Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2018

Open Access 01-12-2018 | Research article

Low-fat diet, and medium-fat diets containing coconut oil and soybean oil exert different metabolic effects in untrained and treadmill-trained mice

Authors: Mark Christian Manio, Shigenobu Matsumura, Kazuo Inoue

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2018

Login to get access

Abstract

Background

Diets containing fats of different proportions and types have been demonstrated to influence metabolism. These fats differ in long chain fatty acids (LCFAs) or medium chain fatty acids (MCFAs) content. In our laboratory using swimming as the training modality, MCFAs increased endurance attributed to increased activities of oxidative enzymes. How it affects whole-body metabolism remains unexplored. The present study investigated the metabolic, biochemical and genetic adaptations with treadmill running as the training modality.

Methods

C57BL/6N mice were divided into untrained and trained groups and provided with low-fat (10% kcal from soybean oil), coconut oil (10% kcal from soybean oil, 20% kcal from coconut oil) or soybean oil (30% kcal from soybean oil) diet. Training was performed on a treadmill for 30 days. After recovery, whole-body metabolism at rest and during exercise, endurance, substrate metabolism, mitochondrial enzyme activities, and gene expression of training-adaptive genes in the muscle and liver were measured.

Results

At rest, medium-fat diets decreased respiratory exchange ratio (RER) (p < 0.05). Training increased RER in all diet groups without affecting oxygen consumption (p < 0.05). During exercise, diets had no overt effects on metabolism while training decreased oxygen consumption indicating decreased energy expenditure (p < 0.05). Coconut oil without training improved endurance based on work (p < 0.05). Training improved all endurance parameters without overt effects of diet (p < 0.05). Moreover, training increased the activities of mitochondrial enzymes likely related to the increased expression of estrogen related receptor (ERR) α and ERRβ (p < 0.05). Coconut oil inhibited peroxisome proliferator-activated receptor (PPAR) β/δ activation and glycogen accumulation in the muscle but activated PPARα in the liver in the trained state (p < 0.05). Substrate utilization data suggested that coconut oil and/or resulting ketone bodies spared glycogen utilization in the trained muscle during exercise thereby preserving endurance.

Conclusion

Our data demonstrated the various roles of diet and fat types in training adaptation. Diets exerted different roles in PPAR activation and substrate handling in the context of endurance exercise training. However, the role of fat types in training adaptations is limited as training overwhelms and normalizes the effects of diet in the untrained state particularly on endurance performance, mitochondrial biogenesis, and ERR expression.
Literature
1.
go back to reference Amri IN. The Lauric (coconut and palm kernel) oils. In: Gunstone FD, editor. Vegetable oils in food technology. West Sussex: Wiley-Blackwell; 2011. p. 169–97. Amri IN. The Lauric (coconut and palm kernel) oils. In: Gunstone FD, editor. Vegetable oils in food technology. West Sussex: Wiley-Blackwell; 2011. p. 169–97.
2.
go back to reference Dayrit FM. The properties of Lauric acid and their significance in coconut oil. J Am Oil Chem Soc. 2015;92:1–15.CrossRef Dayrit FM. The properties of Lauric acid and their significance in coconut oil. J Am Oil Chem Soc. 2015;92:1–15.CrossRef
3.
go back to reference Wang J, Wang X, Li J, Chen Y, Yang W, Zhang L. Effects of dietary coconut oil as a medium-chain fatty acid source on performance, carcass composition and serum lipids in male broilers. Asian-Australas J Anim Sci. 2015;28:223–30.CrossRefPubMedPubMedCentral Wang J, Wang X, Li J, Chen Y, Yang W, Zhang L. Effects of dietary coconut oil as a medium-chain fatty acid source on performance, carcass composition and serum lipids in male broilers. Asian-Australas J Anim Sci. 2015;28:223–30.CrossRefPubMedPubMedCentral
4.
go back to reference Wang T. Soybean Oil. In: Gunstone FD, editor. Vegetable oils in food technology. West Sussex: Wiley-Blackwell; 2011. p. 59–105. Wang T. Soybean Oil. In: Gunstone FD, editor. Vegetable oils in food technology. West Sussex: Wiley-Blackwell; 2011. p. 59–105.
5.
go back to reference Groot PHE, Hülsmann WC. The activation and oxidation of octanoate and palmitate by rat skeletal muscle mitochondria. Biochim Biophys Acta BBA - Lipids Lipid Metab. 1973;316:124–35.CrossRef Groot PHE, Hülsmann WC. The activation and oxidation of octanoate and palmitate by rat skeletal muscle mitochondria. Biochim Biophys Acta BBA - Lipids Lipid Metab. 1973;316:124–35.CrossRef
6.
go back to reference Crozier GL. Medium-chain triglyceride feeding over the long term: the metabolic fate of [14C]octanoate and [14C]oleate in isolated rat hepatocytes. J Nutr. 1988;118:297–304.CrossRefPubMed Crozier GL. Medium-chain triglyceride feeding over the long term: the metabolic fate of [14C]octanoate and [14C]oleate in isolated rat hepatocytes. J Nutr. 1988;118:297–304.CrossRefPubMed
7.
go back to reference Pégorier JP, Duée PH, Herbin C, Laulan PY, Bladé C, Peret J, et al. Fatty acid metabolism in hepatocytes isolated from rats adapted to high-fat diets containing long- or medium-chain triacylglycerols. Biochem J. 1988;249:801–6.CrossRefPubMedPubMedCentral Pégorier JP, Duée PH, Herbin C, Laulan PY, Bladé C, Peret J, et al. Fatty acid metabolism in hepatocytes isolated from rats adapted to high-fat diets containing long- or medium-chain triacylglycerols. Biochem J. 1988;249:801–6.CrossRefPubMedPubMedCentral
8.
go back to reference Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162–84.CrossRefPubMed Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162–84.CrossRefPubMed
9.
go back to reference Fan W, Evans R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr Opin Cell Biol. 2015;33:49–54.CrossRefPubMed Fan W, Evans R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr Opin Cell Biol. 2015;33:49–54.CrossRefPubMed
10.
go back to reference Georgiadi A, Kersten S. Mechanisms of gene regulation by fatty acids. Adv Nutr Int Rev J. 2012;3:127–34.CrossRef Georgiadi A, Kersten S. Mechanisms of gene regulation by fatty acids. Adv Nutr Int Rev J. 2012;3:127–34.CrossRef
11.
go back to reference Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and. gamma Proc Natl Acad Sci U S A. 1997;94:4318–23.CrossRefPubMed Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and. gamma Proc Natl Acad Sci U S A. 1997;94:4318–23.CrossRefPubMed
12.
go back to reference Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, et al. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell. 1999;3:397–403.CrossRefPubMed Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, et al. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell. 1999;3:397–403.CrossRefPubMed
13.
go back to reference Liberato MV, Nascimento AS, Ayers SD, Lin JZ, Cvoro A, Silveira RL, et al. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists. PLoS One. 2012;7:e36297.CrossRefPubMedPubMedCentral Liberato MV, Nascimento AS, Ayers SD, Lin JZ, Cvoro A, Silveira RL, et al. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists. PLoS One. 2012;7:e36297.CrossRefPubMedPubMedCentral
14.
go back to reference Malapaka RRV, Khoo S, Zhang J, Choi JH, Zhou XE, Xu Y, et al. Identification and mechanism of 10-carbon fatty acid as modulating ligand of peroxisome proliferator-activated receptors. J Biol Chem. 2012;287:183–95.CrossRefPubMed Malapaka RRV, Khoo S, Zhang J, Choi JH, Zhou XE, Xu Y, et al. Identification and mechanism of 10-carbon fatty acid as modulating ligand of peroxisome proliferator-activated receptors. J Biol Chem. 2012;287:183–95.CrossRefPubMed
15.
go back to reference Montgomery MK, Osborne B, Brown SHJ, Small L, Mitchell TW, Cooney GJ, et al. Contrasting metabolic effects of medium- versus long-chain fatty acids in skeletal muscle. J Lipid Res. 2013;54:3322–33.CrossRefPubMedPubMedCentral Montgomery MK, Osborne B, Brown SHJ, Small L, Mitchell TW, Cooney GJ, et al. Contrasting metabolic effects of medium- versus long-chain fatty acids in skeletal muscle. J Lipid Res. 2013;54:3322–33.CrossRefPubMedPubMedCentral
16.
go back to reference Lim J-H, Gerhart-Hines Z, Dominy JE, Lee Y, Kim S, Tabata M, et al. Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1α complex. J Biol Chem. 2013;288:7117–26.CrossRefPubMedPubMedCentral Lim J-H, Gerhart-Hines Z, Dominy JE, Lee Y, Kim S, Tabata M, et al. Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1α complex. J Biol Chem. 2013;288:7117–26.CrossRefPubMedPubMedCentral
17.
go back to reference Turner N, Hariharan K, TidAng J, Frangioudakis G, Beale SM, Wright LE, et al. Enhancement of muscle mitochondrial oxidative capacity and alterations in insulin action are lipid species dependent. Diabetes. 2009;58:2547–54.CrossRefPubMedPubMedCentral Turner N, Hariharan K, TidAng J, Frangioudakis G, Beale SM, Wright LE, et al. Enhancement of muscle mitochondrial oxidative capacity and alterations in insulin action are lipid species dependent. Diabetes. 2009;58:2547–54.CrossRefPubMedPubMedCentral
18.
go back to reference Greschik H, Wurtz J-M, Sanglier S, Bourguet W, van Dorsselaer A, Moras D, et al. Structural and functional evidence for ligand-independent transcriptional activation by the estrogen-related receptor 3. Mol Cell. 2002;9:303–13.CrossRefPubMed Greschik H, Wurtz J-M, Sanglier S, Bourguet W, van Dorsselaer A, Moras D, et al. Structural and functional evidence for ligand-independent transcriptional activation by the estrogen-related receptor 3. Mol Cell. 2002;9:303–13.CrossRefPubMed
19.
go back to reference Willy PJ, Murray IR, Qian J, Busch BB, Stevens WC, Martin R, et al. Regulation of PPARγ coactivator 1α (PGC-1α) signaling by an estrogen-related receptor α (ERRα) ligand. Proc Natl Acad Sci U S A. 2004;101:8912–7.CrossRefPubMedPubMedCentral Willy PJ, Murray IR, Qian J, Busch BB, Stevens WC, Martin R, et al. Regulation of PPARγ coactivator 1α (PGC-1α) signaling by an estrogen-related receptor α (ERRα) ligand. Proc Natl Acad Sci U S A. 2004;101:8912–7.CrossRefPubMedPubMedCentral
20.
go back to reference Fushiki T, Matsumoto K, Inoue K, Kawada T, Sugimoto E. Swimming endurance capacity of mice is increased by chronic consumption of medium-chain triglycerides. J Nutr. 1995;125:531–9.PubMed Fushiki T, Matsumoto K, Inoue K, Kawada T, Sugimoto E. Swimming endurance capacity of mice is increased by chronic consumption of medium-chain triglycerides. J Nutr. 1995;125:531–9.PubMed
21.
go back to reference Ooyama K, Wu J, Nosaka N, Aoyama T, Kasai M. Combined intervention of medium-chain triacylglycerol diet and exercise reduces body fat mass and enhances energy expenditure in rats. J Nutr Sci Vitaminol (Tokyo). 2008;54:136–41.CrossRef Ooyama K, Wu J, Nosaka N, Aoyama T, Kasai M. Combined intervention of medium-chain triacylglycerol diet and exercise reduces body fat mass and enhances energy expenditure in rats. J Nutr Sci Vitaminol (Tokyo). 2008;54:136–41.CrossRef
22.
go back to reference Murray AJ, Knight NS, Little SE, Cochlin LE, Clements M, Clarke K. Dietary long-chain, but not medium-chain, triglycerides impair exercise performance and uncouple cardiac mitochondria in rats. Nutr Metab. 2011;8:55.CrossRef Murray AJ, Knight NS, Little SE, Cochlin LE, Clements M, Clarke K. Dietary long-chain, but not medium-chain, triglycerides impair exercise performance and uncouple cardiac mitochondria in rats. Nutr Metab. 2011;8:55.CrossRef
23.
go back to reference Manio MCC, Matsumura S, Masuda D, Inoue K. CD36 is essential for endurance improvement, changes in whole-body metabolism, and efficient PPAR-related transcriptional responses in the muscle with exercise training. Physiol Rep. 2017;5 https://doi.org/10.14814/phy2.13282. Manio MCC, Matsumura S, Masuda D, Inoue K. CD36 is essential for endurance improvement, changes in whole-body metabolism, and efficient PPAR-related transcriptional responses in the muscle with exercise training. Physiol Rep. 2017;5 https://​doi.​org/​10.​14814/​phy2.​13282.
25.
go back to reference Folch J, Lees M, GHS S. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509.PubMed Folch J, Lees M, GHS S. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509.PubMed
26.
go back to reference Good CA, Kramer H, Somogyi M. The determination of glycogen. J Biol Chem. 1933;100:485–91. Good CA, Kramer H, Somogyi M. The determination of glycogen. J Biol Chem. 1933;100:485–91.
27.
go back to reference Sahyun M, Alsberg CL. Studies on glycogen the hydrolysis of glycogen in various concentrations of acids, and the hydrolysis of glycogen with Takadiastase. J Biol Chem. 1931;93:235–54. Sahyun M, Alsberg CL. Studies on glycogen the hydrolysis of glycogen in various concentrations of acids, and the hydrolysis of glycogen with Takadiastase. J Biol Chem. 1931;93:235–54.
28.
go back to reference Holloway GP, Thrush AB, Heigenhauser GJF, Tandon NN, Dyck DJ, Bonen A, et al. Skeletal muscle mitochondrial FAT/CD36 content and palmitate oxidation are not decreased in obese women. Am J Physiol Endocrinol Metab. 2007;292:E1782–9.CrossRefPubMed Holloway GP, Thrush AB, Heigenhauser GJF, Tandon NN, Dyck DJ, Bonen A, et al. Skeletal muscle mitochondrial FAT/CD36 content and palmitate oxidation are not decreased in obese women. Am J Physiol Endocrinol Metab. 2007;292:E1782–9.CrossRefPubMed
29.
go back to reference Williamson DH, Bates MW, Page MA, Krebs HA. Activities of enzymes involved in acetoacetate utilization in adult mammalian tissues. Biochem J. 1971;121:41–7.CrossRefPubMedPubMedCentral Williamson DH, Bates MW, Page MA, Krebs HA. Activities of enzymes involved in acetoacetate utilization in adult mammalian tissues. Biochem J. 1971;121:41–7.CrossRefPubMedPubMedCentral
30.
go back to reference Srere PA. Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. Pp. 3–11 in J. M. Lowenstein, ed., Methods in enzymology, citric acid cycle. New York: Academic Press; 1969. Srere PA. Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. Pp. 3–11 in J. M. Lowenstein, ed., Methods in enzymology, citric acid cycle. New York: Academic Press; 1969.
31.
go back to reference MacArthur DG, Seto JT, Chan S, Quinlan KGR, Raftery JM, Turner N, et al. An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Hum Mol Genet. 2008;17:1076–86.CrossRefPubMed MacArthur DG, Seto JT, Chan S, Quinlan KGR, Raftery JM, Turner N, et al. An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Hum Mol Genet. 2008;17:1076–86.CrossRefPubMed
32.
go back to reference Spinazzi M, Casarin A, Pertegato V, Salviati L, Angelini C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc. 2012;7:1235–46.CrossRefPubMed Spinazzi M, Casarin A, Pertegato V, Salviati L, Angelini C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc. 2012;7:1235–46.CrossRefPubMed
33.
go back to reference Williamson DH, Bates MW, Krebs HA. Activity and intracellular distribution of enzymes of ketone-body metabolism in rat liver. Biochem J. 1968;108:353–61.CrossRefPubMedPubMedCentral Williamson DH, Bates MW, Krebs HA. Activity and intracellular distribution of enzymes of ketone-body metabolism in rat liver. Biochem J. 1968;108:353–61.CrossRefPubMedPubMedCentral
34.
go back to reference Cappelli K, Felicetti M, Capomaccio S, Spinsanti G, Silvestrelli M, Supplizi AV. Exercise induced stress in horses: selection of the most stable reference genes for quantitative RT-PCR normalization. BMC Mol Biol. 2008;9:49.CrossRefPubMedPubMedCentral Cappelli K, Felicetti M, Capomaccio S, Spinsanti G, Silvestrelli M, Supplizi AV. Exercise induced stress in horses: selection of the most stable reference genes for quantitative RT-PCR normalization. BMC Mol Biol. 2008;9:49.CrossRefPubMedPubMedCentral
35.
go back to reference Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol. 2012;590:3349–60.CrossRefPubMedPubMedCentral Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol. 2012;590:3349–60.CrossRefPubMedPubMedCentral
36.
go back to reference Fukao T, Lopaschuk GD, Mitchell GA. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids. 2004;70:243–51.CrossRefPubMed Fukao T, Lopaschuk GD, Mitchell GA. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids. 2004;70:243–51.CrossRefPubMed
37.
go back to reference Li Y, Park J-S, Deng J-H, Bai Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr. 2006;38:283–91.CrossRefPubMedPubMedCentral Li Y, Park J-S, Deng J-H, Bai Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr. 2006;38:283–91.CrossRefPubMedPubMedCentral
38.
go back to reference Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in Ketotic states. Cell Metab. 2007;5:426–37.CrossRefPubMed Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in Ketotic states. Cell Metab. 2007;5:426–37.CrossRefPubMed
39.
go back to reference Mizunoya W, Iwamoto Y, Shirouchi B, Sato M, Komiya Y, Razin FR, et al. Dietary fat influences the expression of contractile and metabolic genes in rat skeletal muscle. PLoS One. 2013;8:e80152.CrossRefPubMedPubMedCentral Mizunoya W, Iwamoto Y, Shirouchi B, Sato M, Komiya Y, Razin FR, et al. Dietary fat influences the expression of contractile and metabolic genes in rat skeletal muscle. PLoS One. 2013;8:e80152.CrossRefPubMedPubMedCentral
40.
go back to reference Patsouris D, Reddy JK, Müller M, Kersten S. Peroxisome proliferator-activated receptor alpha mediates the effects of high-fat diet on hepatic gene expression. Endocrinology. 2006;147:1508–16.CrossRefPubMed Patsouris D, Reddy JK, Müller M, Kersten S. Peroxisome proliferator-activated receptor alpha mediates the effects of high-fat diet on hepatic gene expression. Endocrinology. 2006;147:1508–16.CrossRefPubMed
41.
go back to reference Hill AM, Buckley JD, Murphy KJ, Howe PR. Combining fish-oil supplements with regular aerobic exercise improves body composition and cardiovascular disease risk factors. Am J Clin Nutr. 2007;85:1267–74.CrossRefPubMed Hill AM, Buckley JD, Murphy KJ, Howe PR. Combining fish-oil supplements with regular aerobic exercise improves body composition and cardiovascular disease risk factors. Am J Clin Nutr. 2007;85:1267–74.CrossRefPubMed
42.
go back to reference Simi B, Sempore B, Mayet MH, Favier RJ. Additive effects of training and high-fat diet on energy metabolism during exercise. J Appl Physiol. 1991;71:197–203.CrossRefPubMed Simi B, Sempore B, Mayet MH, Favier RJ. Additive effects of training and high-fat diet on energy metabolism during exercise. J Appl Physiol. 1991;71:197–203.CrossRefPubMed
43.
go back to reference Bach AC, Ingenbleek Y, Frey A. The usefulness of dietary medium-chain triglycerides in body weight control: fact or fancy? J Lipid Res. 1996;37:708–26.PubMed Bach AC, Ingenbleek Y, Frey A. The usefulness of dietary medium-chain triglycerides in body weight control: fact or fancy? J Lipid Res. 1996;37:708–26.PubMed
44.
go back to reference Hildebrandt AL, Pilegaard H, Neufer PD. Differential transcriptional activation of select metabolic genes in response to variations in exercise intensity and duration. Am J Physiol - Endocrinol Metab. 2003;285:E1021–7.CrossRefPubMed Hildebrandt AL, Pilegaard H, Neufer PD. Differential transcriptional activation of select metabolic genes in response to variations in exercise intensity and duration. Am J Physiol - Endocrinol Metab. 2003;285:E1021–7.CrossRefPubMed
45.
go back to reference Pilegaard H, Ordway GA, Saltin B, Neufer PD. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol - Endocrinol Metab. 2000;279:E806–14.CrossRefPubMed Pilegaard H, Ordway GA, Saltin B, Neufer PD. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol - Endocrinol Metab. 2000;279:E806–14.CrossRefPubMed
47.
go back to reference Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol. 1983;55:628–34.CrossRefPubMed Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol. 1983;55:628–34.CrossRefPubMed
48.
go back to reference Hood DA. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2009;34:465–72.CrossRef Hood DA. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2009;34:465–72.CrossRef
49.
go back to reference Rangwala SM, Wang X, Calvo JA, Lindsley L, Zhang Y, Deyneko G, et al. Estrogen-related receptor gamma is a key regulator of muscle mitochondrial activity and oxidative capacity. J Biol Chem. 2010;285:22619–29.CrossRefPubMedPubMedCentral Rangwala SM, Wang X, Calvo JA, Lindsley L, Zhang Y, Deyneko G, et al. Estrogen-related receptor gamma is a key regulator of muscle mitochondrial activity and oxidative capacity. J Biol Chem. 2010;285:22619–29.CrossRefPubMedPubMedCentral
50.
go back to reference Lai RYJ, Ljubicic V, D’souza D, Hood DA. Effect of chronic contractile activity on mRNA stability in skeletal muscle. Am J Physiol - Cell Physiol. 2010;299:C155–63.CrossRefPubMedPubMedCentral Lai RYJ, Ljubicic V, D’souza D, Hood DA. Effect of chronic contractile activity on mRNA stability in skeletal muscle. Am J Physiol - Cell Physiol. 2010;299:C155–63.CrossRefPubMedPubMedCentral
51.
go back to reference Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol. 2003;546(Pt 3):851–8.CrossRefPubMedPubMedCentral Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol. 2003;546(Pt 3):851–8.CrossRefPubMedPubMedCentral
52.
go back to reference Alaynick WA, Kondo RP, Xie W, He W, Dufour CR, Downes M, et al. ERRγ directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab. 2007;6:13–24.CrossRefPubMed Alaynick WA, Kondo RP, Xie W, He W, Dufour CR, Downes M, et al. ERRγ directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab. 2007;6:13–24.CrossRefPubMed
53.
go back to reference Liu D, Zhang Z, Teng CT. Estrogen-related receptor-gamma and peroxisome proliferator-activated receptor-gamma coactivator-1alpha regulate estrogen-related receptor-alpha gene expression via a conserved multi-hormone response element. J Mol Endocrinol. 2005;34:473–87.CrossRefPubMed Liu D, Zhang Z, Teng CT. Estrogen-related receptor-gamma and peroxisome proliferator-activated receptor-gamma coactivator-1alpha regulate estrogen-related receptor-alpha gene expression via a conserved multi-hormone response element. J Mol Endocrinol. 2005;34:473–87.CrossRefPubMed
54.
go back to reference Kannisto K, Chibalin A, Glinghammar B, Zierath JR, Hamsten A, Ehrenborg E. Differential expression of peroxisomal proliferator activated receptors α and δ in skeletal muscle in response to changes in diet and exercise. Int J Mol Med. 2006;17:45–52.PubMed Kannisto K, Chibalin A, Glinghammar B, Zierath JR, Hamsten A, Ehrenborg E. Differential expression of peroxisomal proliferator activated receptors α and δ in skeletal muscle in response to changes in diet and exercise. Int J Mol Med. 2006;17:45–52.PubMed
55.
go back to reference Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM, et al. Nuclear receptors PPARβ/δ and PPARα direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest. 2007;117:3930–9.PubMedPubMedCentral Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM, et al. Nuclear receptors PPARβ/δ and PPARα direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest. 2007;117:3930–9.PubMedPubMedCentral
56.
go back to reference Kleiner S, Nguyen-Tran V, Baré O, Huang X, Spiegelman B, Wu Z. PPAR{delta} agonism activates fatty acid oxidation via PGC-1{alpha} but does not increase mitochondrial gene expression and function. J Biol Chem. 2009;284:18624–33.CrossRefPubMedPubMedCentral Kleiner S, Nguyen-Tran V, Baré O, Huang X, Spiegelman B, Wu Z. PPAR{delta} agonism activates fatty acid oxidation via PGC-1{alpha} but does not increase mitochondrial gene expression and function. J Biol Chem. 2009;284:18624–33.CrossRefPubMedPubMedCentral
57.
go back to reference Tanaka T, Yamamoto J, Iwasaki S, Asaba H, Hamura H, Ikeda Y, et al. Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci U S A. 2003;100:15924–9.CrossRefPubMedPubMedCentral Tanaka T, Yamamoto J, Iwasaki S, Asaba H, Hamura H, Ikeda Y, et al. Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci U S A. 2003;100:15924–9.CrossRefPubMedPubMedCentral
58.
go back to reference Yuan H, Lu J, Xiao J, Upadhyay G, Umans R, Kallakury B, et al. PPARδ induces estrogen receptor-positive mammary neoplasia through an inflammatory and metabolic phenotype linked to mTOR activation. Cancer Res. 2013;73:4349–61.CrossRefPubMedPubMedCentral Yuan H, Lu J, Xiao J, Upadhyay G, Umans R, Kallakury B, et al. PPARδ induces estrogen receptor-positive mammary neoplasia through an inflammatory and metabolic phenotype linked to mTOR activation. Cancer Res. 2013;73:4349–61.CrossRefPubMedPubMedCentral
59.
go back to reference McFarlan JT, Yoshida Y, Jain SS, Han X-X, Snook LA, Lally J, et al. In vivo, fatty acid translocase (CD36) critically regulates skeletal muscle fuel selection, exercise performance, and training-induced adaptation of fatty acid oxidation. J Biol Chem. 2012;287:23502–16.CrossRefPubMedPubMedCentral McFarlan JT, Yoshida Y, Jain SS, Han X-X, Snook LA, Lally J, et al. In vivo, fatty acid translocase (CD36) critically regulates skeletal muscle fuel selection, exercise performance, and training-induced adaptation of fatty acid oxidation. J Biol Chem. 2012;287:23502–16.CrossRefPubMedPubMedCentral
60.
go back to reference Muoio DM, Way JM, Tanner CJ, Winegar DA, Kliewer SA, Houmard JA, et al. Peroxisome proliferator-activated receptor-α regulates fatty acid utilization in primary human skeletal muscle cells. Diabetes. 2002;51:901–9.CrossRefPubMed Muoio DM, Way JM, Tanner CJ, Winegar DA, Kliewer SA, Houmard JA, et al. Peroxisome proliferator-activated receptor-α regulates fatty acid utilization in primary human skeletal muscle cells. Diabetes. 2002;51:901–9.CrossRefPubMed
61.
go back to reference Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 1996;15:5336–48.PubMedPubMedCentralCrossRef Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 1996;15:5336–48.PubMedPubMedCentralCrossRef
62.
go back to reference Auclair E, Satabin P, Servan E, Guezennec CY. Metabolic effects of glucose, medium chain triglyceride and long chain triglyceride feeding before prolonged exercise in rats. Eur J Appl Physiol. 1988;57:126–31.CrossRef Auclair E, Satabin P, Servan E, Guezennec CY. Metabolic effects of glucose, medium chain triglyceride and long chain triglyceride feeding before prolonged exercise in rats. Eur J Appl Physiol. 1988;57:126–31.CrossRef
63.
go back to reference Pinckaers PJM, Churchward-Venne TA, Bailey D, van Loon LJC. Ketone bodies and exercise performance: the next magic bullet or merely hype? Sports Med Auckl Nz. 2017;47:383–91.CrossRef Pinckaers PJM, Churchward-Venne TA, Bailey D, van Loon LJC. Ketone bodies and exercise performance: the next magic bullet or merely hype? Sports Med Auckl Nz. 2017;47:383–91.CrossRef
64.
go back to reference Saitoh S, Shimomura Y, Suzuki M. Effect of a high-carbohydrate diet intake on muscle glycogen repletion after exercise in rats previously fed a high-fat diet. Eur J Appl Physiol. 1993;66:127–33.CrossRef Saitoh S, Shimomura Y, Suzuki M. Effect of a high-carbohydrate diet intake on muscle glycogen repletion after exercise in rats previously fed a high-fat diet. Eur J Appl Physiol. 1993;66:127–33.CrossRef
65.
go back to reference Satabin P, Bois-Joyeux B, Chanez M, Guezennec CY, Peret J. Effects of long-term feeding of high-protein or high-fat diets on the response to exercise in the rat. Eur J Appl Physiol. 1989;58:583–90.CrossRef Satabin P, Bois-Joyeux B, Chanez M, Guezennec CY, Peret J. Effects of long-term feeding of high-protein or high-fat diets on the response to exercise in the rat. Eur J Appl Physiol. 1989;58:583–90.CrossRef
66.
go back to reference Maizels EZ, Ruderman NB, Goodman MN, Lau D. Effect of acetoacetate on glucose metabolism in the soleus and extensor digitorum longus muscles of the rat. Biochem J. 1977;162:557–68.CrossRefPubMedPubMedCentral Maizels EZ, Ruderman NB, Goodman MN, Lau D. Effect of acetoacetate on glucose metabolism in the soleus and extensor digitorum longus muscles of the rat. Biochem J. 1977;162:557–68.CrossRefPubMedPubMedCentral
67.
go back to reference Kuo CH, Browning KS, Ivy JL. Regulation of GLUT4 protein expression and glycogen storage after prolonged exercise. Acta Physiol Scand. 1999;165:193–201.CrossRefPubMed Kuo CH, Browning KS, Ivy JL. Regulation of GLUT4 protein expression and glycogen storage after prolonged exercise. Acta Physiol Scand. 1999;165:193–201.CrossRefPubMed
68.
go back to reference Ren JM, Semenkovich CF, Gulve EA, Gao J, Holloszy JO. Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J Biol Chem. 1994;269:14396–401.PubMed Ren JM, Semenkovich CF, Gulve EA, Gao J, Holloszy JO. Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J Biol Chem. 1994;269:14396–401.PubMed
69.
go back to reference Ryder JW, Kawano Y, Galuska D, Fahlman R, Wallberg-Henriksson H, Charron MJ, et al. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. FASEB J Off Publ Fed Am Soc Exp Biol. 1999;13:2246–56. Ryder JW, Kawano Y, Galuska D, Fahlman R, Wallberg-Henriksson H, Charron MJ, et al. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. FASEB J Off Publ Fed Am Soc Exp Biol. 1999;13:2246–56.
71.
go back to reference Sanbar SS, Hetenyi G, Forbath N, Evans JR. Effects of infusion of octanoate on glucose concentration in plasma and the rates of glucose production and utilization in dogs. Metabolism. 1965;14:1311–23.CrossRefPubMed Sanbar SS, Hetenyi G, Forbath N, Evans JR. Effects of infusion of octanoate on glucose concentration in plasma and the rates of glucose production and utilization in dogs. Metabolism. 1965;14:1311–23.CrossRefPubMed
72.
go back to reference Baldwin KM, Reitman JS, Terjung RL, Winder WW, Holloszy JO. Substrate depletion in different types of muscle and in liver during prolonged running. Am J Phys. 1973;225:1045–50. Baldwin KM, Reitman JS, Terjung RL, Winder WW, Holloszy JO. Substrate depletion in different types of muscle and in liver during prolonged running. Am J Phys. 1973;225:1045–50.
73.
go back to reference Pederson BA, Schroeder JM, Parker GE, Smith MW, DePaoli-Roach AA, Roach PJ. Glucose metabolism in mice lacking muscle glycogen synthase. Diabetes. 2005;54:3466–73.CrossRefPubMed Pederson BA, Schroeder JM, Parker GE, Smith MW, DePaoli-Roach AA, Roach PJ. Glucose metabolism in mice lacking muscle glycogen synthase. Diabetes. 2005;54:3466–73.CrossRefPubMed
74.
go back to reference Goodman MN, Berger M, Ruderman NB. Glucose metabolism in rat skeletal muscle at rest: effect of starvation, diabetes, ketone bodies and free fatty acids. Diabetes. 1974;23:881–8.CrossRefPubMed Goodman MN, Berger M, Ruderman NB. Glucose metabolism in rat skeletal muscle at rest: effect of starvation, diabetes, ketone bodies and free fatty acids. Diabetes. 1974;23:881–8.CrossRefPubMed
75.
go back to reference Hickson RC, Rennie MJ, Conlee RK, Winder WW, Holloszy JO. Effects of increased plasma fatty acids on glycogen utilization and endurance. J Appl Physiol. 1977;43:829–33.CrossRefPubMed Hickson RC, Rennie MJ, Conlee RK, Winder WW, Holloszy JO. Effects of increased plasma fatty acids on glycogen utilization and endurance. J Appl Physiol. 1977;43:829–33.CrossRefPubMed
76.
go back to reference Rennie MJ, Winder WW, Holloszy JO. A sparing effect of increased plasma fatty acids on muscle and liver glycogen content in the exercising rat. Biochem J. 1976;156:647–55.CrossRefPubMedPubMedCentral Rennie MJ, Winder WW, Holloszy JO. A sparing effect of increased plasma fatty acids on muscle and liver glycogen content in the exercising rat. Biochem J. 1976;156:647–55.CrossRefPubMedPubMedCentral
77.
go back to reference Ruderman NB, Houghton CRS, Hems R. Evaluation of the isolated perfused rat hindquarter for the study of muscle metabolism. Biochem J. 1971;124:639–51.CrossRefPubMedPubMedCentral Ruderman NB, Houghton CRS, Hems R. Evaluation of the isolated perfused rat hindquarter for the study of muscle metabolism. Biochem J. 1971;124:639–51.CrossRefPubMedPubMedCentral
78.
go back to reference Doege H, Baillie RA, Ortegon AM, Tsang B, Wu Q, Punreddy S, et al. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology. 2006;130:1245–58.CrossRefPubMed Doege H, Baillie RA, Ortegon AM, Tsang B, Wu Q, Punreddy S, et al. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology. 2006;130:1245–58.CrossRefPubMed
79.
go back to reference Frost SC, Wells MA. A comparison of the utilization of medium and long-chain fatty acids for oxidation and ketogenesis in the suckling rat: in vivo and in vitro studies. Arch Biochem Biophys. 1981;211:537–46.CrossRefPubMed Frost SC, Wells MA. A comparison of the utilization of medium and long-chain fatty acids for oxidation and ketogenesis in the suckling rat: in vivo and in vitro studies. Arch Biochem Biophys. 1981;211:537–46.CrossRefPubMed
80.
go back to reference Smith BK, Jain SS, Rimbaud S, Dam A, Quadrilatero J, Ventura-Clapier R, et al. FAT/CD36 is located on the outer mitochondrial membrane, upstream of long-chain acyl-CoA synthetase, and regulates palmitate oxidation. Biochem J. 2011;437:125–34.CrossRefPubMed Smith BK, Jain SS, Rimbaud S, Dam A, Quadrilatero J, Ventura-Clapier R, et al. FAT/CD36 is located on the outer mitochondrial membrane, upstream of long-chain acyl-CoA synthetase, and regulates palmitate oxidation. Biochem J. 2011;437:125–34.CrossRefPubMed
81.
go back to reference Zammit VA. The effect of glucagon treatment and starvation of virgin and lactating rats on the rates of oxidation of octanoyl-l-carnitine and octanoate by isolated liver mitochondria. Biochem J. 1980;190:293–300.CrossRefPubMedPubMedCentral Zammit VA. The effect of glucagon treatment and starvation of virgin and lactating rats on the rates of oxidation of octanoyl-l-carnitine and octanoate by isolated liver mitochondria. Biochem J. 1980;190:293–300.CrossRefPubMedPubMedCentral
82.
go back to reference Mannaerts GP, Thomas J, Debeer LJ, McGarry JD, Foster DW. Hepatic fatty acid oxidation and ketogenesis after clofibrate treatment. Biochim Biophys Acta BBA - Lipids Lipid Metab. 1978;529:201–11.CrossRef Mannaerts GP, Thomas J, Debeer LJ, McGarry JD, Foster DW. Hepatic fatty acid oxidation and ketogenesis after clofibrate treatment. Biochim Biophys Acta BBA - Lipids Lipid Metab. 1978;529:201–11.CrossRef
83.
go back to reference Lhuillery C, Mebarki S, Lecourtier MJ, Demarne Y. Influence of different dietary fats on the incorporation of exogenous fatty acids into rat adipose glycerides. J Nutr. 1988;118:1447–54.CrossRefPubMed Lhuillery C, Mebarki S, Lecourtier MJ, Demarne Y. Influence of different dietary fats on the incorporation of exogenous fatty acids into rat adipose glycerides. J Nutr. 1988;118:1447–54.CrossRefPubMed
84.
go back to reference Maragoudakis ME, Kalinsky HJ, Lennane J. Metabolism of octanoate and its effect on glucose and palmitate utilization by isolated fat cells. Proc Soc Exp Biol Med Soc Exp Biol Med N Y N. 1975;148:606–10.CrossRef Maragoudakis ME, Kalinsky HJ, Lennane J. Metabolism of octanoate and its effect on glucose and palmitate utilization by isolated fat cells. Proc Soc Exp Biol Med Soc Exp Biol Med N Y N. 1975;148:606–10.CrossRef
85.
go back to reference Scheig R, Klatskin G. Hepatic metabolism of 1-14C octanoic and 1-14C palmitic acids. J Am Oil Chem Soc. 1968;45:31–3.CrossRefPubMed Scheig R, Klatskin G. Hepatic metabolism of 1-14C octanoic and 1-14C palmitic acids. J Am Oil Chem Soc. 1968;45:31–3.CrossRefPubMed
86.
go back to reference Vilà-Brau A, Sousa-Coelho ALD, Mayordomo C, Haro D, Marrero PF. Human HMGCS2 regulates mitochondrial fatty acid oxidation and FGF21 expression in HepG2 cell line. J Biol Chem. 2011;286:20423–30.CrossRefPubMedPubMedCentral Vilà-Brau A, Sousa-Coelho ALD, Mayordomo C, Haro D, Marrero PF. Human HMGCS2 regulates mitochondrial fatty acid oxidation and FGF21 expression in HepG2 cell line. J Biol Chem. 2011;286:20423–30.CrossRefPubMedPubMedCentral
87.
go back to reference Brouns F, van der Vusse GJ. Utilization of lipids during exercise in human subjects: metabolic and dietary constraints. Br J Nutr. 1998;79:117–28.CrossRefPubMed Brouns F, van der Vusse GJ. Utilization of lipids during exercise in human subjects: metabolic and dietary constraints. Br J Nutr. 1998;79:117–28.CrossRefPubMed
Metadata
Title
Low-fat diet, and medium-fat diets containing coconut oil and soybean oil exert different metabolic effects in untrained and treadmill-trained mice
Authors
Mark Christian Manio
Shigenobu Matsumura
Kazuo Inoue
Publication date
01-12-2018
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-018-0234-y

Other articles of this Issue 1/2018

Journal of the International Society of Sports Nutrition 1/2018 Go to the issue