Skip to main content
Top
Published in: European Journal of Applied Physiology 3/2015

01-03-2015 | Invited Review

The energy cost of sprint running and the role of metabolic power in setting top performances

Authors: Pietro E. di Prampero, Alberto Botter, Cristian Osgnach

Published in: European Journal of Applied Physiology | Issue 3/2015

Login to get access

Abstract

Purpose

To estimate the energetics and biomechanics of accelerated/decelerated running on flat terrain based on its biomechanical similarity to constant speed running up/down an ‘equivalent slope’ dictated by the forward acceleration (a f).

Methods

Time course of a f allows one to estimate: (1) energy cost of sprint running (C sr), from the known energy cost of uphill/downhill running, and (2) instantaneous (specific) mechanical accelerating power (P sp = a f × speed).

Results

In medium-level sprinters (MLS), C sr and metabolic power requirement (P met = C sr × speed) at the onset of a 100-m dash attain ≈50 J kg−1 m−1, as compared to ≈4 for running at constant speed, and ≈90 W kg−1. For Bolt’s current 100-m world record (9.58 s) the corresponding values attain ≈105 J kg−1 m−1 and ≈200 W kg−1. This approach, as applied by Osgnach et al. (Med Sci Sports Exerc 42:170–178, 2010) to data obtained by video-analysis during soccer games, has been implemented in portable GPS devices (GPEXE©), thus yielding P met throughout the match. Actual O2 consumed, estimated from P met assuming a monoexponential VO2 response (Patent Pending, TV2014A000074), was close to that determined by portable metabolic carts. Peak P sp (W kg−1) was 17.5 and 19.6 for MLS and elite soccer players, and 30 for Bolt. The ratio of horizontal to overall ground reaction force (per kg body mass) was ≈20 % larger, and its angle of application in respect to the horizontal ≈10° smaller, for Bolt, as compared to MLS. Finally, we estimated that, on a 10 % down-sloping track Bolt could cover 100 m in 8.2 s.

Conclusions

The above approach can yield useful information on the bioenergetics and biomechanics of accelerated/decelerated running.
Literature
go back to reference Antonutto G, di Prampero PE (1995) The concept of lactate threshold. A short review. J Sports Med Phys Fitness 35:6–12PubMed Antonutto G, di Prampero PE (1995) The concept of lactate threshold. A short review. J Sports Med Phys Fitness 35:6–12PubMed
go back to reference Arsac LM (2002) Effects of altitude on the energetics of human best performances in 100-m running: a theoretical analysis. Eur J Appl Physiol 87:78–84CrossRefPubMed Arsac LM (2002) Effects of altitude on the energetics of human best performances in 100-m running: a theoretical analysis. Eur J Appl Physiol 87:78–84CrossRefPubMed
go back to reference Arsac LM, Locatelli E (2002) Modelling the energetics of 100-m running by using speed curves of world champions. J Appl Physiol 92:1781–1788PubMed Arsac LM, Locatelli E (2002) Modelling the energetics of 100-m running by using speed curves of world champions. J Appl Physiol 92:1781–1788PubMed
go back to reference Beneke R, Taylor MJD (2010) What gives Bolt the edge: A.V. Hill knew it already. J Biomech 43:2241–2243CrossRefPubMed Beneke R, Taylor MJD (2010) What gives Bolt the edge: A.V. Hill knew it already. J Biomech 43:2241–2243CrossRefPubMed
go back to reference Buglione A, di Prampero PE (2013) The energy cost of shuttle running. Eur J Appl Physiol 113:1535–1543CrossRefPubMed Buglione A, di Prampero PE (2013) The energy cost of shuttle running. Eur J Appl Physiol 113:1535–1543CrossRefPubMed
go back to reference Capelli C, Cautero M, Pogliaghi S (2011) Algorithms, modelling and VO2 kinetics. Eur J Appl Physiol 111:331–342CrossRefPubMed Capelli C, Cautero M, Pogliaghi S (2011) Algorithms, modelling and VO2 kinetics. Eur J Appl Physiol 111:331–342CrossRefPubMed
go back to reference di Prampero PE (1986) The energy cost of human locomotion on land and in water. Int J Sports Med 7:55–72CrossRefPubMed di Prampero PE (1986) The energy cost of human locomotion on land and in water. Int J Sports Med 7:55–72CrossRefPubMed
go back to reference di Prampero PE, Piiper J (2003) Effects of shortening velocity and of oxygen consumption on efficiency of contraction in dog gastrocnemius. Eur J Appl Physiol 90:270–274CrossRefPubMed di Prampero PE, Piiper J (2003) Effects of shortening velocity and of oxygen consumption on efficiency of contraction in dog gastrocnemius. Eur J Appl Physiol 90:270–274CrossRefPubMed
go back to reference di Prampero PE, Piñera Limas F, Sassi G (1970) Maximal muscular power, aerobic and anaerobic, in 116 athletes performing at the XIXth Olympic Games in Mexico. Ergonomics 13:665–674CrossRefPubMed di Prampero PE, Piñera Limas F, Sassi G (1970) Maximal muscular power, aerobic and anaerobic, in 116 athletes performing at the XIXth Olympic Games in Mexico. Ergonomics 13:665–674CrossRefPubMed
go back to reference di Prampero PE, Capelli C, Pagliaro P, Antonutto G, Girardis M, Zamparo P, Soule RG (1993) Energetics of best performances in middle-distance running. J Appl Physiol 74:2318–2324CrossRefPubMed di Prampero PE, Capelli C, Pagliaro P, Antonutto G, Girardis M, Zamparo P, Soule RG (1993) Energetics of best performances in middle-distance running. J Appl Physiol 74:2318–2324CrossRefPubMed
go back to reference di Prampero PE, Fusi S, Sepulcri L, Morin JB, Belli A, Antonutto G (2005) Sprint running: a new energetic approach. J Exp Biol 208:2809–2816CrossRefPubMed di Prampero PE, Fusi S, Sepulcri L, Morin JB, Belli A, Antonutto G (2005) Sprint running: a new energetic approach. J Exp Biol 208:2809–2816CrossRefPubMed
go back to reference Fenn WO (1930a) Frictional and kinetic factors in the work of sprint running. Am J Physiol 92:583–611 Fenn WO (1930a) Frictional and kinetic factors in the work of sprint running. Am J Physiol 92:583–611
go back to reference Fenn WO (1930b) Work against gravity and work due to velocity changes in running. Am J Physiol 93:433–462 Fenn WO (1930b) Work against gravity and work due to velocity changes in running. Am J Physiol 93:433–462
go back to reference Hernandez Gomez JJ, Marquina V, Gomez RW (2013) On the performance of Usain Bolt in the 100 m sprint. Eur J Phys 34:1227–1233CrossRef Hernandez Gomez JJ, Marquina V, Gomez RW (2013) On the performance of Usain Bolt in the 100 m sprint. Eur J Phys 34:1227–1233CrossRef
go back to reference Kersting UG (1998) Biomechanical analysis of the sprinting events. In: Brüggemann G-P, Kszewski D, Müller H (eds) Biomechanical research project Athens 1997. Final report. Meyer & Meyer Sport, Oxford, pp 12–61 Kersting UG (1998) Biomechanical analysis of the sprinting events. In: Brüggemann G-P, Kszewski D, Müller H (eds) Biomechanical research project Athens 1997. Final report. Meyer & Meyer Sport, Oxford, pp 12–61
go back to reference Lacour JR, Bourdin M (2015). Factors affecting the energy cost of level running at submaximal speed. Eur J Appl Physiol (in press) Lacour JR, Bourdin M (2015). Factors affecting the energy cost of level running at submaximal speed. Eur J Appl Physiol (in press)
go back to reference Margaria R (1938) Sulla fisiologia e specialmente sul consumo energetico della marcia e della corsa a varia velocità ed inclinazione del terreno. Atti Acc Naz Lincei 6:299–368 Margaria R (1938) Sulla fisiologia e specialmente sul consumo energetico della marcia e della corsa a varia velocità ed inclinazione del terreno. Atti Acc Naz Lincei 6:299–368
go back to reference Margaria R, Aghemo P, Rovelli E (1965) Measurement of muscular power (anaerobic) in man. J Appl Physiol 21:1662–1664 Margaria R, Aghemo P, Rovelli E (1965) Measurement of muscular power (anaerobic) in man. J Appl Physiol 21:1662–1664
go back to reference Margaria R, di Prampero PE, Derevenco P, Aghemo P, Mariani M (1971) Effect of a steady state exercise on maximal anaerobic power in man. J Appl Physiol 30:885–889PubMed Margaria R, di Prampero PE, Derevenco P, Aghemo P, Mariani M (1971) Effect of a steady state exercise on maximal anaerobic power in man. J Appl Physiol 30:885–889PubMed
go back to reference Mero A, Komi PV, Gregor RJ (1992) Biomechanics of sprint running. A review. Sports Med 13:376–392CrossRefPubMed Mero A, Komi PV, Gregor RJ (1992) Biomechanics of sprint running. A review. Sports Med 13:376–392CrossRefPubMed
go back to reference Minetti AE, Ardigò LP, Saibene F (1994) Mechanical determinants of the minimum energy cost of gradient running in humans. J Exp Biol 195:211–225PubMed Minetti AE, Ardigò LP, Saibene F (1994) Mechanical determinants of the minimum energy cost of gradient running in humans. J Exp Biol 195:211–225PubMed
go back to reference Minetti AE, Moia C, Roi GS, Susta D, Ferretti G (2002) Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol 93:1039–1046PubMed Minetti AE, Moia C, Roi GS, Susta D, Ferretti G (2002) Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol 93:1039–1046PubMed
go back to reference Minetti AE, Gaudino P, Seminati E, Cazzola D (2012) The cost of transport of human running is not affected, as in walking, by wide acceleration/deceleration cycles. J Appl Physiol 114:498–503CrossRefPubMed Minetti AE, Gaudino P, Seminati E, Cazzola D (2012) The cost of transport of human running is not affected, as in walking, by wide acceleration/deceleration cycles. J Appl Physiol 114:498–503CrossRefPubMed
go back to reference Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR (2012) Mechanical determinants of 100-m sprint running. Eur J Appl Physiol 112:3921–3930CrossRefPubMed Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR (2012) Mechanical determinants of 100-m sprint running. Eur J Appl Physiol 112:3921–3930CrossRefPubMed
go back to reference Murase Y, Hoshikawa T, Yasuda N, Ikegami Y, Matsui H (1976) Analysis of the changes in progressive speed during 100-meter dash. In: Komi PV (ed) Biomechanics V-B. University Park Press, Baltimore, pp 200–207 Murase Y, Hoshikawa T, Yasuda N, Ikegami Y, Matsui H (1976) Analysis of the changes in progressive speed during 100-meter dash. In: Komi PV (ed) Biomechanics V-B. University Park Press, Baltimore, pp 200–207
go back to reference Osgnach C, Poser S, Bernardini R, Rinaldo R, di Prampero PE (2010) Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports Exerc 42:170–178CrossRefPubMed Osgnach C, Poser S, Bernardini R, Rinaldo R, di Prampero PE (2010) Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports Exerc 42:170–178CrossRefPubMed
go back to reference Plamondon A, Roy B (1984) Cinématique et cinétique de la course accélérée. Can J Appl Sport Sci 9:42–52PubMed Plamondon A, Roy B (1984) Cinématique et cinétique de la course accélérée. Can J Appl Sport Sci 9:42–52PubMed
go back to reference Stølen T, Chamari K, Castagna C, Wisløff U (2005) Physiology of soccer: an update. Sports Med 35(6):501–536CrossRefPubMed Stølen T, Chamari K, Castagna C, Wisløff U (2005) Physiology of soccer: an update. Sports Med 35(6):501–536CrossRefPubMed
go back to reference Summers RL (1997) Physiology and biophysics of 100-m sprint. News Physiol Sci 12:131–136 Summers RL (1997) Physiology and biophysics of 100-m sprint. News Physiol Sci 12:131–136
go back to reference Taylor MJD, Beneke R (2012) Spring mass characteristics of the fastest men on Earth. Int J Sports Med 33:667–670CrossRefPubMed Taylor MJD, Beneke R (2012) Spring mass characteristics of the fastest men on Earth. Int J Sports Med 33:667–670CrossRefPubMed
go back to reference van Ingen Schenau GJ, Jacobs R, de Koning J (1991) Can cycle power predict sprint running performance? Eur J Appl Physiol 63:255–260CrossRef van Ingen Schenau GJ, Jacobs R, de Koning J (1991) Can cycle power predict sprint running performance? Eur J Appl Physiol 63:255–260CrossRef
go back to reference van Ingen Schenau GJ, de Koning JJ, de Groot G (1994) Optimization of sprinting performance in running, cycling and speed skating. Sports Med 17:259–275CrossRefPubMed van Ingen Schenau GJ, de Koning JJ, de Groot G (1994) Optimization of sprinting performance in running, cycling and speed skating. Sports Med 17:259–275CrossRefPubMed
go back to reference Ward-Smith AJ, Radford PF (2000) Investigation of the kinetics of anaerobic metabolism by analysis of the performance of elite sprinters. J Biomech 33:997–1004CrossRefPubMed Ward-Smith AJ, Radford PF (2000) Investigation of the kinetics of anaerobic metabolism by analysis of the performance of elite sprinters. J Biomech 33:997–1004CrossRefPubMed
go back to reference Wilson AM, Lowe JC, Roskilly K, Hudson PE, Gobalek KA, McNutt JW (2013) Locomotion dynamics of hunting in wild cheetahs. Nature 498:185–189CrossRefPubMed Wilson AM, Lowe JC, Roskilly K, Hudson PE, Gobalek KA, McNutt JW (2013) Locomotion dynamics of hunting in wild cheetahs. Nature 498:185–189CrossRefPubMed
Metadata
Title
The energy cost of sprint running and the role of metabolic power in setting top performances
Authors
Pietro E. di Prampero
Alberto Botter
Cristian Osgnach
Publication date
01-03-2015
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Applied Physiology / Issue 3/2015
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-014-3086-4

Other articles of this Issue 3/2015

European Journal of Applied Physiology 3/2015 Go to the issue