Skip to main content
Top
Published in: Molecular Cancer 1/2010

Open Access 01-12-2010 | Research

Sprouty1, a new target of the angiostatic agent 16K prolactin, negatively regulates angiogenesis

Authors: Céline Sabatel, Anne M Cornet, Sébastien P Tabruyn, Ludovic Malvaux, Karolien Castermans, Joseph A Martial, Ingrid Struman

Published in: Molecular Cancer | Issue 1/2010

Login to get access

Abstract

Background

Disorganized angiogenesis is associated with several pathologies, including cancer. The identification of new genes that control tumor neovascularization can provide novel insights for future anti-cancer therapies. Sprouty1 (SPRY1), an inhibitor of the MAPK pathway, might be one of these new genes. We identified SPRY1 by comparing the transcriptomes of untreated endothelial cells with those of endothelial cells treated by the angiostatic agent 16 K prolactin (16 K hPRL). In the present study, we aimed to explore the potential function of SPRY1 in angiogenesis.

Results

We confirmed 16 K hPRL induced up-regulation of SPRY1 in primary endothelial cells. In addition, we demonstrated the positive SPRY1 regulation in a chimeric mouse model of human colon carcinoma in which 16 K hPRL treatment was shown to delay tumor growth. Expression profiling by qRT-PCR with species-specific primers revealed that induction of SPRY1 expression by 16 K hPRL occurs only in the (murine) endothelial compartment and not in the (human) tumor compartment. The regulation of SPRY1 expression was NF-κB dependent. Partial SPRY1 knockdown by RNA interference protected endothelial cells from apoptosis as well as increased endothelial cell proliferation, migration, capillary network formation, and adhesion to extracellular matrix proteins. SPRY1 knockdown was also shown to affect the expression of cyclinD1 and p21 both involved in cell-cycle regulation. These findings are discussed in relation to the role of SPRY1 as an inhibitor of ERK/MAPK signaling and to a possible explanation of its effect on cell proliferation.

Conclusions

Taken together, these results suggest that SPRY1 is an endogenous angiogenesis inhibitor.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferrara N, Kerbel RS: Angiogenesis as a therapeutic target. Nature. 2005, 438 (7070): 967-974. 10.1038/nature04483CrossRefPubMed Ferrara N, Kerbel RS: Angiogenesis as a therapeutic target. Nature. 2005, 438 (7070): 967-974. 10.1038/nature04483CrossRefPubMed
2.
go back to reference McKay MM, Morrison DK: Integrating signals from RTKs to ERK/MAPK. Oncogene. 2007, 26 (22): 3113-3121. 10.1038/sj.onc.1210394CrossRefPubMed McKay MM, Morrison DK: Integrating signals from RTKs to ERK/MAPK. Oncogene. 2007, 26 (22): 3113-3121. 10.1038/sj.onc.1210394CrossRefPubMed
3.
go back to reference Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA: sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell. 1998, 92 (2): 253-263. 10.1016/S0092-8674(00)80919-8CrossRefPubMed Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA: sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell. 1998, 92 (2): 253-263. 10.1016/S0092-8674(00)80919-8CrossRefPubMed
4.
go back to reference Minowada G, Jarvis LA, Chi CL, Neubuser A, Sun X, Hacohen N, Krasnow MA, Martin GR: Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development. 1999, 126 (20): 4465-4475.PubMed Minowada G, Jarvis LA, Chi CL, Neubuser A, Sun X, Hacohen N, Krasnow MA, Martin GR: Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development. 1999, 126 (20): 4465-4475.PubMed
5.
go back to reference Mason JM, Morrison DJ, Basson MA, Licht JD: Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol. 2006, 16 (1): 45-54. 10.1016/j.tcb.2005.11.004CrossRefPubMed Mason JM, Morrison DJ, Basson MA, Licht JD: Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol. 2006, 16 (1): 45-54. 10.1016/j.tcb.2005.11.004CrossRefPubMed
6.
go back to reference Cabrita MA, Christofori G: Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis. 2008, 11 (1): 53-62. 10.1007/s10456-008-9089-1CrossRefPubMed Cabrita MA, Christofori G: Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis. 2008, 11 (1): 53-62. 10.1007/s10456-008-9089-1CrossRefPubMed
7.
go back to reference Edwin F, Anderson K, Ying C, Patel TB: Intermolecular interactions of Sprouty proteins and their implications in development and disease. Mol Pharmacol. 2009, 76 (4): 679-691. 10.1124/mol.109.055848PubMedCentralCrossRefPubMed Edwin F, Anderson K, Ying C, Patel TB: Intermolecular interactions of Sprouty proteins and their implications in development and disease. Mol Pharmacol. 2009, 76 (4): 679-691. 10.1124/mol.109.055848PubMedCentralCrossRefPubMed
8.
go back to reference Taniguchi K, Ishizaki T, Ayada T, Sugiyama Y, Wakabayashi Y, Sekiya T, Nakagawa R, Yoshimura A: Sprouty4 deficiency potentiates Ras-independent angiogenic signals and tumor growth. Cancer Sci. 2009, 100 (9): 1648-1654. 10.1111/j.1349-7006.2009.01214.xCrossRefPubMed Taniguchi K, Ishizaki T, Ayada T, Sugiyama Y, Wakabayashi Y, Sekiya T, Nakagawa R, Yoshimura A: Sprouty4 deficiency potentiates Ras-independent angiogenic signals and tumor growth. Cancer Sci. 2009, 100 (9): 1648-1654. 10.1111/j.1349-7006.2009.01214.xCrossRefPubMed
9.
go back to reference Taniguchi K, Sasaki K, Watari K, Yasukawa H, Imaizumi T, Ayada T, Okamoto F, Ishizaki T, Kato R, Kohno R: Suppression of Sproutys has a therapeutic effect for a mouse model of ischemia by enhancing angiogenesis. PLoS One. 2009, 4 (5): e5467- 10.1371/journal.pone.0005467PubMedCentralCrossRefPubMed Taniguchi K, Sasaki K, Watari K, Yasukawa H, Imaizumi T, Ayada T, Okamoto F, Ishizaki T, Kato R, Kohno R: Suppression of Sproutys has a therapeutic effect for a mouse model of ischemia by enhancing angiogenesis. PLoS One. 2009, 4 (5): e5467- 10.1371/journal.pone.0005467PubMedCentralCrossRefPubMed
10.
go back to reference Struman I, Bentzien F, Lee H, Mainfroid V, D'Angelo G, Goffin V, Weiner RI, Martial JA: Opposing actions of intact and N-terminal fragments of the human prolactin/growth hormone family members on angiogenesis: an efficient mechanism for the regulation of angiogenesis. Proc Natl Acad Sci USA. 1999, 96 (4): 1246-1251. 10.1073/pnas.96.4.1246PubMedCentralCrossRefPubMed Struman I, Bentzien F, Lee H, Mainfroid V, D'Angelo G, Goffin V, Weiner RI, Martial JA: Opposing actions of intact and N-terminal fragments of the human prolactin/growth hormone family members on angiogenesis: an efficient mechanism for the regulation of angiogenesis. Proc Natl Acad Sci USA. 1999, 96 (4): 1246-1251. 10.1073/pnas.96.4.1246PubMedCentralCrossRefPubMed
11.
go back to reference Nguyen NQ, Tabruyn SP, Lins L, Lion M, Cornet AM, Lair F, Rentier-Delrue F, Brasseur R, Martial JA, Struman I: Prolactin/growth hormone-derived antiangiogenic peptides highlight a potential role of tilted peptides in angiogenesis. Proc Natl Acad Sci USA. 2006, 103 (39): 14319-14324. 10.1073/pnas.0606638103PubMedCentralCrossRefPubMed Nguyen NQ, Tabruyn SP, Lins L, Lion M, Cornet AM, Lair F, Rentier-Delrue F, Brasseur R, Martial JA, Struman I: Prolactin/growth hormone-derived antiangiogenic peptides highlight a potential role of tilted peptides in angiogenesis. Proc Natl Acad Sci USA. 2006, 103 (39): 14319-14324. 10.1073/pnas.0606638103PubMedCentralCrossRefPubMed
12.
go back to reference Kim J, Luo W, Chen DT, Earley K, Tunstead J, Yu-Lee LY, Lin SH: Antitumor activity of the 16-kDa prolactin fragment in prostate cancer. Cancer Res. 2003, 63 (2): 386-393.PubMed Kim J, Luo W, Chen DT, Earley K, Tunstead J, Yu-Lee LY, Lin SH: Antitumor activity of the 16-kDa prolactin fragment in prostate cancer. Cancer Res. 2003, 63 (2): 386-393.PubMed
13.
go back to reference Bentzien F, Struman I, Martini JF, Martial J, Weiner R: Expression of the antiangiogenic factor 16 K hPRL in human HCT116 colon cancer cells inhibits tumor growth in Rag1(-/-) mice. Cancer Res. 2001, 61 (19): 7356-7362.PubMed Bentzien F, Struman I, Martini JF, Martial J, Weiner R: Expression of the antiangiogenic factor 16 K hPRL in human HCT116 colon cancer cells inhibits tumor growth in Rag1(-/-) mice. Cancer Res. 2001, 61 (19): 7356-7362.PubMed
14.
go back to reference Nguyen NQ, Cornet A, Blacher S, Tabruyn SP, Foidart JM, Noel A, Martial JA, Struman I: Inhibition of tumor growth and metastasis establishment by adenovirus-mediated gene transfer delivery of the antiangiogenic factor 16 K hPRL. Mol Ther. 2007, 15 (12): 2094-2100. 10.1038/sj.mt.6300294CrossRefPubMed Nguyen NQ, Cornet A, Blacher S, Tabruyn SP, Foidart JM, Noel A, Martial JA, Struman I: Inhibition of tumor growth and metastasis establishment by adenovirus-mediated gene transfer delivery of the antiangiogenic factor 16 K hPRL. Mol Ther. 2007, 15 (12): 2094-2100. 10.1038/sj.mt.6300294CrossRefPubMed
15.
go back to reference Kinet V, Nguyen NQ, Sabatel C, Blacher S, Noel A, Martial JA, Struman I: Antiangiogenic liposomal gene therapy with 16 K human prolactin efficiently reduces tumor growth. Cancer Lett. 2009, 284 (2): 222-228. 10.1016/j.canlet.2009.04.030CrossRefPubMed Kinet V, Nguyen NQ, Sabatel C, Blacher S, Noel A, Martial JA, Struman I: Antiangiogenic liposomal gene therapy with 16 K human prolactin efficiently reduces tumor growth. Cancer Lett. 2009, 284 (2): 222-228. 10.1016/j.canlet.2009.04.030CrossRefPubMed
16.
go back to reference Pan H, Nguyen NQ, Yoshida H, Bentzien F, Shaw LC, Rentier-Delrue F, Martial JA, Weiner R, Struman I, Grant MB: Molecular targeting of antiangiogenic factor 16 K hPRL inhibits oxygen-induced retinopathy in mice. Invest Ophthalmol Vis Sci. 2004, 45 (7): 2413-2419. 10.1167/iovs.03-1001CrossRefPubMed Pan H, Nguyen NQ, Yoshida H, Bentzien F, Shaw LC, Rentier-Delrue F, Martial JA, Weiner R, Struman I, Grant MB: Molecular targeting of antiangiogenic factor 16 K hPRL inhibits oxygen-induced retinopathy in mice. Invest Ophthalmol Vis Sci. 2004, 45 (7): 2413-2419. 10.1167/iovs.03-1001CrossRefPubMed
17.
go back to reference Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K, Forster O, Quint A, Landmesser U, Doerries C: A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell. 2007, 128 (3): 589-600. 10.1016/j.cell.2006.12.036CrossRefPubMed Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K, Forster O, Quint A, Landmesser U, Doerries C: A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell. 2007, 128 (3): 589-600. 10.1016/j.cell.2006.12.036CrossRefPubMed
18.
go back to reference Clapp C, Weiner RI: A specific, high affinity, saturable binding site for the 16-kilodalton fragment of prolactin on capillary endothelial cells. Endocrinology. 1992, 130 (3): 1380-1386. 10.1210/en.130.3.1380PubMed Clapp C, Weiner RI: A specific, high affinity, saturable binding site for the 16-kilodalton fragment of prolactin on capillary endothelial cells. Endocrinology. 1992, 130 (3): 1380-1386. 10.1210/en.130.3.1380PubMed
19.
go back to reference Martini JF, Piot C, Humeau LM, Struman I, Martial JA, Weiner RI: The antiangiogenic factor 16 K PRL induces programmed cell death in endothelial cells by caspase activation. Mol Endocrinol. 2000, 14 (10): 1536-1549. 10.1210/me.14.10.1536CrossRefPubMed Martini JF, Piot C, Humeau LM, Struman I, Martial JA, Weiner RI: The antiangiogenic factor 16 K PRL induces programmed cell death in endothelial cells by caspase activation. Mol Endocrinol. 2000, 14 (10): 1536-1549. 10.1210/me.14.10.1536CrossRefPubMed
20.
go back to reference Tabruyn SP, Sorlet CM, Rentier-Delrue F, Bours V, Weiner RI, Martial JA, Struman I: The antiangiogenic factor 16 K human prolactin induces caspase-dependent apoptosis by a mechanism that requires activation of nuclear factor-kappaB. Mol Endocrinol. 2003, 17 (9): 1815-1823. 10.1210/me.2003-0132CrossRefPubMed Tabruyn SP, Sorlet CM, Rentier-Delrue F, Bours V, Weiner RI, Martial JA, Struman I: The antiangiogenic factor 16 K human prolactin induces caspase-dependent apoptosis by a mechanism that requires activation of nuclear factor-kappaB. Mol Endocrinol. 2003, 17 (9): 1815-1823. 10.1210/me.2003-0132CrossRefPubMed
21.
go back to reference Tabruyn SP, Nguyen NQ, Cornet AM, Martial JA, Struman I: The antiangiogenic factor, 16-kDa human prolactin, induces endothelial cell cycle arrest by acting at both the G0-G1 and the G2-M phases. Mol Endocrinol. 2005, 19 (7): 1932-1942. 10.1210/me.2004-0515CrossRefPubMed Tabruyn SP, Nguyen NQ, Cornet AM, Martial JA, Struman I: The antiangiogenic factor, 16-kDa human prolactin, induces endothelial cell cycle arrest by acting at both the G0-G1 and the G2-M phases. Mol Endocrinol. 2005, 19 (7): 1932-1942. 10.1210/me.2004-0515CrossRefPubMed
22.
go back to reference D'Angelo G, Martini JF, Iiri T, Fantl WJ, Martial J, Weiner RI: 16 K human prolactin inhibits vascular endothelial growth factor-induced activation of Ras in capillary endothelial cells. Mol Endocrinol. 1999, 13 (5): 692-704. 10.1210/me.13.5.692CrossRefPubMed D'Angelo G, Martini JF, Iiri T, Fantl WJ, Martial J, Weiner RI: 16 K human prolactin inhibits vascular endothelial growth factor-induced activation of Ras in capillary endothelial cells. Mol Endocrinol. 1999, 13 (5): 692-704. 10.1210/me.13.5.692CrossRefPubMed
23.
go back to reference Tabruyn SP, Sabatel C, Nguyen NQ, Verhaeghe C, Castermans K, Malvaux L, Griffioen AW, Martial JA, Struman I: The angiostatic 16 K human prolactin overcomes endothelial cell anergy and promotes leukocyte infiltration via nuclear factor-kappaB activation. Mol Endocrinol. 2007, 21 (6): 1422-1429. 10.1210/me.2007-0021CrossRefPubMed Tabruyn SP, Sabatel C, Nguyen NQ, Verhaeghe C, Castermans K, Malvaux L, Griffioen AW, Martial JA, Struman I: The angiostatic 16 K human prolactin overcomes endothelial cell anergy and promotes leukocyte infiltration via nuclear factor-kappaB activation. Mol Endocrinol. 2007, 21 (6): 1422-1429. 10.1210/me.2007-0021CrossRefPubMed
24.
go back to reference Impagnatiello MA, Weitzer S, Gannon G, Compagni A, Cotten M, Christofori G: Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol. 2001, 152 (5): 1087-1098. 10.1083/jcb.152.5.1087PubMedCentralCrossRefPubMed Impagnatiello MA, Weitzer S, Gannon G, Compagni A, Cotten M, Christofori G: Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol. 2001, 152 (5): 1087-1098. 10.1083/jcb.152.5.1087PubMedCentralCrossRefPubMed
25.
go back to reference Thijssen VL, Brandwijk RJ, Dings RP, Griffioen AW: Angiogenesis gene expression profiling in xenograft models to study cellular interactions. Exp Cell Res. 2004, 299 (2): 286-293. 10.1016/j.yexcr.2004.06.014CrossRefPubMed Thijssen VL, Brandwijk RJ, Dings RP, Griffioen AW: Angiogenesis gene expression profiling in xenograft models to study cellular interactions. Exp Cell Res. 2004, 299 (2): 286-293. 10.1016/j.yexcr.2004.06.014CrossRefPubMed
26.
go back to reference Cahir-McFarland ED, Carter K, Rosenwald A, Giltnane JM, Henrickson SE, Staudt LM, Kieff E: Role of NF-kappa B in cell survival and transcription of latent membrane protein 1-expressing or Epstein-Barr virus latency III-infected cells. J Virol. 2004, 78 (8): 4108-4119. 10.1128/JVI.78.8.4108-4119.2004PubMedCentralCrossRefPubMed Cahir-McFarland ED, Carter K, Rosenwald A, Giltnane JM, Henrickson SE, Staudt LM, Kieff E: Role of NF-kappa B in cell survival and transcription of latent membrane protein 1-expressing or Epstein-Barr virus latency III-infected cells. J Virol. 2004, 78 (8): 4108-4119. 10.1128/JVI.78.8.4108-4119.2004PubMedCentralCrossRefPubMed
27.
go back to reference Gross I, Bassit B, Benezra M, Licht JD: Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem. 2001, 276 (49): 46460-46468. 10.1074/jbc.M108234200CrossRefPubMed Gross I, Bassit B, Benezra M, Licht JD: Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem. 2001, 276 (49): 46460-46468. 10.1074/jbc.M108234200CrossRefPubMed
28.
go back to reference Meloche S, Pouyssegur J: The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene. 2007, 26 (22): 3227-3239. 10.1038/sj.onc.1210414CrossRefPubMed Meloche S, Pouyssegur J: The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene. 2007, 26 (22): 3227-3239. 10.1038/sj.onc.1210414CrossRefPubMed
29.
go back to reference Vermeulen K, Van Bockstaele DR, Berneman ZN: The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003, 36 (3): 131-149. 10.1046/j.1365-2184.2003.00266.xCrossRefPubMed Vermeulen K, Van Bockstaele DR, Berneman ZN: The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003, 36 (3): 131-149. 10.1046/j.1365-2184.2003.00266.xCrossRefPubMed
30.
go back to reference Cheng T: Cell cycle inhibitors in normal and tumor stem cells. Oncogene. 2004, 23 (43): 7256-7266. 10.1038/sj.onc.1207945CrossRefPubMed Cheng T: Cell cycle inhibitors in normal and tumor stem cells. Oncogene. 2004, 23 (43): 7256-7266. 10.1038/sj.onc.1207945CrossRefPubMed
31.
go back to reference Ho PY, Hsu SP, Liang YC, Kuo ML, Ho YS, Lee WS: Inhibition of the ERK phosphorylation plays a role in terbinafine-induced p21 up-regulation and DNA synthesis inhibition in human vascular endothelial cells. Toxicol Appl Pharmacol. 2008, 229 (1): 86-93. 10.1016/j.taap.2007.12.028CrossRefPubMed Ho PY, Hsu SP, Liang YC, Kuo ML, Ho YS, Lee WS: Inhibition of the ERK phosphorylation plays a role in terbinafine-induced p21 up-regulation and DNA synthesis inhibition in human vascular endothelial cells. Toxicol Appl Pharmacol. 2008, 229 (1): 86-93. 10.1016/j.taap.2007.12.028CrossRefPubMed
32.
go back to reference Eliceiri BP, Klemke R, Stromblad S, Cheresh DA: Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J Cell Biol. 1998, 140 (5): 1255-1263. 10.1083/jcb.140.5.1255PubMedCentralCrossRefPubMed Eliceiri BP, Klemke R, Stromblad S, Cheresh DA: Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J Cell Biol. 1998, 140 (5): 1255-1263. 10.1083/jcb.140.5.1255PubMedCentralCrossRefPubMed
33.
go back to reference Lee SH, Schloss DJ, Jarvis L, Krasnow MA, Swain JL: Inhibition of angiogenesis by a mouse sprouty protein. J Biol Chem. 2001, 276 (6): 4128-4133. 10.1074/jbc.M006922200CrossRefPubMed Lee SH, Schloss DJ, Jarvis L, Krasnow MA, Swain JL: Inhibition of angiogenesis by a mouse sprouty protein. J Biol Chem. 2001, 276 (6): 4128-4133. 10.1074/jbc.M006922200CrossRefPubMed
34.
go back to reference Kwabi-Addo B, Wang J, Erdem H, Vaid A, Castro P, Ayala G, Ittmann M: The expression of Sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer. Cancer Res. 2004, 64 (14): 4728-4735. 10.1158/0008-5472.CAN-03-3759CrossRefPubMed Kwabi-Addo B, Wang J, Erdem H, Vaid A, Castro P, Ayala G, Ittmann M: The expression of Sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer. Cancer Res. 2004, 64 (14): 4728-4735. 10.1158/0008-5472.CAN-03-3759CrossRefPubMed
35.
go back to reference Lo TL, Yusoff P, Fong CW, Guo K, McCaw BJ, Phillips WA, Yang H, Wong ES, Leong HF, Zeng Q: The ras/mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, sprouty 1 and sprouty 2 are deregulated in breast cancer. Cancer Res. 2004, 64 (17): 6127-6136. 10.1158/0008-5472.CAN-04-1207CrossRefPubMed Lo TL, Yusoff P, Fong CW, Guo K, McCaw BJ, Phillips WA, Yang H, Wong ES, Leong HF, Zeng Q: The ras/mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, sprouty 1 and sprouty 2 are deregulated in breast cancer. Cancer Res. 2004, 64 (17): 6127-6136. 10.1158/0008-5472.CAN-04-1207CrossRefPubMed
36.
go back to reference Liu ZJ, Xiao M, Balint K, Soma A, Pinnix CC, Capobianco AJ, Velazquez OC, Herlyn M: Inhibition of endothelial cell proliferation by Notch1 signaling is mediated by repressing MAPK and PI3K/Akt pathways and requires MAML1. Faseb J. 2006, 20 (7): 1009-1011. 10.1096/fj.05-4880fjeCrossRefPubMed Liu ZJ, Xiao M, Balint K, Soma A, Pinnix CC, Capobianco AJ, Velazquez OC, Herlyn M: Inhibition of endothelial cell proliferation by Notch1 signaling is mediated by repressing MAPK and PI3K/Akt pathways and requires MAML1. Faseb J. 2006, 20 (7): 1009-1011. 10.1096/fj.05-4880fjeCrossRefPubMed
37.
go back to reference Pintucci G, Moscatelli D, Saponara F, Biernacki PR, Baumann FG, Bizekis C, Galloway AC, Basilico C, Mignatti P: Lack of ERK activation and cell migration in FGF-2-deficient endothelial cells. Faseb J. 2002, 16 (6): 598-600.PubMed Pintucci G, Moscatelli D, Saponara F, Biernacki PR, Baumann FG, Bizekis C, Galloway AC, Basilico C, Mignatti P: Lack of ERK activation and cell migration in FGF-2-deficient endothelial cells. Faseb J. 2002, 16 (6): 598-600.PubMed
38.
go back to reference Yigzaw Y, Cartin L, Pierre S, Scholich K, Patel TB: The C terminus of sprouty is important for modulation of cellular migration and proliferation. J Biol Chem. 2001, 276 (25): 22742-22747. 10.1074/jbc.M100123200CrossRefPubMed Yigzaw Y, Cartin L, Pierre S, Scholich K, Patel TB: The C terminus of sprouty is important for modulation of cellular migration and proliferation. J Biol Chem. 2001, 276 (25): 22742-22747. 10.1074/jbc.M100123200CrossRefPubMed
39.
go back to reference Poppleton HM, Edwin F, Jaggar L, Ray R, Johnson LR, Patel TB: Sprouty regulates cell migration by inhibiting the activation of Rac1 GTPase. Biochem Biophys Res Commun. 2004, 323 (1): 98-103. 10.1016/j.bbrc.2004.08.070CrossRefPubMed Poppleton HM, Edwin F, Jaggar L, Ray R, Johnson LR, Patel TB: Sprouty regulates cell migration by inhibiting the activation of Rac1 GTPase. Biochem Biophys Res Commun. 2004, 323 (1): 98-103. 10.1016/j.bbrc.2004.08.070CrossRefPubMed
40.
go back to reference Lai CF, Chaudhary L, Fausto A, Halstead LR, Ory DS, Avioli LV, Cheng SL: Erk is essential for growth, differentiation, integrin expression, and cell function in human osteoblastic cells. J Biol Chem. 2001, 276 (17): 14443-14450.PubMed Lai CF, Chaudhary L, Fausto A, Halstead LR, Ory DS, Avioli LV, Cheng SL: Erk is essential for growth, differentiation, integrin expression, and cell function in human osteoblastic cells. J Biol Chem. 2001, 276 (17): 14443-14450.PubMed
41.
go back to reference Jin A, Kurosu T, Tsuji K, Mizuchi D, Arai A, Fujita H, Hattori M, Minato N, Miura O: BCR/ABL and IL-3 activate Rap1 to stimulate the B-Raf/MEK/Erk and Akt signaling pathways and to regulate proliferation, apoptosis, and adhesion. Oncogene. 2006, 25 (31): 4332-4340. 10.1038/sj.onc.1209459CrossRefPubMed Jin A, Kurosu T, Tsuji K, Mizuchi D, Arai A, Fujita H, Hattori M, Minato N, Miura O: BCR/ABL and IL-3 activate Rap1 to stimulate the B-Raf/MEK/Erk and Akt signaling pathways and to regulate proliferation, apoptosis, and adhesion. Oncogene. 2006, 25 (31): 4332-4340. 10.1038/sj.onc.1209459CrossRefPubMed
42.
43.
go back to reference Lito P, Mets BD, Appledorn DM, Maher VM, McCormick JJ: Sprouty 2 regulates DNA damage-induced apoptosis in Ras-transformed human fibroblasts. J Biol Chem. 2009, 284 (2): 848-854. 10.1074/jbc.M808045200PubMedCentralCrossRefPubMed Lito P, Mets BD, Appledorn DM, Maher VM, McCormick JJ: Sprouty 2 regulates DNA damage-induced apoptosis in Ras-transformed human fibroblasts. J Biol Chem. 2009, 284 (2): 848-854. 10.1074/jbc.M808045200PubMedCentralCrossRefPubMed
44.
go back to reference Gross I, Armant O, Benosman S, de Aguilar JL, Freund JN, Kedinger M, Licht JD, Gaiddon C, Loeffler JP: Sprouty2 inhibits BDNF-induced signaling and modulates neuronal differentiation and survival. Cell Death Differ. 2007, 14 (10): 1802-1812. 10.1038/sj.cdd.4402188CrossRefPubMed Gross I, Armant O, Benosman S, de Aguilar JL, Freund JN, Kedinger M, Licht JD, Gaiddon C, Loeffler JP: Sprouty2 inhibits BDNF-induced signaling and modulates neuronal differentiation and survival. Cell Death Differ. 2007, 14 (10): 1802-1812. 10.1038/sj.cdd.4402188CrossRefPubMed
45.
go back to reference Gupta K, Kshirsagar S, Li W, Gui L, Ramakrishnan S, Gupta P, Law PY, Hebbel RP: VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res. 1999, 247 (2): 495-504. 10.1006/excr.1998.4359CrossRefPubMed Gupta K, Kshirsagar S, Li W, Gui L, Ramakrishnan S, Gupta P, Law PY, Hebbel RP: VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res. 1999, 247 (2): 495-504. 10.1006/excr.1998.4359CrossRefPubMed
46.
go back to reference Lavoie JN, L'Allemain G, Brunet A, Muller R, Pouyssegur J: Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem. 1996, 271 (34): 20608-20616. 10.1074/jbc.271.34.20608CrossRefPubMed Lavoie JN, L'Allemain G, Brunet A, Muller R, Pouyssegur J: Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem. 1996, 271 (34): 20608-20616. 10.1074/jbc.271.34.20608CrossRefPubMed
47.
go back to reference Beier F, Taylor AC, LuValle P: The Raf-1/MEK/ERK pathway regulates the expression of the p21(Cip1/Waf1) gene in chondrocytes. J Biol Chem. 1999, 274 (42): 30273-30279. 10.1074/jbc.274.42.30273CrossRefPubMed Beier F, Taylor AC, LuValle P: The Raf-1/MEK/ERK pathway regulates the expression of the p21(Cip1/Waf1) gene in chondrocytes. J Biol Chem. 1999, 274 (42): 30273-30279. 10.1074/jbc.274.42.30273CrossRefPubMed
48.
go back to reference Han S, Sidell N, Roman J: Fibronectin stimulates human lung carcinoma cell proliferation by suppressing p21 gene expression via signals involving Erk and Rho kinase. Cancer Lett. 2005, 219 (1): 71-81. 10.1016/j.canlet.2004.07.040CrossRefPubMed Han S, Sidell N, Roman J: Fibronectin stimulates human lung carcinoma cell proliferation by suppressing p21 gene expression via signals involving Erk and Rho kinase. Cancer Lett. 2005, 219 (1): 71-81. 10.1016/j.canlet.2004.07.040CrossRefPubMed
49.
go back to reference Gospodarowicz D, Massoglia S, Cheng J, Fujii DK: Effect of fibroblast growth factor and lipoproteins on the proliferation of endothelial cells derived from bovine adrenal cortex, brain cortex, and corpus luteum capillaries. J Cell Physiol. 1986, 127 (1): 121-136. 10.1002/jcp.1041270116CrossRefPubMed Gospodarowicz D, Massoglia S, Cheng J, Fujii DK: Effect of fibroblast growth factor and lipoproteins on the proliferation of endothelial cells derived from bovine adrenal cortex, brain cortex, and corpus luteum capillaries. J Cell Physiol. 1986, 127 (1): 121-136. 10.1002/jcp.1041270116CrossRefPubMed
50.
go back to reference Sun J, Blaskovich MA, Jain RK, Delarue F, Paris D, Brem S, Wotoczek-Obadia M, Lin Q, Coppola D, Choi K: Blocking angiogenesis and tumorigenesis with GFA-116, a synthetic molecule that inhibits binding of vascular endothelial growth factor to its receptor. Cancer Res. 2004, 64 (10): 3586-3592. 10.1158/0008-5472.CAN-03-2673CrossRefPubMed Sun J, Blaskovich MA, Jain RK, Delarue F, Paris D, Brem S, Wotoczek-Obadia M, Lin Q, Coppola D, Choi K: Blocking angiogenesis and tumorigenesis with GFA-116, a synthetic molecule that inhibits binding of vascular endothelial growth factor to its receptor. Cancer Res. 2004, 64 (10): 3586-3592. 10.1158/0008-5472.CAN-03-2673CrossRefPubMed
51.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262CrossRefPubMed
Metadata
Title
Sprouty1, a new target of the angiostatic agent 16K prolactin, negatively regulates angiogenesis
Authors
Céline Sabatel
Anne M Cornet
Sébastien P Tabruyn
Ludovic Malvaux
Karolien Castermans
Joseph A Martial
Ingrid Struman
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2010
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-231

Other articles of this Issue 1/2010

Molecular Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine