Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2012

01-06-2012 | NON-THEMATIC REVIEW

The genetic/metabolic transformation concept of carcinogenesis

Authors: Leslie C. Costello, Renty B. Franklin

Published in: Cancer and Metastasis Reviews | Issue 1-2/2012

Login to get access

Abstract

The carcinogenesis process is poorly understood and subject to varying concepts and views. A rejuvenated interest has arisen regarding the role of altered cellular intermediary metabolism in the development and progression of cancer. As a result, differing views of the implications of altered metabolism in the development of cancer exist. None of the concepts recognize and incorporate the principles of cell metabolism to cell activity, which are applicable to all cells including the carcinogenesis process. This presentation incorporates a novel concept of carcinogenesis that includes a “genetic/metabolic” transformation that encompasses these principles of cell metabolism to cell activity. The intermediary metabolism transformation is essential to provide the bioenergetic/synthetic, growth/proliferation, and migration/invasive events of malignancy. The concept invokes an “oncogenetic transformation” for the development of neoplastic cells from their precursor normal cells; and a required “genetic/metabolic” transformation for facilitation of the development of the neoplastic cells to malignant cells with the manifestation of the malignant process. Such a concept reveals stages and events of carcinogenesis that provide approaches for the identification of biomarkers and for development of therapeutic agents. The presentation discusses the contemporary application of genetics and proteomics to altered cellular metabolism in cancer; and underscores the importance of proper integration of genetics and proteomics with biochemical and metabolic studies, and the consequences of inappropriate studies.
Literature
1.
go back to reference Vogelstein, B., & Kinzler, K. W. (2004). Cancer genes and the pathways they control. Nature Medicine, 10(8), 789–799.PubMedCrossRef Vogelstein, B., & Kinzler, K. W. (2004). Cancer genes and the pathways they control. Nature Medicine, 10(8), 789–799.PubMedCrossRef
2.
go back to reference Costello, L. C., & Franklin, R. B. (2005). ‘Why do tumour cells glycolyse?’: from glycolysis through citrate to lipogenesis. Molecular and Cellular Biochemistry, 280(1–2), 1–8.PubMedCrossRef Costello, L. C., & Franklin, R. B. (2005). ‘Why do tumour cells glycolyse?’: from glycolysis through citrate to lipogenesis. Molecular and Cellular Biochemistry, 280(1–2), 1–8.PubMedCrossRef
3.
go back to reference Costello, L. C., & Franklin, R. B. (2006). The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Molecular Cancer. doi:10.1186/1476-4598-5-17. Costello, L. C., & Franklin, R. B. (2006). The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Molecular Cancer. doi:10.​1186/​1476-4598-5-17.
4.
go back to reference Costello, L. C., & Franklin, R. B. (2009). Integration of genetic, proteomic, and metabolic approaches in tumor cell metabolism. In K. Singh & L. C. Costello (Eds.), Mitochondria and cancer (pp. 79–92). New York: Springer.CrossRef Costello, L. C., & Franklin, R. B. (2009). Integration of genetic, proteomic, and metabolic approaches in tumor cell metabolism. In K. Singh & L. C. Costello (Eds.), Mitochondria and cancer (pp. 79–92). New York: Springer.CrossRef
5.
go back to reference Costello, L. C., & Franklin, R. B. (2008). Transformations of malignant cells (an overview). In M. A. Hayat (Ed.), Methods of cancer diagnosis, therapy, and prognosis (pp. 3–16). New York: Springer. Costello, L. C., & Franklin, R. B. (2008). Transformations of malignant cells (an overview). In M. A. Hayat (Ed.), Methods of cancer diagnosis, therapy, and prognosis (pp. 3–16). New York: Springer.
6.
go back to reference Baggetto, L. G. (1992). Deviant energetic metabolism of glycolytic cancer cells. Biochimie, 74(11), 959–974.PubMedCrossRef Baggetto, L. G. (1992). Deviant energetic metabolism of glycolytic cancer cells. Biochimie, 74(11), 959–974.PubMedCrossRef
7.
go back to reference Kasper, S. (2008). Stem cells: the root of prostate cancer? Journal of Cell Physiology, 216(2), 332–336.CrossRef Kasper, S. (2008). Stem cells: the root of prostate cancer? Journal of Cell Physiology, 216(2), 332–336.CrossRef
8.
go back to reference Dang, C. V., & Samenza, G. L. (1999). Oncogenic alterations of metabolism. Trends in Biological Sciences, 24(2), 68–72.CrossRef Dang, C. V., & Samenza, G. L. (1999). Oncogenic alterations of metabolism. Trends in Biological Sciences, 24(2), 68–72.CrossRef
10.
go back to reference Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.PubMedCrossRef Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.PubMedCrossRef
11.
go back to reference Alqawi, O., Wang, H. P., Espiritu, M., & Singh, G. (2007). Chronic hypoxia promotes an aggressive phenotype in rat prostate cancer cells. Free Radical Research, 41(7), 788–797.PubMedCrossRef Alqawi, O., Wang, H. P., Espiritu, M., & Singh, G. (2007). Chronic hypoxia promotes an aggressive phenotype in rat prostate cancer cells. Free Radical Research, 41(7), 788–797.PubMedCrossRef
12.
go back to reference Warburg, O., Wind, F., & Negelein, E. (1927). The metabolism of tumors in the body. Journal of General Physiology, 8(6), 519–530.PubMedCrossRef Warburg, O., Wind, F., & Negelein, E. (1927). The metabolism of tumors in the body. Journal of General Physiology, 8(6), 519–530.PubMedCrossRef
13.
go back to reference Moreadith, R. W., & Lehninger, A. L. (1984). The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P) + −dependent malic enzyme. Journal of Biological Chemistry, 59(10), 6215–6221. Moreadith, R. W., & Lehninger, A. L. (1984). The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P) + −dependent malic enzyme. Journal of Biological Chemistry, 59(10), 6215–6221.
15.
go back to reference Weinhouse, S., Warburg, O., Burk, D., & Schade, A. L. (1956). On respiratory impairment in cancer cells. Science, 123(3191), 309–314.CrossRef Weinhouse, S., Warburg, O., Burk, D., & Schade, A. L. (1956). On respiratory impairment in cancer cells. Science, 123(3191), 309–314.CrossRef
17.
go back to reference Huggins, C. (1946). The prostate secretion. Harvey Lectures, 42, 148–193. Huggins, C. (1946). The prostate secretion. Harvey Lectures, 42, 148–193.
18.
go back to reference Costello, L. C., Guan, Z., Kukoyi, B., Feng, P., & Franklin, R. B. (2004). Terminal oxidation and the effects of zinc in prostate versus liver mitochondria. Mitochondrion, 4(4), 331–338.PubMedCrossRef Costello, L. C., Guan, Z., Kukoyi, B., Feng, P., & Franklin, R. B. (2004). Terminal oxidation and the effects of zinc in prostate versus liver mitochondria. Mitochondrion, 4(4), 331–338.PubMedCrossRef
19.
go back to reference Costello, L. C., Franklin, R. B., & Feng, P. (2005). Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion, 5(3), 143–153.PubMedCrossRef Costello, L. C., Franklin, R. B., & Feng, P. (2005). Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion, 5(3), 143–153.PubMedCrossRef
20.
go back to reference Franklin, R. B., & Costello, L. C. (2007). Zinc as an anti-tumor agent in prostate cancer and in other cancers. Archives of Biochemistry and Biophysics, 463(2), 211–217.PubMedCrossRef Franklin, R. B., & Costello, L. C. (2007). Zinc as an anti-tumor agent in prostate cancer and in other cancers. Archives of Biochemistry and Biophysics, 463(2), 211–217.PubMedCrossRef
21.
go back to reference Franklin, R. B., Feng, P., Milon, B. C., Desouki, M. M., Singh, K. K., Kajdacsy-Balla, A., et al. (2005). hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Molecular Cancer, 4(32), 13. Franklin, R. B., Feng, P., Milon, B. C., Desouki, M. M., Singh, K. K., Kajdacsy-Balla, A., et al. (2005). hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Molecular Cancer, 4(32), 13.
22.
go back to reference Cortesi, M., Fridman, E., Volkov, A., Shilstein, S. S., Chechik, R., Breskin, A., Vartsky, D., Kleinman, N., Kogan, G., Moriel, E., Gladysh, V., Huszar, M., Ramon, J., Raviv, G., et al. (2008). Clinical assessment of the cancer diagnostic value of prostatic zinc: a comprehensive needle-biopsy study. Prostate, 68(9), 994–1006.PubMedCrossRef Cortesi, M., Fridman, E., Volkov, A., Shilstein, S. S., Chechik, R., Breskin, A., Vartsky, D., Kleinman, N., Kogan, G., Moriel, E., Gladysh, V., Huszar, M., Ramon, J., Raviv, G., et al. (2008). Clinical assessment of the cancer diagnostic value of prostatic zinc: a comprehensive needle-biopsy study. Prostate, 68(9), 994–1006.PubMedCrossRef
23.
go back to reference Johnson, L. A., Kanak, M. A., Kajdacsy-Balla, A., Pestaner, J. P., & Bagasra, O. (2010). Differential zinc accumulation and expression of human zinc transporter 1 (hZIP1) in prostate glands. Methods, 52(4), 316–321.PubMedCrossRef Johnson, L. A., Kanak, M. A., Kajdacsy-Balla, A., Pestaner, J. P., & Bagasra, O. (2010). Differential zinc accumulation and expression of human zinc transporter 1 (hZIP1) in prostate glands. Methods, 52(4), 316–321.PubMedCrossRef
24.
go back to reference Cooper, J. E., & Farid, I. (1964). The role of citric acid in the physiology of the prostate: lactic/citrate ratios in benign and malignant prostatic homogenates as an index of prostatic malignancy. Journal of Urology, 92, 533–536.PubMed Cooper, J. E., & Farid, I. (1964). The role of citric acid in the physiology of the prostate: lactic/citrate ratios in benign and malignant prostatic homogenates as an index of prostatic malignancy. Journal of Urology, 92, 533–536.PubMed
25.
go back to reference Costello, L. C., & Franklin, R. B. (2006). Tumor cell metabolism: the marriage of molecular genetics and proteomics with cellular intermediary metabolism; proceed with caution! Molecular Cancer. doi:10.1186/1476-4598-5-59. Costello, L. C., & Franklin, R. B. (2006). Tumor cell metabolism: the marriage of molecular genetics and proteomics with cellular intermediary metabolism; proceed with caution! Molecular Cancer. doi:10.​1186/​1476-4598-5-59.
26.
go back to reference Costello, L. C. (2009). The effect of contemporary education and training of biomedical scientists on present and future medical research. Academic Medicine, 84(4), 459–463.PubMedCrossRef Costello, L. C. (2009). The effect of contemporary education and training of biomedical scientists on present and future medical research. Academic Medicine, 84(4), 459–463.PubMedCrossRef
27.
go back to reference Singh, K. K., Desouki, M. M., Franklin, R. B., Costello, L. C. Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues. Molecular Cancer, doi: 10.1186/1476-4598-5-14. Singh, K. K., Desouki, M. M., Franklin, R. B., Costello, L. C. Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues. Molecular Cancer, doi: 10.​1186/​1476-4598-5-14.
28.
go back to reference Costello, L. C., Littleton, G. K., & Franklin, R. B. (1978). Regulation of citrate-related metabolism in normal and neoplastic prostate. In R. K. Sharma & W. E. Criss (Eds.), Endocrine control in neoplasia (pp. 303–314). New York: Raven. Costello, L. C., Littleton, G. K., & Franklin, R. B. (1978). Regulation of citrate-related metabolism in normal and neoplastic prostate. In R. K. Sharma & W. E. Criss (Eds.), Endocrine control in neoplasia (pp. 303–314). New York: Raven.
Metadata
Title
The genetic/metabolic transformation concept of carcinogenesis
Authors
Leslie C. Costello
Renty B. Franklin
Publication date
01-06-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9334-8

Other articles of this Issue 1-2/2012

Cancer and Metastasis Reviews 1-2/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine