Skip to main content
Top
Published in: Pathology & Oncology Research 4/2018

01-10-2018 | Review

The ER – Glycogen Particle – Phagophore Triangle: A Hub Connecting Glycogenolysis and Glycophagy?

Authors: József Mandl, Gábor Bánhegyi

Published in: Pathology & Oncology Research | Issue 4/2018

Login to get access

Abstract

Glycogen particle is an intracellular organelle, which serves as a carbohydrate reserve in various cells. The function of glycogen is not entirely known in several cell types. Glycogen can be mobilized for different purposes, which can be related to cellular metabolic needs, intracellular redox state, metabolic state of the whole organism depending on regulatory aspects and also on cell functions. Essentially there are two different ways of glycogen degradation localized in different cellular organelles: glycogenolysis or lysosomal breakdown by acid alpha-glucosidase. While glycogenolysis occurs in glycogen particles connected to endoplasmic reticulum membrane, glycogen particles can be also combined with phagophores forming autophagosomes. A subdomain of the endoplasmic reticulum membrane - omegasomes - are the sites for phagophore formation. Thus, three organelles, the endoplasmic reticulum, the phagophore and the glycogen particle forms a triangle in which glycogen degradation occurs. The physiological significance, molecular logic and regulation of the two different catabolic paths are summarized and discussed with special aspect on the role of glycogen particles in intracellular organelle homeostasis and on molecular pathology of the cell. Pathological aspects and some diseases connected to the two different degradation pathways of glycogen particles are also detailed.
Literature
1.
go back to reference Adeva-Andany MM, González-Lucán M, Donapetry-García C, Fernández-Fernández C, Ameneiros-Rodríguez E (2016) Glycogen metabolism in humans. Biochem Biophys Acta Clin 5:85–100 Adeva-Andany MM, González-Lucán M, Donapetry-García C, Fernández-Fernández C, Ameneiros-Rodríguez E (2016) Glycogen metabolism in humans. Biochem Biophys Acta Clin 5:85–100
2.
go back to reference Duran J, Guinovart JJ (2015) Brain glycogen in health and disease. Mol Asp Med 46:70–77CrossRef Duran J, Guinovart JJ (2015) Brain glycogen in health and disease. Mol Asp Med 46:70–77CrossRef
3.
go back to reference Csordas G, Varnai P, Golenar T, Roy S, Purkins G, Schneider TG, Balla T, Hajnoczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132CrossRefPubMedPubMedCentral Csordas G, Varnai P, Golenar T, Roy S, Purkins G, Schneider TG, Balla T, Hajnoczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132CrossRefPubMedPubMedCentral
4.
5.
go back to reference Bánhegyi G, Mandl J (2001) The hepatic glycogenoreticular system. POR 7:107–110PubMed Bánhegyi G, Mandl J (2001) The hepatic glycogenoreticular system. POR 7:107–110PubMed
6.
go back to reference Stapleton D, Nelson C, Parsawar K, McClain D, Gilbert-Wilson R, Barker E, Rudd B, Brown K, Hendrix W, O'Donnell P, Parker G (2010) Analysis of hepatic glycogen-associated proteins. Proteomics 10:2320–2329CrossRefPubMedPubMedCentral Stapleton D, Nelson C, Parsawar K, McClain D, Gilbert-Wilson R, Barker E, Rudd B, Brown K, Hendrix W, O'Donnell P, Parker G (2010) Analysis of hepatic glycogen-associated proteins. Proteomics 10:2320–2329CrossRefPubMedPubMedCentral
7.
go back to reference Mandl J, Mészáros T, Bánhegyi G, Csala M (2013) Minireview: Endoplasmic reticulum stress: Control in protein, lipid, and signal homeostasis. Mol Endocrinol 27:384–393CrossRefPubMedPubMedCentral Mandl J, Mészáros T, Bánhegyi G, Csala M (2013) Minireview: Endoplasmic reticulum stress: Control in protein, lipid, and signal homeostasis. Mol Endocrinol 27:384–393CrossRefPubMedPubMedCentral
8.
go back to reference Csala M, Kereszturi É, Mandl J, Bánhegyi G (2012) The endoplasmic reticulum as the extracellular space inside the cell: role in protein folding and glycosylation. Antioxid Redox Signal 16:1100–1108CrossRefPubMed Csala M, Kereszturi É, Mandl J, Bánhegyi G (2012) The endoplasmic reticulum as the extracellular space inside the cell: role in protein folding and glycosylation. Antioxid Redox Signal 16:1100–1108CrossRefPubMed
9.
go back to reference Fawcett DW (1955) Observations on the cytology and electron microscopy of hepatic cells. J Natl Cancer Inst 15:1457–1503 Fawcett DW (1955) Observations on the cytology and electron microscopy of hepatic cells. J Natl Cancer Inst 15:1457–1503
10.
go back to reference Cardell RR Jr (1977) Smooth endoplasmic reticulum in rat hepatocytes during glycogen deposition and depletion. Int Rev Cytol 48:221–279CrossRefPubMed Cardell RR Jr (1977) Smooth endoplasmic reticulum in rat hepatocytes during glycogen deposition and depletion. Int Rev Cytol 48:221–279CrossRefPubMed
11.
go back to reference Bánhegyi G, Garzó T, Antoni F, Mandl J (1988) Glycogenolysis – and not gluconeogenesis – is the source of UDP-glucuronic acid for glucuronidation. Biochim Biophys Acta 967:429–435CrossRefPubMed Bánhegyi G, Garzó T, Antoni F, Mandl J (1988) Glycogenolysis – and not gluconeogenesis – is the source of UDP-glucuronic acid for glucuronidation. Biochim Biophys Acta 967:429–435CrossRefPubMed
12.
go back to reference Mandl J, Bánhegyi G, Kalapos M, Garzó T (1995) Increased oxidation and decreased conjugation of drugs in the liver caused by starvation. (review) Chem. Biol. Interactions 96:87–101 Mandl J, Bánhegyi G, Kalapos M, Garzó T (1995) Increased oxidation and decreased conjugation of drugs in the liver caused by starvation. (review) Chem. Biol. Interactions 96:87–101
13.
go back to reference Helmika W, Wever R (1997) A new model for the membrane topology of glucose-6-phosphatase: the enzyme involved in von Gierke disease. FEBS Lett 409:317–319CrossRef Helmika W, Wever R (1997) A new model for the membrane topology of glucose-6-phosphatase: the enzyme involved in von Gierke disease. FEBS Lett 409:317–319CrossRef
14.
go back to reference Pan CJ, Lei KJ, Annabi B et al (1998) Transmembrane topology of glucose-6-phosphatase. J Biol Chem 273:6144–6148CrossRefPubMed Pan CJ, Lei KJ, Annabi B et al (1998) Transmembrane topology of glucose-6-phosphatase. J Biol Chem 273:6144–6148CrossRefPubMed
15.
16.
go back to reference Clarke DJ, Burchell G (1994) Conjugation-Deconjugation reactions in Drug Metabolism and Toxicity. In: Kauffman FC (ed) Handbook of Experimental Pharmacology, vol 112. Springer Verlag, Budapest, pp 3–43 Clarke DJ, Burchell G (1994) Conjugation-Deconjugation reactions in Drug Metabolism and Toxicity. In: Kauffman FC (ed) Handbook of Experimental Pharmacology, vol 112. Springer Verlag, Budapest, pp 3–43
17.
go back to reference Braun L, Garzo T, Mandl J, Banhegyi G (1994) Ascorbic acid synthesis is stimulated by enhanced glycogenolysis in murine liver. FEBS Lett 352:4–6CrossRefPubMed Braun L, Garzo T, Mandl J, Banhegyi G (1994) Ascorbic acid synthesis is stimulated by enhanced glycogenolysis in murine liver. FEBS Lett 352:4–6CrossRefPubMed
18.
go back to reference Braun L, Csala M, Poussu A, Garzo T, Mandl J, Banhegyi G (1996) Glutathione depletion induces glycogenolysis dependent ascorbate synthesis in isolated murine hepatocytes. FEBS Lett 388:173–176CrossRefPubMed Braun L, Csala M, Poussu A, Garzo T, Mandl J, Banhegyi G (1996) Glutathione depletion induces glycogenolysis dependent ascorbate synthesis in isolated murine hepatocytes. FEBS Lett 388:173–176CrossRefPubMed
19.
go back to reference Banhegyi G, Braun L, Csala M, Puskas F, Mandl J (1997) Ascorbate metabolism and its regulation in animals. Free Radic Biol Med 23:793–803CrossRefPubMed Banhegyi G, Braun L, Csala M, Puskas F, Mandl J (1997) Ascorbate metabolism and its regulation in animals. Free Radic Biol Med 23:793–803CrossRefPubMed
20.
go back to reference Puskas F, Braun L, Csala M, Kardon T, Marcolongo P, Benedetti A, Mandl J, Banhegyi G (1998) Gulonolactone oxidase activity-dependent intravesicular glutathione oxidation in rat liver microsomes. FEBS Lett 430:293–296CrossRefPubMed Puskas F, Braun L, Csala M, Kardon T, Marcolongo P, Benedetti A, Mandl J, Banhegyi G (1998) Gulonolactone oxidase activity-dependent intravesicular glutathione oxidation in rat liver microsomes. FEBS Lett 430:293–296CrossRefPubMed
21.
go back to reference Dzyakanchuk AA, Balázs Z, Nashev LG, Amrein KE, Odermatt A (2009) 11beta-Hydroxysteroid dehydrogenase 1 reductase activity is dependent on a high ratio of NADPH/NADP(+) and is stimulated by extracellular glucose. Mol Cell Endocrinol 301:137–141CrossRefPubMed Dzyakanchuk AA, Balázs Z, Nashev LG, Amrein KE, Odermatt A (2009) 11beta-Hydroxysteroid dehydrogenase 1 reductase activity is dependent on a high ratio of NADPH/NADP(+) and is stimulated by extracellular glucose. Mol Cell Endocrinol 301:137–141CrossRefPubMed
22.
go back to reference Kereszturi É, Kálmán FS, Kardon T, Csala M, Bánhegyi G (2010) Decreased prereceptorial glucocorticoid activating capacity in starvation due to an oxidative shift of pyridine nucleotides in the endoplasmic reticulum. FEBS Lett 584:4703–4708CrossRefPubMed Kereszturi É, Kálmán FS, Kardon T, Csala M, Bánhegyi G (2010) Decreased prereceptorial glucocorticoid activating capacity in starvation due to an oxidative shift of pyridine nucleotides in the endoplasmic reticulum. FEBS Lett 584:4703–4708CrossRefPubMed
23.
go back to reference Stapleton D, Nelson C, Parsawar K, Flores-Opazo M, McClain D, Parker G (2013) The 3T3-L1 adipocyte glycogen proteome. Proteome Sci 22:11CrossRef Stapleton D, Nelson C, Parsawar K, Flores-Opazo M, McClain D, Parker G (2013) The 3T3-L1 adipocyte glycogen proteome. Proteome Sci 22:11CrossRef
24.
go back to reference Jiang S, Heller B, Tagliabracci VS, Zhai L, Irimia JM, DePaoli-Roach AA, Wells CD, Skurat AV, Roach PJ (2010) Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. J Biol Chem 285:34960–34971CrossRefPubMedPubMedCentral Jiang S, Heller B, Tagliabracci VS, Zhai L, Irimia JM, DePaoli-Roach AA, Wells CD, Skurat AV, Roach PJ (2010) Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. J Biol Chem 285:34960–34971CrossRefPubMedPubMedCentral
25.
go back to reference Jiang S, Wells CD, Roach PJ (2011) Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem Biophys Res Commun 413:420–425CrossRefPubMedPubMedCentral Jiang S, Wells CD, Roach PJ (2011) Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem Biophys Res Commun 413:420–425CrossRefPubMedPubMedCentral
26.
go back to reference Rong Y, McPhee CK, Deng S, Huang L, Chen L, Liu M, Tracy K, Baehrecke EH, Yu L, Lenardo MJ (2011) Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc Natl Acad Sci 108:7826–7831CrossRefPubMed Rong Y, McPhee CK, Deng S, Huang L, Chen L, Liu M, Tracy K, Baehrecke EH, Yu L, Lenardo MJ (2011) Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc Natl Acad Sci 108:7826–7831CrossRefPubMed
27.
go back to reference Kotoulas OB, Phillips MJ (1971) Fine structural aspects of the mobilization of hepatic glycogen. I. Acceleration of glycogen breakdown. Am J Pathol 63:1–22PubMedPubMedCentral Kotoulas OB, Phillips MJ (1971) Fine structural aspects of the mobilization of hepatic glycogen. I. Acceleration of glycogen breakdown. Am J Pathol 63:1–22PubMedPubMedCentral
29.
go back to reference Kotoulas OB, Kalamidas SA, Kondomerkos DJ (2006) Glycogen autophagy in glucose homeostasis. Pathol Res Pract 202:631–638CrossRefPubMed Kotoulas OB, Kalamidas SA, Kondomerkos DJ (2006) Glycogen autophagy in glucose homeostasis. Pathol Res Pract 202:631–638CrossRefPubMed
30.
go back to reference Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036CrossRefPubMed Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036CrossRefPubMed
31.
go back to reference Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434CrossRefPubMedPubMedCentral Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434CrossRefPubMedPubMedCentral
32.
go back to reference Kalamidas SA, Kotoulas OB (2000) Glycogen autophagy in newborn rat hepatocytes. Histol Histopathol 15:1011–1018PubMed Kalamidas SA, Kotoulas OB (2000) Glycogen autophagy in newborn rat hepatocytes. Histol Histopathol 15:1011–1018PubMed
33.
go back to reference Kondomerkos DJ, Kalamidas SA, Kotoulas OB, Hann AC (2005) Glycogen autophagy in the liver and heart of newborn rats. The effects of glucagon, adrenalin or rapamycin. Histol Histopathol 20:689–696PubMed Kondomerkos DJ, Kalamidas SA, Kotoulas OB, Hann AC (2005) Glycogen autophagy in the liver and heart of newborn rats. The effects of glucagon, adrenalin or rapamycin. Histol Histopathol 20:689–696PubMed
34.
go back to reference Mellor KM, Varma U, Stapleton DI, Delbridge LM (2014) Cardiomyocyte glycophagy is regulated by insulin and exposure to high extracellular glucose. Am J Physiol Heart Circ Physiol 306:H1240–H1245CrossRefPubMed Mellor KM, Varma U, Stapleton DI, Delbridge LM (2014) Cardiomyocyte glycophagy is regulated by insulin and exposure to high extracellular glucose. Am J Physiol Heart Circ Physiol 306:H1240–H1245CrossRefPubMed
35.
go back to reference Ravikumar B, Stewart A, Kita H, Kato K, Duden R, Rubinsztein DC (2003) Raised intracellular glucose concentrations reduce aggregation and cell death caused by mutant huntingtin exon 1 by decreasing mTOR phosphorylation and inducing autophagy. Hum Mol Genet 12:985–994CrossRefPubMed Ravikumar B, Stewart A, Kita H, Kato K, Duden R, Rubinsztein DC (2003) Raised intracellular glucose concentrations reduce aggregation and cell death caused by mutant huntingtin exon 1 by decreasing mTOR phosphorylation and inducing autophagy. Hum Mol Genet 12:985–994CrossRefPubMed
36.
go back to reference Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701CrossRefPubMedPubMedCentral Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701CrossRefPubMedPubMedCentral
37.
go back to reference Ahn HH, Oh Y, Lee H, Lee W, Chang JW, Pyo HK, Nah do H, Jung YK (2015) Identification of glucose-6-phosphate transporter as a key regulator functioning at the autophagy initiation step. FEBS Lett 589:2100–2109CrossRefPubMed Ahn HH, Oh Y, Lee H, Lee W, Chang JW, Pyo HK, Nah do H, Jung YK (2015) Identification of glucose-6-phosphate transporter as a key regulator functioning at the autophagy initiation step. FEBS Lett 589:2100–2109CrossRefPubMed
38.
go back to reference Chatelain F, Pegorier JP, Minassian C, Bruni N, Tarpin S, Girard J, Mithieux G (1998) Development and regulation of glucose-6-phosphatase gene expression in rat liver, intestine, and kidney: in vivo and in vitro studies in cultured fetal hepatocytes. Diabetes 47:882–889CrossRefPubMed Chatelain F, Pegorier JP, Minassian C, Bruni N, Tarpin S, Girard J, Mithieux G (1998) Development and regulation of glucose-6-phosphatase gene expression in rat liver, intestine, and kidney: in vivo and in vitro studies in cultured fetal hepatocytes. Diabetes 47:882–889CrossRefPubMed
39.
go back to reference Froissart R, Piraud M, Boudjemline AM, Vianey-Saban C, Petit F, Hubert-Buron A, Eberschweiler PT, Gajdos V, Labrune P (2011) Glucose-6-phosphatase deficiency. Orphanet J Rare Dis 6:27CrossRefPubMedPubMedCentral Froissart R, Piraud M, Boudjemline AM, Vianey-Saban C, Petit F, Hubert-Buron A, Eberschweiler PT, Gajdos V, Labrune P (2011) Glucose-6-phosphatase deficiency. Orphanet J Rare Dis 6:27CrossRefPubMedPubMedCentral
40.
go back to reference Cavanagh JB (1999) Corpora-amylacea and the family of polyglucosan diseases. Brain Res Brain Res Rev 29:265–295CrossRefPubMed Cavanagh JB (1999) Corpora-amylacea and the family of polyglucosan diseases. Brain Res Brain Res Rev 29:265–295CrossRefPubMed
41.
go back to reference Mandl J, Meszaros K, Antoni F, Spolarics Z, Garzo T (1982) Reversible inhibition of RNA synthesis and irreversible inhibition of protein synthesis by D-galactosamine in isolated mouse hepatocytes. Mol Cell Biochem 46:25–30CrossRefPubMed Mandl J, Meszaros K, Antoni F, Spolarics Z, Garzo T (1982) Reversible inhibition of RNA synthesis and irreversible inhibition of protein synthesis by D-galactosamine in isolated mouse hepatocytes. Mol Cell Biochem 46:25–30CrossRefPubMed
42.
go back to reference Farah BL, Landau DJ, Sinha RA, Brooks ED, Wu Y, Fung SY, Tanaka T, Hirayama M, Bay BH, Koeberl DD, Yen PM (2016) Induction of autophagy improves hepatic lipid metabolism in glucose-6-phosphatase deficiency. J Hepatol 64:370–379CrossRefPubMed Farah BL, Landau DJ, Sinha RA, Brooks ED, Wu Y, Fung SY, Tanaka T, Hirayama M, Bay BH, Koeberl DD, Yen PM (2016) Induction of autophagy improves hepatic lipid metabolism in glucose-6-phosphatase deficiency. J Hepatol 64:370–379CrossRefPubMed
43.
go back to reference Jeon JY, Lee H, Park J, Lee M, Park SW, Kim JS, Lee M, Cho B, Kim K, Choi AM, Kim CK, Yun M (2015) The regulation of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase by autophagy in low-glycolytic hepatocellular carcinoma cells. Biochem Biophys Res Commun 463:440–446CrossRefPubMed Jeon JY, Lee H, Park J, Lee M, Park SW, Kim JS, Lee M, Cho B, Kim K, Choi AM, Kim CK, Yun M (2015) The regulation of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase by autophagy in low-glycolytic hepatocellular carcinoma cells. Biochem Biophys Res Commun 463:440–446CrossRefPubMed
44.
go back to reference Kaur J, Debnath J (2015) Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol 16:461–472CrossRefPubMed Kaur J, Debnath J (2015) Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol 16:461–472CrossRefPubMed
45.
go back to reference Rousset M, Zweibaum A, Fogh J (1981) Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins. Cancer Res 41:1165–1170PubMed Rousset M, Zweibaum A, Fogh J (1981) Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins. Cancer Res 41:1165–1170PubMed
46.
go back to reference Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, Kamphorst JJ, Chen G, Lemons JM, Karantza V et al (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25:460–470CrossRefPubMedPubMedCentral Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, Kamphorst JJ, Chen G, Lemons JM, Karantza V et al (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25:460–470CrossRefPubMedPubMedCentral
47.
go back to reference Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell'antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N, Kimmelman AC (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25:717–729CrossRefPubMedPubMedCentral Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell'antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N, Kimmelman AC (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25:717–729CrossRefPubMedPubMedCentral
48.
go back to reference Kapuy O, Vinod PK, Mandl J, Bánhegyi G (2013) A cellular stress-directed bistable switch controls the crosstalk between autophagy and apoptosis. Mol BioSyst 9:296–306CrossRefPubMed Kapuy O, Vinod PK, Mandl J, Bánhegyi G (2013) A cellular stress-directed bistable switch controls the crosstalk between autophagy and apoptosis. Mol BioSyst 9:296–306CrossRefPubMed
51.
go back to reference Lashinger LM, O’Flanagan CH, Dunlap SM, Rasmussen AJ, Sweeney S, Guo JY, Lodi A, Tiziani S, White E, Hursting SD (2016) Starving cancer from the outside and inside: Separate and combined effects of calorie restriction and autophagy inhibition on Ras-driven tumors. Cancer Metab 4:18CrossRefPubMedPubMedCentral Lashinger LM, O’Flanagan CH, Dunlap SM, Rasmussen AJ, Sweeney S, Guo JY, Lodi A, Tiziani S, White E, Hursting SD (2016) Starving cancer from the outside and inside: Separate and combined effects of calorie restriction and autophagy inhibition on Ras-driven tumors. Cancer Metab 4:18CrossRefPubMedPubMedCentral
52.
Metadata
Title
The ER – Glycogen Particle – Phagophore Triangle: A Hub Connecting Glycogenolysis and Glycophagy?
Authors
József Mandl
Gábor Bánhegyi
Publication date
01-10-2018
Publisher
Springer Netherlands
Published in
Pathology & Oncology Research / Issue 4/2018
Print ISSN: 1219-4956
Electronic ISSN: 1532-2807
DOI
https://doi.org/10.1007/s12253-018-0446-0

Other articles of this Issue 4/2018

Pathology & Oncology Research 4/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine