Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

The Aplidin analogs PM01215 and PM02781 inhibit angiogenesis in vitro and in vivo

Authors: Bojana Borjan, Normann Steiner, Silvia Karbon, Johann Kern, Andrés Francesch, Martin Hermann, Wolfgang Willenbacher, Eberhard Gunsilius, Gerold Untergasser

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

Novel synthesized analogs of Aplidin, PM01215 and PM02781, were tested for antiangiogenic effects on primary human endothelial cells in vitro and for inhibition of angiogenesis and tumor growth in vivo.

Methods

Antiangiogenic activity of both derivatives was evaluated by real-time cell proliferation, capillary tube formation and vascular endothelial growth factor (VEGF)-induced spheroid sprouting assays. Distribution of endothelial cells in the different phases of the cell cycle was analyzed by flow cytometry. Aplidin analogs were testedin vivoin chicken chorioallantoic membrane (CAM) assays.

Results

Both derivatives inhibited angiogenic capacities of human endothelial cells (HUVECs) in vitro at low nanomolar concentrations. Antiangiogenic effects of both analogs were observed in the CAM. In addition, growth of human multiple myeloma xenograftsin vivoin CAM was significantly reduced after application of both analogs. On the molecular level, both derivatives induced cell cycle arrest in G1 phase. This growth arrest of endothelial cells correlated with induction of the cell cycle inhibitor p16INK4A and increased senescence-associated beta galactosidase activity. In addition, Aplidin analogs induced oxidative stress and decreased production of the vascular maturation factors Vasohibin-1 and Dickkopf-3.

Conclusions

From these findings we conclude that both analogs are promising agents for the development of antiangiogenic drugs acting independent on classical inhibition of VEGF signaling.
Appendix
Available only for authorised users
Literature
1.
5.
go back to reference Folkman J, Bach M, Rowe JW, Davidoff F, Lambert P, Hirsch C, et al. Tumor Angiogenesis - Therapeutic Implications. N Engl J Med. 1971;285:1182.CrossRefPubMed Folkman J, Bach M, Rowe JW, Davidoff F, Lambert P, Hirsch C, et al. Tumor Angiogenesis - Therapeutic Implications. N Engl J Med. 1971;285:1182.CrossRefPubMed
7.
go back to reference Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8:579–91.CrossRefPubMed Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8:579–91.CrossRefPubMed
9.
go back to reference Caers J, Menu E, De RH, Lepage D, Van VE, Van CB, et al. Antitumour and antiangiogenic effects of Aplidin in the 5TMM syngeneic models of multiple myeloma. Br J Cancer. 2008;98:1966–74.CrossRefPubMedPubMedCentral Caers J, Menu E, De RH, Lepage D, Van VE, Van CB, et al. Antitumour and antiangiogenic effects of Aplidin in the 5TMM syngeneic models of multiple myeloma. Br J Cancer. 2008;98:1966–74.CrossRefPubMedPubMedCentral
10.
go back to reference Garcia-Fernandez LF, Losada A, Alcaide V, Alvarez AM, Cuadrado A, Gonzalez L, et al. Aplidin induces the mitochondrial apoptotic pathway via oxidative stress-mediated JNK and p38 activation and protein kinase C delta. Oncogene. 2002;21:7533–44.CrossRefPubMed Garcia-Fernandez LF, Losada A, Alcaide V, Alvarez AM, Cuadrado A, Gonzalez L, et al. Aplidin induces the mitochondrial apoptotic pathway via oxidative stress-mediated JNK and p38 activation and protein kinase C delta. Oncogene. 2002;21:7533–44.CrossRefPubMed
11.
go back to reference Kern J, Untergasser G, Zenzmaier C, Sarg B, Gastl G, Gunsilius E, et al. GRP-78 secreted by tumor cells blocks the antiangiogenic activity of bortezomib. Blood. 2009;114:3960–7.CrossRefPubMed Kern J, Untergasser G, Zenzmaier C, Sarg B, Gastl G, Gunsilius E, et al. GRP-78 secreted by tumor cells blocks the antiangiogenic activity of bortezomib. Blood. 2009;114:3960–7.CrossRefPubMed
12.
go back to reference Mitsiades CS, Ocio EM, Pandiella A, Maiso P, Gajate C, Garayoa M, et al. Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo. Cancer Res. 2008;68:5216–25.CrossRefPubMed Mitsiades CS, Ocio EM, Pandiella A, Maiso P, Gajate C, Garayoa M, et al. Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo. Cancer Res. 2008;68:5216–25.CrossRefPubMed
13.
go back to reference Roccaro AM, Hideshima T, Raje N, Kumar S, Ishitsuka K, Yasui H, et al. Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res. 2006;66:184–91.CrossRefPubMed Roccaro AM, Hideshima T, Raje N, Kumar S, Ishitsuka K, Yasui H, et al. Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res. 2006;66:184–91.CrossRefPubMed
14.
go back to reference Taraboletti G, Poli M, Dossi R, Manenti L, Borsotti P, Faircloth GT, et al. Antiangiogenic activity of aplidine, a new agent of marine origin. Br J Cancer. 2004;90:2418–24.PubMedPubMedCentral Taraboletti G, Poli M, Dossi R, Manenti L, Borsotti P, Faircloth GT, et al. Antiangiogenic activity of aplidine, a new agent of marine origin. Br J Cancer. 2004;90:2418–24.PubMedPubMedCentral
15.
go back to reference Williams S, Pettaway C, Song R, Papandreou C, Logothetis C, McConkey DJ. Differential effects of the proteasome inhibitor bortezomib on apoptosis and angiogenesis in human prostate tumor xenografts. Mol Cancer Ther. 2003;2:835–43.PubMed Williams S, Pettaway C, Song R, Papandreou C, Logothetis C, McConkey DJ. Differential effects of the proteasome inhibitor bortezomib on apoptosis and angiogenesis in human prostate tumor xenografts. Mol Cancer Ther. 2003;2:835–43.PubMed
16.
go back to reference Medinger M, Tzankov A, Kern J, Pircher A, Hermann M, Ott HW, et al. Increased Dkk3 protein expression in platelets and megakaryocytes of patients with myeloproliferative neoplasms. Thromb Haemost. 2011;105:72–80.CrossRefPubMed Medinger M, Tzankov A, Kern J, Pircher A, Hermann M, Ott HW, et al. Increased Dkk3 protein expression in platelets and megakaryocytes of patients with myeloproliferative neoplasms. Thromb Haemost. 2011;105:72–80.CrossRefPubMed
18.
go back to reference Hosaka T, Kimura H, Heishi T, Suzuki Y, Miyashita H, Ohta H, et al. Vasohibin-1 expression in endothelium of tumor blood vessels regulates angiogenesis. Am J Pathol. 2009;175:430–9.CrossRefPubMedPubMedCentral Hosaka T, Kimura H, Heishi T, Suzuki Y, Miyashita H, Ohta H, et al. Vasohibin-1 expression in endothelium of tumor blood vessels regulates angiogenesis. Am J Pathol. 2009;175:430–9.CrossRefPubMedPubMedCentral
19.
go back to reference Kern J, Steurer M, Gastl G, Gunsilius E, Untergasser G. Vasohibin inhibits angiogenic sprouting in vitro and supports vascular maturation processes in vivo. BMC Cancer. 2009;9:284.CrossRefPubMedPubMedCentral Kern J, Steurer M, Gastl G, Gunsilius E, Untergasser G. Vasohibin inhibits angiogenic sprouting in vitro and supports vascular maturation processes in vivo. BMC Cancer. 2009;9:284.CrossRefPubMedPubMedCentral
20.
go back to reference Li Y, Ye X, Tan C, Hongo JA, Zha J, Liu J, et al. Axl as a potential therapeutic target in cancer: role of Axl in tumor growth, metastasis and angiogenesis. Oncogene. 2009;28:3442–55.CrossRefPubMed Li Y, Ye X, Tan C, Hongo JA, Zha J, Liu J, et al. Axl as a potential therapeutic target in cancer: role of Axl in tumor growth, metastasis and angiogenesis. Oncogene. 2009;28:3442–55.CrossRefPubMed
21.
go back to reference Untergasser G, Steurer M, Zimmermann M, Hermann M, Kern J, Amberger A, et al. The Dickkopf-homolog 3 is expressed in tumor endothelial cells and supports capillary formation. Int J Cancer. 2008;122:1539–47.CrossRefPubMed Untergasser G, Steurer M, Zimmermann M, Hermann M, Kern J, Amberger A, et al. The Dickkopf-homolog 3 is expressed in tumor endothelial cells and supports capillary formation. Int J Cancer. 2008;122:1539–47.CrossRefPubMed
22.
go back to reference Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002;2:727–39.CrossRefPubMed Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002;2:727–39.CrossRefPubMed
23.
go back to reference Jenkins NC, Liu T, Cassidy P, Leachman SA, Boucher KM, Goodson AG, et al. The p16(INK4A) tumor suppressor regulates cellular oxidative stress. Oncogene. 2011;30:265–74.CrossRefPubMed Jenkins NC, Liu T, Cassidy P, Leachman SA, Boucher KM, Goodson AG, et al. The p16(INK4A) tumor suppressor regulates cellular oxidative stress. Oncogene. 2011;30:265–74.CrossRefPubMed
24.
go back to reference Cuadrado A, Garcia-Fernandez LF, Gonzalez L, Suarez Y, Losada A, Alcaide V, et al. Aplidin induces apoptosis in human cancer cells via glutathione depletion and sustained activation of the epidermal growth factor receptor, Src, JNK, and p38 MAPK. J Biol Chem. 2003;278:241–50.CrossRefPubMed Cuadrado A, Garcia-Fernandez LF, Gonzalez L, Suarez Y, Losada A, Alcaide V, et al. Aplidin induces apoptosis in human cancer cells via glutathione depletion and sustained activation of the epidermal growth factor receptor, Src, JNK, and p38 MAPK. J Biol Chem. 2003;278:241–50.CrossRefPubMed
25.
go back to reference Romero D, Kawano Y, Bengoa N, Walker MM, Maltry N, Niehrs C, et al. Downregulation of Dickkopf-3 disrupts prostate acinar morphogenesis through TGF-beta/Smad signalling. J Cell Sci. 2013;126:1858–67.CrossRefPubMed Romero D, Kawano Y, Bengoa N, Walker MM, Maltry N, Niehrs C, et al. Downregulation of Dickkopf-3 disrupts prostate acinar morphogenesis through TGF-beta/Smad signalling. J Cell Sci. 2013;126:1858–67.CrossRefPubMed
26.
go back to reference Onai T, Takai A, Setiamarga DH, Holland LZ. Essential role of Dkk3 for head formation by inhibiting Wnt/beta-catenin and Nodal/Vg1 signaling pathways in the basal chordate amphioxus. Evol Dev. 2012;14:338–50.CrossRefPubMed Onai T, Takai A, Setiamarga DH, Holland LZ. Essential role of Dkk3 for head formation by inhibiting Wnt/beta-catenin and Nodal/Vg1 signaling pathways in the basal chordate amphioxus. Evol Dev. 2012;14:338–50.CrossRefPubMed
27.
go back to reference Miyashita H, Watanabe T, Hayashi H, Suzuki Y, Nakamura T, Ito S, et al. Angiogenesis inhibitor vasohibin-1 enhances stress resistance of endothelial cells via induction of SOD2 and SIRT1. PLoS ONE. 2012;7:e46459.CrossRefPubMedPubMedCentral Miyashita H, Watanabe T, Hayashi H, Suzuki Y, Nakamura T, Ito S, et al. Angiogenesis inhibitor vasohibin-1 enhances stress resistance of endothelial cells via induction of SOD2 and SIRT1. PLoS ONE. 2012;7:e46459.CrossRefPubMedPubMedCentral
Metadata
Title
The Aplidin analogs PM01215 and PM02781 inhibit angiogenesis in vitro and in vivo
Authors
Bojana Borjan
Normann Steiner
Silvia Karbon
Johann Kern
Andrés Francesch
Martin Hermann
Wolfgang Willenbacher
Eberhard Gunsilius
Gerold Untergasser
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1729-4

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine