Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2018

Open Access 01-12-2018 | Research article

The effect of two β-alanine dosing strategies on 30-minute rowing performance: a randomized, controlled trial

Authors: Liam Beasley, Lee Smith, Jose Antonio, Dan Gordon, James Johnstone, Justin Roberts

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2018

Login to get access

Abstract

Background

β-alanine (βA) supplementation has been shown to increase intramuscular carnosine content and subsequent high-intensity performance in events lasting < 4 minutes (min), which may be dependent on total, as opposed to daily, dose. The ergogenic effect of βA has also been demonstrated for 2000-m rowing performance prompting interest in whether βA may be beneficial for sustained aerobic exercise. This study therefore investigated the effect of two βA dosing strategies on 30-min rowing and subsequent sprint performance.

Methods

Following University Ethics approval, twenty-seven healthy, male rowers (age: 24 ± 2 years; body-height: 1.81 ± 0.02 m; body-mass: 82.3 ± 2.5 kg; body-fat: 14.2 ± 1.0%) were randomised in a double-blind manner to 4 weeks of: i) βA (2.4 g·d− 1, βA1); ii) matched total βA (4.8 g on alternate days, βA2); or iii) cornflour placebo (2.4 g·d− 1, PL). Participants completed a laboratory 30-min rowing time-trial, followed by 3x30-seconds (s) maximal sprint efforts at days 0, 14 and 28 (T1-T3). Total distance (m), average power (W), relative average power (W·kg− 1), cardio-respiratory measures and perceived exertion were assessed for each 10-min split. Blood lactate ([La-]b mmol·L− 1) was monitored pre-post time-trial and following maximal sprint efforts. A 3-way repeated measures ANOVA was employed for main analyses, with Bonferonni post-hoc assessment (P ≤ 0.05).

Results

Total 30-min time-trial distance significantly increased from T1-T3 within βA1 only (7397 ± 195 m to 7580 ± 171 m, P = 0.002, ƞp2 = 0.196), including absolute average power (194.8 ± 18.3 W to 204.2 ± 15.5 W, P = 0.04, ƞp2 = 0.115) and relative average power output (2.28 ± 0.15 W·kg− 1 to 2.41 ± 0.12 W·kg− 1, P = 0.031, ƞp2 = 0.122). These findings were potentially explained by within-group significance for the same variables for the first 10 min split (P ≤ 0.01), and for distance covered (P = 0.01) in the second 10-min split. However, no condition x time interactions were observed. No significant effects were found for sprint variables (P > 0.05) with comparable values at T3 for mean distance (βA1: 163.9 ± 3.8 m; βA2: 161.2 ± 3.5 m; PL: 162.7 ± 3.6 m), average power (βA1: 352.7 ± 14.5 W; βA2: 342.2 ± 13.5 W; PL: 348.2 ± 13.9 W) and lactate (βA1: 10.0 ± 0.9 mmol·L− 1; βA2: 9.2 ± 1.1 mmol·L− 1; PL: 8.7 ± 0.9 mmol·L− 1).

Conclusions

Whilst daily βA may confer individual benefits, these results demonstrate limited impact of βA (irrespective of dosing strategy) on 30-min rowing or subsequent sprint performance. Further investigation of βA dosage > 2.4 g·d− 1 and/or chronic intervention periods (> 4–8 weeks) may be warranted based on within-group observations.
Literature
1.
go back to reference Harris RC, Tallon M, Dunnett M, Boobis L, Coakley J, Kim HJ, et al. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006;30:279–89.PubMedCrossRef Harris RC, Tallon M, Dunnett M, Boobis L, Coakley J, Kim HJ, et al. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006;30:279–89.PubMedCrossRef
2.
go back to reference Stellingwerff T, Anwander H, Egger A, Buehler T, Kreis R, Decombaz J, et al. Effect of two β-alanine dosing protocols on muscle carnosine synthesis and washout. Amino Acids. 2012;42(6):2461–72.PubMedCrossRef Stellingwerff T, Anwander H, Egger A, Buehler T, Kreis R, Decombaz J, et al. Effect of two β-alanine dosing protocols on muscle carnosine synthesis and washout. Amino Acids. 2012;42(6):2461–72.PubMedCrossRef
3.
go back to reference Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, et al. Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007;32(2):225–33.PubMedCrossRef Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, et al. Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007;32(2):225–33.PubMedCrossRef
4.
go back to reference Derave W, Ozdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K, et al. β-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol. 2007;103(5):1736–43.PubMedCrossRef Derave W, Ozdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K, et al. β-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol. 2007;103(5):1736–43.PubMedCrossRef
5.
go back to reference Sale C, Saunders B, Harris RC. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids. 2010;39(2):321–33.PubMedCrossRef Sale C, Saunders B, Harris RC. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids. 2010;39(2):321–33.PubMedCrossRef
7.
go back to reference Tallon MJ, Harris RC, Boobis LH, Fallowfield JL, Wise JA. The carnosine content of vastus lateralis is elevated in resistance-trained bodybuilders. J Strength Cond Res. 2005;19(4):725–9.PubMed Tallon MJ, Harris RC, Boobis LH, Fallowfield JL, Wise JA. The carnosine content of vastus lateralis is elevated in resistance-trained bodybuilders. J Strength Cond Res. 2005;19(4):725–9.PubMed
8.
go back to reference Quinn PJ, Boldyrev AA, Formazuyk VE. Carnosine: its properties, functions and potential therapeutic applications. Mol Asp Med. 1992;13(5):379–444.CrossRef Quinn PJ, Boldyrev AA, Formazuyk VE. Carnosine: its properties, functions and potential therapeutic applications. Mol Asp Med. 1992;13(5):379–444.CrossRef
9.
go back to reference Saunders B, Elliott-Sale K, Artioli GG, Swinton PA, Dolan E, Roschel H, et al. β-Alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med. 2016;51(8):658.PubMedCrossRef Saunders B, Elliott-Sale K, Artioli GG, Swinton PA, Dolan E, Roschel H, et al. β-Alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med. 2016;51(8):658.PubMedCrossRef
10.
go back to reference Van Thienen R, Van Proeyen K, Vanden Eynde B, Puype J, Lefere T, Hespel P. Beta-alanine improves sprint performance in endurance cycling. Med Sci Sports Exerc. 2009;41(4):898–903.PubMedCrossRef Van Thienen R, Van Proeyen K, Vanden Eynde B, Puype J, Lefere T, Hespel P. Beta-alanine improves sprint performance in endurance cycling. Med Sci Sports Exerc. 2009;41(4):898–903.PubMedCrossRef
11.
go back to reference de Andrade Kratz C, de Salles Painelli V, de Andrade Nemezio KM, da Silva RP, Franchini E, Zagatto AM, et al. Beta-alanine supplementation enhances judo-related performance in highly-trained athletes. Med Sci Sports Exerc. 2017;20(4):403–8.CrossRef de Andrade Kratz C, de Salles Painelli V, de Andrade Nemezio KM, da Silva RP, Franchini E, Zagatto AM, et al. Beta-alanine supplementation enhances judo-related performance in highly-trained athletes. Med Sci Sports Exerc. 2017;20(4):403–8.CrossRef
12.
go back to reference Ducker KJ, Dawson B, Wallman KE. Effect of beta-alanine supplementation on 800-m running performance. Int J Sport Nutr Exerc Metab. 2013;23(6):554–61.PubMedCrossRef Ducker KJ, Dawson B, Wallman KE. Effect of beta-alanine supplementation on 800-m running performance. Int J Sport Nutr Exerc Metab. 2013;23(6):554–61.PubMedCrossRef
13.
go back to reference Ducker KJ, Dawson B, Wallman KE. Effect of Beta-alanine supplementation on 2,000-m rowing-ergometer performance. Int J Sport Nutr Exerc Metab. 2013;23(4):336–43.PubMedCrossRef Ducker KJ, Dawson B, Wallman KE. Effect of Beta-alanine supplementation on 2,000-m rowing-ergometer performance. Int J Sport Nutr Exerc Metab. 2013;23(4):336–43.PubMedCrossRef
14.
go back to reference Trexler ET, Smith-Ryan AE, Stout JR, Hoffman JR, Wilborn CD, Sale C, et al. International Society of Sports Nutrition Position Stand: Beta-alanine. J Int Soc Sports Nutr. 2015;12(1):1–14.CrossRef Trexler ET, Smith-Ryan AE, Stout JR, Hoffman JR, Wilborn CD, Sale C, et al. International Society of Sports Nutrition Position Stand: Beta-alanine. J Int Soc Sports Nutr. 2015;12(1):1–14.CrossRef
15.
go back to reference Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5(3):276–91.PubMedCrossRef Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5(3):276–91.PubMedCrossRef
16.
go back to reference Steinacker JM, Lormes W, Lehmann M, Altenburg D. Training of rowers before world championships. Med Sci Sports Exerc. 1998;30(7):1158–63.PubMedCrossRef Steinacker JM, Lormes W, Lehmann M, Altenburg D. Training of rowers before world championships. Med Sci Sports Exerc. 1998;30(7):1158–63.PubMedCrossRef
17.
go back to reference Fiskerstrand Å, Seiler KS. Training and performance characteristics among Norwegian international rowers 1970–2001. Scand J Med Sci Sports. 2004;14(5):303–10.PubMedCrossRef Fiskerstrand Å, Seiler KS. Training and performance characteristics among Norwegian international rowers 1970–2001. Scand J Med Sci Sports. 2004;14(5):303–10.PubMedCrossRef
18.
go back to reference Arne G, Stephen S, Eike E. Training methods and intensity distribution of young world-class rowers. Int J Sports Physiol Perform. 2009;4(4):448–60.CrossRef Arne G, Stephen S, Eike E. Training methods and intensity distribution of young world-class rowers. Int J Sports Physiol Perform. 2009;4(4):448–60.CrossRef
19.
go back to reference Baguet A, Bourgois J, Vanhee L, Achten E, Derave W. Important role of muscle carnosine in rowing performance. J Appl Physiol. 2010;109(4):1096–101.PubMedCrossRef Baguet A, Bourgois J, Vanhee L, Achten E, Derave W. Important role of muscle carnosine in rowing performance. J Appl Physiol. 2010;109(4):1096–101.PubMedCrossRef
20.
go back to reference Abe H. Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Mosc). 2000;65(7):757–65. Abe H. Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Mosc). 2000;65(7):757–65.
21.
go back to reference Hobson RM, Harris RC, Martin D, Smith P, Macklin B, Gualano B, et al. Effect of beta-alanine with and without sodium bicarbonate on 2,000-m rowing performance. Int J Sport Nutr Exerc Metab. 2013;23(5):480–7.PubMedCrossRef Hobson RM, Harris RC, Martin D, Smith P, Macklin B, Gualano B, et al. Effect of beta-alanine with and without sodium bicarbonate on 2,000-m rowing performance. Int J Sport Nutr Exerc Metab. 2013;23(5):480–7.PubMedCrossRef
22.
go back to reference Shephard RJ. Science and medicine of rowing: a review. J Sports Sci. 1998;16(7):603–20.CrossRef Shephard RJ. Science and medicine of rowing: a review. J Sports Sci. 1998;16(7):603–20.CrossRef
23.
go back to reference Stellingwerff T, Maughan RJ, Burke LM. Nutrition for power sports: middle-distance running, track cycling, rowing, canoeing/kayaking, and swimming. J Sports Sci. 2011;29(sup1):S79–89.PubMedCrossRef Stellingwerff T, Maughan RJ, Burke LM. Nutrition for power sports: middle-distance running, track cycling, rowing, canoeing/kayaking, and swimming. J Sports Sci. 2011;29(sup1):S79–89.PubMedCrossRef
24.
go back to reference Dutka TL, Lamboley CR, McKenna MJ, Murphy RM, Lamb GD. Effects of carnosine on contractile apparatus Ca2+ sensitivity and sarcoplasmic reticulum Ca2+ release in human skeletal muscle fibers. J Appl Physiol. 2011;112(5):728–36.PubMedCrossRef Dutka TL, Lamboley CR, McKenna MJ, Murphy RM, Lamb GD. Effects of carnosine on contractile apparatus Ca2+ sensitivity and sarcoplasmic reticulum Ca2+ release in human skeletal muscle fibers. J Appl Physiol. 2011;112(5):728–36.PubMedCrossRef
25.
go back to reference Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013;93(4):1803–45.PubMedCrossRef Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013;93(4):1803–45.PubMedCrossRef
26.
go back to reference Kohen R, Yamamoto Y, Cundy KC, Ames BN. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci U S A. 1988;85(9):3175–9.PubMedPubMedCentralCrossRef Kohen R, Yamamoto Y, Cundy KC, Ames BN. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci U S A. 1988;85(9):3175–9.PubMedPubMedCentralCrossRef
27.
go back to reference Church DD, Hoffman JR, Varanoske AN, Wang R, Baker KM, La Monica MB, et al. Comparison of two β-alanine dosing protocols on muscle carnosine elevations. J Am Coll Nutr. 2017;36(8):608–16.PubMedCrossRef Church DD, Hoffman JR, Varanoske AN, Wang R, Baker KM, La Monica MB, et al. Comparison of two β-alanine dosing protocols on muscle carnosine elevations. J Am Coll Nutr. 2017;36(8):608–16.PubMedCrossRef
28.
go back to reference Currell K. Ergogenic aids. In: Hopker J, Jobson S, editors. Performance cycling: the science of success. London: A&C Black; 2012. p. 180–1. Currell K. Ergogenic aids. In: Hopker J, Jobson S, editors. Performance cycling: the science of success. London: A&C Black; 2012. p. 180–1.
29.
go back to reference Stellingwerff T, Decombaz J, Harris RC, Boesch C. Optimizing human in vivo dosing and delivery of β-alanine supplements for muscle carnosine synthesis. Amino Acids. 2012;43(1):57–65.PubMedCrossRef Stellingwerff T, Decombaz J, Harris RC, Boesch C. Optimizing human in vivo dosing and delivery of β-alanine supplements for muscle carnosine synthesis. Amino Acids. 2012;43(1):57–65.PubMedCrossRef
30.
go back to reference Kelly VG, Leveritt MD, Brennan CT, Slater GJ, Jenkins DG. Prevalence, knowledge and attitudes relating to β-alanine use among professional footballers. J Sci Med Sport. 2017;20(1):12–6.PubMedCrossRef Kelly VG, Leveritt MD, Brennan CT, Slater GJ, Jenkins DG. Prevalence, knowledge and attitudes relating to β-alanine use among professional footballers. J Sci Med Sport. 2017;20(1):12–6.PubMedCrossRef
31.
go back to reference Everaert I, Mooyaart A, Baguet A, Zutinic A, Baelde H, Achten E, et al. Vegetarianism, female gender and increasing age, but not CNDP1 genotype, are associated with reduced muscle carnosine levels in humans. Amino Acids. 2011;40(4):1221–9.PubMedCrossRef Everaert I, Mooyaart A, Baguet A, Zutinic A, Baelde H, Achten E, et al. Vegetarianism, female gender and increasing age, but not CNDP1 genotype, are associated with reduced muscle carnosine levels in humans. Amino Acids. 2011;40(4):1221–9.PubMedCrossRef
32.
go back to reference Baguet A, Reyngoudt H, Pottier A, Everaert I, Callens S, Achten E, et al. Carnosine loading and washout in human skeletal muscles. J Appl Physiol. 2009;106(3):837–42.PubMedCrossRef Baguet A, Reyngoudt H, Pottier A, Everaert I, Callens S, Achten E, et al. Carnosine loading and washout in human skeletal muscles. J Appl Physiol. 2009;106(3):837–42.PubMedCrossRef
33.
go back to reference Derave W, Everaert I, Beeckman S, Baguet A. Muscle carnosine metabolism and β-alanine supplementation in relation to exercise and training. Sports Med. 2010;40(3):247–63.PubMedCrossRef Derave W, Everaert I, Beeckman S, Baguet A. Muscle carnosine metabolism and β-alanine supplementation in relation to exercise and training. Sports Med. 2010;40(3):247–63.PubMedCrossRef
34.
go back to reference Bassett DR, Howley ET, Thompson DL, King GA, Strath SJ, McLaughlin JE, et al. Validity of inspiratory and expiratory methods of measuring gas exchange with a computerized system. J Appl Physiol. 2001;91(1):218–24.PubMedCrossRef Bassett DR, Howley ET, Thompson DL, King GA, Strath SJ, McLaughlin JE, et al. Validity of inspiratory and expiratory methods of measuring gas exchange with a computerized system. J Appl Physiol. 2001;91(1):218–24.PubMedCrossRef
35.
go back to reference K C, Jeukendrup AE. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008;38(4):297–316.CrossRef K C, Jeukendrup AE. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008;38(4):297–316.CrossRef
36.
go back to reference Borg G. Ratings of perceived exertion and heart rates during short term cycle exercise and their use in a new strength test. Int J Sports Med. 1982;3(3):153–8.PubMedCrossRef Borg G. Ratings of perceived exertion and heart rates during short term cycle exercise and their use in a new strength test. Int J Sports Med. 1982;3(3):153–8.PubMedCrossRef
37.
go back to reference Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, et al. The effects of 10 weeks of resistance training combined with β-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids. 2008;34(4):547–54.PubMedCrossRef Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, et al. The effects of 10 weeks of resistance training combined with β-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids. 2008;34(4):547–54.PubMedCrossRef
38.
go back to reference Kendrick IP, Kim HJ, Harris RC, Kim CK, Dang VH, Lam TQ, et al. The effect of 4 weeks β-alanine supplementation and isokinetic training on carnosine concentrations in type I and II human skeletal muscle fibres. Eur J Appl Physiol. 2009;106(1):131–8.PubMedCrossRef Kendrick IP, Kim HJ, Harris RC, Kim CK, Dang VH, Lam TQ, et al. The effect of 4 weeks β-alanine supplementation and isokinetic training on carnosine concentrations in type I and II human skeletal muscle fibres. Eur J Appl Physiol. 2009;106(1):131–8.PubMedCrossRef
39.
go back to reference Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika. 1965;52(3/4):591–611.CrossRef Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika. 1965;52(3/4):591–611.CrossRef
40.
go back to reference Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, et al. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr. 2018;15(1):38.PubMedPubMedCentralCrossRef Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, et al. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr. 2018;15(1):38.PubMedPubMedCentralCrossRef
41.
go back to reference Santana JO, Freitas MC, dos Santos DM, Rossi FE, Lira FS, Neto R, et al. Beta-alanine supplementation improved 10-km running time trial in physically active adults. Frontiers Physiol. 2018;9:1105.CrossRef Santana JO, Freitas MC, dos Santos DM, Rossi FE, Lira FS, Neto R, et al. Beta-alanine supplementation improved 10-km running time trial in physically active adults. Frontiers Physiol. 2018;9:1105.CrossRef
42.
go back to reference Suzuki Y, Ito O, Mukai N, Takahashi H, Takamatsu K. High level of skeletal muscle carnosine contributes to the latter half of exercise performance during 30-s maximal cycle ergometer sprinting. Jpn J Physiol. 2002;52(2):199–205.PubMedCrossRef Suzuki Y, Ito O, Mukai N, Takahashi H, Takamatsu K. High level of skeletal muscle carnosine contributes to the latter half of exercise performance during 30-s maximal cycle ergometer sprinting. Jpn J Physiol. 2002;52(2):199–205.PubMedCrossRef
43.
go back to reference Parkhouse WS, McKenzie DC, Hochachka PW, Ovalle WK. Buffering capacity of deproteinized human vastus lateralis muscle. J Appl Physiol. 1985;58(1):14–7.PubMedCrossRef Parkhouse WS, McKenzie DC, Hochachka PW, Ovalle WK. Buffering capacity of deproteinized human vastus lateralis muscle. J Appl Physiol. 1985;58(1):14–7.PubMedCrossRef
44.
go back to reference Robertson RJ, Falkel JE, Drash AL, Swank AM, Metz KF, Spungen SA, et al. Effect of induced alkalosis on physical work capacity during arm and leg exercise. Ergonomics. 1987;30(1):19–31.PubMedCrossRef Robertson RJ, Falkel JE, Drash AL, Swank AM, Metz KF, Spungen SA, et al. Effect of induced alkalosis on physical work capacity during arm and leg exercise. Ergonomics. 1987;30(1):19–31.PubMedCrossRef
46.
go back to reference Stout JR, Graves BS, Smith AE, Hartman MJ, Cramer JT, Beck TW, et al. The effect of beta-alanine supplementation on neuromuscular fatigue in elderly (55–92 years): a double-blind randomized study. J Int Soc Sports Nutr. 2008;5(1):21.PubMedPubMedCentralCrossRef Stout JR, Graves BS, Smith AE, Hartman MJ, Cramer JT, Beck TW, et al. The effect of beta-alanine supplementation on neuromuscular fatigue in elderly (55–92 years): a double-blind randomized study. J Int Soc Sports Nutr. 2008;5(1):21.PubMedPubMedCentralCrossRef
47.
go back to reference Décombaz J, Beaumont M, Vuichoud J, Bouisset F. Stellingwerff. Effect of slow-release β-alanine tablets on absorption kinetics and paresthesia. Amino Acids. 2012;43(1):67–76.PubMedCrossRef Décombaz J, Beaumont M, Vuichoud J, Bouisset F. Stellingwerff. Effect of slow-release β-alanine tablets on absorption kinetics and paresthesia. Amino Acids. 2012;43(1):67–76.PubMedCrossRef
48.
go back to reference Varanoske AN, Hoffman JR, Church DD, Coker NA, Baker KM, Dodd SJ, et al. Comparison of sustained-release and rapid-release β-alanine formulations on changes in skeletal muscle carnosine and histidine content and isometric performance following a muscle-damaging protocol. Amino Acids. 2018:1–2. https://www.ncbi.nlm.nih.gov/pubmed/30003336. Epub ahead of print. Varanoske AN, Hoffman JR, Church DD, Coker NA, Baker KM, Dodd SJ, et al. Comparison of sustained-release and rapid-release β-alanine formulations on changes in skeletal muscle carnosine and histidine content and isometric performance following a muscle-damaging protocol. Amino Acids. 2018:1–2. https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​30003336. Epub ahead of print.
49.
go back to reference Saunders B, de Salles Painelli V, De Oliveira LF, da Eira Silva V, Da Silva RP, Riani L, et al. Twenty-four weeks of β-alanine supplementation on carnosine content, related genes, and exercise. Med Sci Sports Exerc. 2017;49(5):896–906.PubMedCrossRef Saunders B, de Salles Painelli V, De Oliveira LF, da Eira Silva V, Da Silva RP, Riani L, et al. Twenty-four weeks of β-alanine supplementation on carnosine content, related genes, and exercise. Med Sci Sports Exerc. 2017;49(5):896–906.PubMedCrossRef
Metadata
Title
The effect of two β-alanine dosing strategies on 30-minute rowing performance: a randomized, controlled trial
Authors
Liam Beasley
Lee Smith
Jose Antonio
Dan Gordon
James Johnstone
Justin Roberts
Publication date
01-12-2018
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-018-0266-3

Other articles of this Issue 1/2018

Journal of the International Society of Sports Nutrition 1/2018 Go to the issue