Xu
Sanjun Cai
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1991-5

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine