Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy

Authors: Yuk-Wah Tsang, Cheng-Chung Huang, Kai-Lin Yang, Mau-Shin Chi, Hsin-Chien Chiang, Yu-Shan Wang, Gabor Andocs, Andras Szasz, Wen-Tyng Li, Kwan-Hwa Chi

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

The treatment of intratumoral dentritic cells (DCs) commonly fails because it cannot evoke immunity in a poor tumor microenvironment (TME). Modulated electro-hyperthermia (mEHT, trade-name: oncothermia) represents a significant technological advancement in the hyperthermia field, allowing the autofocusing of electromagnetic power on a cell membrane to generate massive apoptosis. This approach turns local immunogenic cancer cell death (apoptosis) into a systemic anti-tumor immune response and may be implemented by treatment with intratumoral DCs.

Methods

The CT26 murine colorectal cancer model was used in this investigation. The inhibition of growth of the tumor and the systemic anti-tumor immune response were measured. The tumor was heated to a core temperature of 42 °C for 30 min. The matured synergetic DCs were intratumorally injected 24 h following mEHT was applied.

Results

mEHT induced significant apoptosis and enhanced the release of heat shock protein70 (Hsp70) in CT26 tumors. Treatment with mEHT-DCs significantly inhibited CT26 tumor growth, relative to DCs alone or mEHT alone. The secondary tumor protection effect upon rechallenging was observed in mice that were treated with mEHT-DCs. Immunohistochemical staining of CD45 and F4/80 revealed that mEHT-DC treatment increased the number of leukocytes and macrophages. Most interestingly, mEHT also induced infiltrations of eosinophil, which has recently been reported to be an orchestrator of a specific T cell response. Cytotoxic T cell assay and ELISpot assay revealed a tumor-specific T cell activity.

Conclusions

This study demonstrated that mEHT induces tumor cell apoptosis and enhances the release of Hsp70 from heated tumor cells, unlike conventional hyperthermia. mEHT can create a favorable tumor microenvironment for an immunological chain reaction that improves the success rate of intratumoral DC immunotherapy.
Appendix
Available only for authorised users
Literature
2.
go back to reference Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.CrossRefPubMed Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.CrossRefPubMed
3.
go back to reference Chi KH, Liu SJ, Li CP, Kuo HP, Wang YS, Chao Y, et al. Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. J Immunother. 2005;28(2):129–35.CrossRefPubMed Chi KH, Liu SJ, Li CP, Kuo HP, Wang YS, Chao Y, et al. Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. J Immunother. 2005;28(2):129–35.CrossRefPubMed
4.
5.
go back to reference Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.CrossRefPubMed Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.CrossRefPubMed
6.
go back to reference Chi KH, Wang YS, Kao SJ. Improving radioresponse through modification of the tumor immunological microenvironment. Cancer Biother Radiopharm. 2012;27(1):6–11.CrossRefPubMed Chi KH, Wang YS, Kao SJ. Improving radioresponse through modification of the tumor immunological microenvironment. Cancer Biother Radiopharm. 2012;27(1):6–11.CrossRefPubMed
7.
go back to reference Wang YS, Liu SJ, Huang SC, Chang CC, Huang YC, Fong WL, et al. Recombinant heat shock protein 70 in combination with radiotherapy as a source of tumor antigens to improve dendritic cell immunotherapy. Front Oncol. 2012;2:149.PubMedPubMedCentral Wang YS, Liu SJ, Huang SC, Chang CC, Huang YC, Fong WL, et al. Recombinant heat shock protein 70 in combination with radiotherapy as a source of tumor antigens to improve dendritic cell immunotherapy. Front Oncol. 2012;2:149.PubMedPubMedCentral
8.
go back to reference Chi CH, Wang YS, Lai YS, Chi KH. Anti-tumor effect of in vivo IL-2 and GM-CSF electrogene therapy in murine hepatoma model. Anticancer Res. 2003;23(1A):315–21.PubMed Chi CH, Wang YS, Lai YS, Chi KH. Anti-tumor effect of in vivo IL-2 and GM-CSF electrogene therapy in murine hepatoma model. Anticancer Res. 2003;23(1A):315–21.PubMed
9.
go back to reference Wang YS, Tsang YW, Chi CH, Chang CC, Chu RM, Chi KH. Synergistic anti-tumor effect of combination radio- and immunotherapy by electro-gene therapy plus intra-tumor injection of dendritic cells. Cancer Lett. 2008;266(2):275–85.CrossRefPubMed Wang YS, Tsang YW, Chi CH, Chang CC, Chu RM, Chi KH. Synergistic anti-tumor effect of combination radio- and immunotherapy by electro-gene therapy plus intra-tumor injection of dendritic cells. Cancer Lett. 2008;266(2):275–85.CrossRefPubMed
10.
go back to reference Petrulio CA, Kim-Schulze S, Kaufman HL. The tumour microenvironment and implications for cancer immunotherapy. Expert Opin Biol Ther. 2006;6(7):671–84.CrossRefPubMed Petrulio CA, Kim-Schulze S, Kaufman HL. The tumour microenvironment and implications for cancer immunotherapy. Expert Opin Biol Ther. 2006;6(7):671–84.CrossRefPubMed
11.
go back to reference Kaufman HL. Manipulation of the Local Tumor Microenvironment for Cancer Immunotherapy. ASCO Education Book. 2004;23:165–71. Kaufman HL. Manipulation of the Local Tumor Microenvironment for Cancer Immunotherapy. ASCO Education Book. 2004;23:165–71.
12.
go back to reference Andocs G, Renner H, Balogh L, Fonyad L, Jakab C, Szasz A. Strong synergy of heat and modulated electromagnetic field in tumor cell killing. Strahlenther Onkol. 2009;185(2):120–6.CrossRefPubMed Andocs G, Renner H, Balogh L, Fonyad L, Jakab C, Szasz A. Strong synergy of heat and modulated electromagnetic field in tumor cell killing. Strahlenther Onkol. 2009;185(2):120–6.CrossRefPubMed
13.
go back to reference Szasz A, Vincze G, Szasz O, Szasz N. An Energy Analysis of Extracellular Hyperthermia. Electromagn Biol Med. 2003;22(2–3):103–15.CrossRef Szasz A, Vincze G, Szasz O, Szasz N. An Energy Analysis of Extracellular Hyperthermia. Electromagn Biol Med. 2003;22(2–3):103–15.CrossRef
14.
go back to reference Andocs G, Szasz O, Szasz A. Oncothermia treatment of cancer: from the laboratory to clinic. Electromagn Biol Med. 2009;28(2):148–65.CrossRefPubMed Andocs G, Szasz O, Szasz A. Oncothermia treatment of cancer: from the laboratory to clinic. Electromagn Biol Med. 2009;28(2):148–65.CrossRefPubMed
15.
go back to reference Szasz A, Szasz N, Szasz O. Oncothermia: A New Kind of Oncologic Hyperthermia. In: Oncothermia: Principles and Practices. Netherlands: Springer; 2010. p. 173–392.CrossRef Szasz A, Szasz N, Szasz O. Oncothermia: A New Kind of Oncologic Hyperthermia. In: Oncothermia: Principles and Practices. Netherlands: Springer; 2010. p. 173–392.CrossRef
16.
go back to reference Szasz A, Vincze G. Dose concept of oncological hyperthermia: heat-equation considering the cell destruction. J Cancer Res Ther. 2006;2(4):171–81.CrossRefPubMed Szasz A, Vincze G. Dose concept of oncological hyperthermia: heat-equation considering the cell destruction. J Cancer Res Ther. 2006;2(4):171–81.CrossRefPubMed
17.
go back to reference Hegyi G, Szigeti GP, Szasz A. Hyperthermia versus Oncothermia: Cellular Effects in Complementary Cancer Therapy. Evid Based Complement Alternat Med. 2013;2013:672873.CrossRefPubMedPubMedCentral Hegyi G, Szigeti GP, Szasz A. Hyperthermia versus Oncothermia: Cellular Effects in Complementary Cancer Therapy. Evid Based Complement Alternat Med. 2013;2013:672873.CrossRefPubMedPubMedCentral
18.
go back to reference Gadaleta-Caldarola G, Infusino S, Galise I, Ranieri G, Vinciarelli G, Fazio V, et al. Sorafenib and locoregional deep electro-hyperthermia in advanced hepatocellular carcinoma: A phase II study. Oncol lett. 2014;8(4):1783–7.PubMedPubMedCentral Gadaleta-Caldarola G, Infusino S, Galise I, Ranieri G, Vinciarelli G, Fazio V, et al. Sorafenib and locoregional deep electro-hyperthermia in advanced hepatocellular carcinoma: A phase II study. Oncol lett. 2014;8(4):1783–7.PubMedPubMedCentral
19.
go back to reference Fiorentini G, Giovanis P, Rossi S, Dentico P, Paola R, Turrisi G, et al. A phase II clinical study on relapsed malignant gliomas treated with electro-hyperthermia. In Vivo. 2006;20(6A):721–4.PubMed Fiorentini G, Giovanis P, Rossi S, Dentico P, Paola R, Turrisi G, et al. A phase II clinical study on relapsed malignant gliomas treated with electro-hyperthermia. In Vivo. 2006;20(6A):721–4.PubMed
20.
21.
go back to reference Qin W, Akutsu Y, Andocs G, Suganami A, Hu X, Yusup G, et al. Modulated electro-hyperthermia enhances dendritic cell therapy through an abscopal effect in mice. Oncol Rep. 2014;32(6):2373–9.PubMed Qin W, Akutsu Y, Andocs G, Suganami A, Hu X, Yusup G, et al. Modulated electro-hyperthermia enhances dendritic cell therapy through an abscopal effect in mice. Oncol Rep. 2014;32(6):2373–9.PubMed
22.
go back to reference Dudek AM, Martin S, Garg AD, Agostinis P. Immature, Semi-Mature, and Fully Mature Dendritic Cells: Toward a DC-Cancer Cells Interface That Augments Anticancer Immunity. Front Immunol. 2013;4:438.CrossRefPubMedPubMedCentral Dudek AM, Martin S, Garg AD, Agostinis P. Immature, Semi-Mature, and Fully Mature Dendritic Cells: Toward a DC-Cancer Cells Interface That Augments Anticancer Immunity. Front Immunol. 2013;4:438.CrossRefPubMedPubMedCentral
23.
24.
go back to reference Mukhopadhaya A, Mendecki J, Dong X, Liu L, Kalnicki S, Garg M, et al. Localized Hyperthermia Combined with Intratumoral Dendritic Cells Induces Systemic Antitumor Immunity. Cancer Res. 2007;67(16):7798–806.CrossRefPubMed Mukhopadhaya A, Mendecki J, Dong X, Liu L, Kalnicki S, Garg M, et al. Localized Hyperthermia Combined with Intratumoral Dendritic Cells Induces Systemic Antitumor Immunity. Cancer Res. 2007;67(16):7798–806.CrossRefPubMed
25.
go back to reference Friedman EJ. Immune modulation by ionizing radiation and its implications for cancer immunotherapy. Curr Pharm Des. 2002;8(19):1765–80.CrossRefPubMed Friedman EJ. Immune modulation by ionizing radiation and its implications for cancer immunotherapy. Curr Pharm Des. 2002;8(19):1765–80.CrossRefPubMed
26.
go back to reference Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM. Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol. 2008;180(5):3132–9.CrossRefPubMed Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM. Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol. 2008;180(5):3132–9.CrossRefPubMed
27.
go back to reference Teitz-Tennenbaum S, Li Q, Okuyama R, Davis MA, Sun R, Whitfield J, et al. Mechanisms involved in radiation enhancement of intratumoral dendritic cell therapy. J Immunother. 2008;31(4):345–58.CrossRefPubMedPubMedCentral Teitz-Tennenbaum S, Li Q, Okuyama R, Davis MA, Sun R, Whitfield J, et al. Mechanisms involved in radiation enhancement of intratumoral dendritic cell therapy. J Immunother. 2008;31(4):345–58.CrossRefPubMedPubMedCentral
28.
go back to reference Andocs G, Meggyeshazi N, Balogh L, Spisak S, Maros ME, Balla P, et al. Upregulation of heat shock proteins and the promotion of damage-associated molecular pattern signals in a colorectal cancer model by modulated electrohyperthermia. Cell Stress Chaperones. 2015;20(1):37–46.CrossRefPubMed Andocs G, Meggyeshazi N, Balogh L, Spisak S, Maros ME, Balla P, et al. Upregulation of heat shock proteins and the promotion of damage-associated molecular pattern signals in a colorectal cancer model by modulated electrohyperthermia. Cell Stress Chaperones. 2015;20(1):37–46.CrossRefPubMed
29.
go back to reference Szasz A. Challenges and Solutions in Oncological Hyperthermia. Thermal Med. 2013;29(1):1–23.CrossRef Szasz A. Challenges and Solutions in Oncological Hyperthermia. Thermal Med. 2013;29(1):1–23.CrossRef
30.
go back to reference Wang YS, Chi KH, Liao KW, Liu CC, Cheng CL, Lin YC, et al. Characterization of canine monocyte-derived dendritic cells with phenotypic and functional differentiation. Can J Vet Res. 2007;71(3):165–74.PubMedPubMedCentral Wang YS, Chi KH, Liao KW, Liu CC, Cheng CL, Lin YC, et al. Characterization of canine monocyte-derived dendritic cells with phenotypic and functional differentiation. Can J Vet Res. 2007;71(3):165–74.PubMedPubMedCentral
31.
go back to reference Hirasawa M, Ito Y, Shibata MA, Otsuki Y. Mechanism of inflammation in murine eosinophilic myocarditis produced by adoptive transfer with ovalbumin challenge. Int Arch Allergy Immunol. 2007;142(1):28–39.CrossRefPubMed Hirasawa M, Ito Y, Shibata MA, Otsuki Y. Mechanism of inflammation in murine eosinophilic myocarditis produced by adoptive transfer with ovalbumin challenge. Int Arch Allergy Immunol. 2007;142(1):28–39.CrossRefPubMed
32.
go back to reference Huang AY, Gulden PH, Woods AS, Thomas MC, Tong CD, Wang W, et al. The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc Natl Acad Sci U S A. 1996;93(18):9730–5.CrossRefPubMedPubMedCentral Huang AY, Gulden PH, Woods AS, Thomas MC, Tong CD, Wang W, et al. The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc Natl Acad Sci U S A. 1996;93(18):9730–5.CrossRefPubMedPubMedCentral
33.
go back to reference Simson L, Ellyard JI, Dent LA, Matthaei KI, Rothenberg ME, Foster PS, et al. Regulation of carcinogenesis by IL-5 and CCL11: a potential role for eosinophils in tumor immune surveillance. J Immunol. 2007;178(7):4222–9.CrossRefPubMed Simson L, Ellyard JI, Dent LA, Matthaei KI, Rothenberg ME, Foster PS, et al. Regulation of carcinogenesis by IL-5 and CCL11: a potential role for eosinophils in tumor immune surveillance. J Immunol. 2007;178(7):4222–9.CrossRefPubMed
34.
go back to reference Cormier SA, Taranova AG, Bedient C, Nguyen T, Protheroe C, Pero R, et al. Pivotal Advance: eosinophil infiltration of solid tumors is an early and persistent inflammatory host response. J Leukoc Biol. 2006;79(6):1131–9.CrossRefPubMedPubMedCentral Cormier SA, Taranova AG, Bedient C, Nguyen T, Protheroe C, Pero R, et al. Pivotal Advance: eosinophil infiltration of solid tumors is an early and persistent inflammatory host response. J Leukoc Biol. 2006;79(6):1131–9.CrossRefPubMedPubMedCentral
35.
go back to reference Carretero R, Sektioglu IM, Garbi N, Salgado OC, Beckhove P, Hammerling GJ. Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8(+) T cells. Nat Immunol. 2015;16(6):609–17.CrossRefPubMed Carretero R, Sektioglu IM, Garbi N, Salgado OC, Beckhove P, Hammerling GJ. Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8(+) T cells. Nat Immunol. 2015;16(6):609–17.CrossRefPubMed
36.
go back to reference Meggyeshazi N, Andocs G, Balogh L, Balla P, Kiszner G, Teleki I, et al. DNA fragmentation and caspase-independent programmed cell death by modulated electrohyperthermia. Strahlenther Onkol. 2014;1–8. Meggyeshazi N, Andocs G, Balogh L, Balla P, Kiszner G, Teleki I, et al. DNA fragmentation and caspase-independent programmed cell death by modulated electrohyperthermia. Strahlenther Onkol. 2014;1–8.
37.
go back to reference Feng H, Zeng Y, Graner MW, Katsanis E. Stressed apoptotic tumor cells stimulate dendritic cells and induce specific cytotoxic T cells. Blood. 2002;100(12):4108–15.CrossRefPubMed Feng H, Zeng Y, Graner MW, Katsanis E. Stressed apoptotic tumor cells stimulate dendritic cells and induce specific cytotoxic T cells. Blood. 2002;100(12):4108–15.CrossRefPubMed
38.
go back to reference Jaffe ML, Arai H, Nabel GJ. Mechanisms of tumor-induced immunosuppression: evidence for contact-dependent T cell suppression by monocytes. Mol Med. 1996;2(6):692–701.PubMedPubMedCentral Jaffe ML, Arai H, Nabel GJ. Mechanisms of tumor-induced immunosuppression: evidence for contact-dependent T cell suppression by monocytes. Mol Med. 1996;2(6):692–701.PubMedPubMedCentral
39.
go back to reference Brusa D, Migliore E, Garetto S, Simone M, Matera L. Immunogenicity of 56 degree C and UVC-treated prostate cancer is associated with release of HSP70 and HMGB1 from necrotic cells. Prostate. 2009;69(12):1343–52.CrossRefPubMed Brusa D, Migliore E, Garetto S, Simone M, Matera L. Immunogenicity of 56 degree C and UVC-treated prostate cancer is associated with release of HSP70 and HMGB1 from necrotic cells. Prostate. 2009;69(12):1343–52.CrossRefPubMed
40.
go back to reference Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: Endogenous activators of dendritic cells. Nat Med. 1999;5(11):1249–55.CrossRefPubMed Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: Endogenous activators of dendritic cells. Nat Med. 1999;5(11):1249–55.CrossRefPubMed
41.
go back to reference Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods. 1999;223(1):77–92.CrossRefPubMed Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods. 1999;223(1):77–92.CrossRefPubMed
42.
go back to reference Candido KA, Shimizu K, McLaughlin JC, Kunkel R, Fuller JA, Redman BG, et al. Local administration of dendritic cells inhibits established breast tumor growth: implications for apoptosis-inducing agents. Cancer Res. 2001;61(1):228–36.PubMed Candido KA, Shimizu K, McLaughlin JC, Kunkel R, Fuller JA, Redman BG, et al. Local administration of dendritic cells inhibits established breast tumor growth: implications for apoptosis-inducing agents. Cancer Res. 2001;61(1):228–36.PubMed
43.
go back to reference Nosho K, Baba Y, Tanaka N, Shima K, Hayashi M, Meyerhardt JA, et al. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J Pathol. 2010;222(4):350–66.CrossRefPubMedPubMedCentral Nosho K, Baba Y, Tanaka N, Shima K, Hayashi M, Meyerhardt JA, et al. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J Pathol. 2010;222(4):350–66.CrossRefPubMedPubMedCentral
44.
go back to reference Benencia F, Sprague L, McGinty J, Pate M, Muccioli M. Dendritic cells the tumor microenvironment and the challenges for an effective antitumor vaccination. J Biomed Biotechnol. 2012;2012:425476.CrossRefPubMedPubMedCentral Benencia F, Sprague L, McGinty J, Pate M, Muccioli M. Dendritic cells the tumor microenvironment and the challenges for an effective antitumor vaccination. J Biomed Biotechnol. 2012;2012:425476.CrossRefPubMedPubMedCentral
45.
go back to reference Harvey RD. Immunologic and Clinical Effects of Targeting PD-1 in Lung Cancer. Clin Pharmacol Ther. 2014;96(2):214–23.CrossRefPubMed Harvey RD. Immunologic and Clinical Effects of Targeting PD-1 in Lung Cancer. Clin Pharmacol Ther. 2014;96(2):214–23.CrossRefPubMed
46.
Metadata
Title
Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy
Authors
Yuk-Wah Tsang
Cheng-Chung Huang
Kai-Lin Yang
Mau-Shin Chi
Hsin-Chien Chiang
Yu-Shan Wang
Gabor Andocs
Andras Szasz
Wen-Tyng Li
Kwan-Hwa Chi
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1690-2

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine