Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2018

Open Access 01-12-2018 | Research article

The association between diabetes mellitus and reduction in myocardial glucose uptake: a population-based 18F-FDG PET/CT study

Authors: Lijun Hu, Chun Qiu, Xiaosong Wang, Mei Xu, Xiaoliang Shao, Yuetao Wang

Published in: BMC Cardiovascular Disorders | Issue 1/2018

Login to get access

Abstract

Background

In diabetes, dysregulated substrate utilization and energy metabolism of myocardium can lead to heart failure. To examine the dynamic changes of myocardium, most of the previous studies conducted dynamic myocardial PET imaging following euglycemic-hyperinsulinemic clamp, which involves complicated procedures. In comparison, the whole-body 18F-FDG PET/CT scan is a simple and widely used method. Therefore, we hope to use this method to observe abnormal myocardial glucose metabolism in diabetes and determine the influencing factors.

Methods

We retrospectively analyzed PET/CT images of 191 subjects from our medical examination center. The levels of FDG uptake in myocardium were visually divided into 4 grades (Grade 0–3, from low to high). The differences in clinical and metabolic parameters among diabetes mellitus (DM), impaired fasting glucose (IFG), and normal fasting glucose (NFG) groups were analyzed, as well as their associations with myocardial FDG uptake.

Results

Compared with NFG and IFG groups, DM group had more cardiovascular-related risk factors. The degree of myocardial FDG uptake was significantly decreased in DM group; when myocardial FDG uptake ≤ Grade 1, the sensitivity of DM prediction was 84.0%, and the specificity was 58.4%. Univariate analysis showed that the myocardial FDG uptake was weakly and negatively correlated with multiple metabolic-related parameters (r = − 0.173~ − 0.365, P < 0.05). Multivariate logistic regression analysis showed that gender (male), HOMA-IR and nonalcoholic fatty liver disease (NAFLD) were independent risk factors for poor myocardial FDG uptake.

Conclusions

Diabetes is associated with decreased myocardial glucose metabolism, which is mediated by multiple metabolic abnormalities.
Literature
1.
go back to reference Chong CR, Clarke K, Levelt E. Metabolic remodeling in diabetic cardiomyopathy. Cardiovasc Res. 2017;113:422–30.CrossRef Chong CR, Clarke K, Levelt E. Metabolic remodeling in diabetic cardiomyopathy. Cardiovasc Res. 2017;113:422–30.CrossRef
2.
go back to reference Gropler RJ, Beanlands RS, Dilsizian V, Lewandowski ED, Villanueva FS, Ziadi MC. Imaging myocardial metabolic remodeling. J Nucl Med. 2010;51:88s–101s.CrossRef Gropler RJ, Beanlands RS, Dilsizian V, Lewandowski ED, Villanueva FS, Ziadi MC. Imaging myocardial metabolic remodeling. J Nucl Med. 2010;51:88s–101s.CrossRef
3.
go back to reference Low Wang CC, Hess CN, Hiatt WR, Clinical Update GAB. Cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus - mechanisms, management. and Clinical Considerations Circulation. 2016;133:2459–502.PubMed Low Wang CC, Hess CN, Hiatt WR, Clinical Update GAB. Cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus - mechanisms, management. and Clinical Considerations Circulation. 2016;133:2459–502.PubMed
4.
go back to reference Bahtiyar G, Gutterman D, Lebovitz H. Heart failure: a major cardiovascular complication of diabetes mellitus. Curr Diab Rep. 2016;16:116.CrossRef Bahtiyar G, Gutterman D, Lebovitz H. Heart failure: a major cardiovascular complication of diabetes mellitus. Curr Diab Rep. 2016;16:116.CrossRef
5.
go back to reference Barbero U, D'Ascenzo F, Nijhoff F, Moretti C, Biondi-Zoccai G, Mennuni M, et al. Assessing risk in patients with stable coronary disease: when should we intensify care and follow-up? Results from a meta-analysis of observational studies of the COURAGE and FAME era. Scientifica (Cairo). 2016;2016:3769152. Barbero U, D'Ascenzo F, Nijhoff F, Moretti C, Biondi-Zoccai G, Mennuni M, et al. Assessing risk in patients with stable coronary disease: when should we intensify care and follow-up? Results from a meta-analysis of observational studies of the COURAGE and FAME era. Scientifica (Cairo). 2016;2016:3769152.
6.
go back to reference Parry HM, Deshmukh H, Levin D, Van Zuydam N, Elder DH, Morris AD, et al. Both high and low hba1c predict incident heart failure in type 2 diabetes mellitus. Circ Heart Fail. 2015;8:236–42.CrossRef Parry HM, Deshmukh H, Levin D, Van Zuydam N, Elder DH, Morris AD, et al. Both high and low hba1c predict incident heart failure in type 2 diabetes mellitus. Circ Heart Fail. 2015;8:236–42.CrossRef
7.
go back to reference Shoghi KI, Gropler RJ, Sharp T, Herrero P, Fettig N, Su Y, et al. Time course of alterations in myocardial glucose utilization in the zucker diabetic fatty rat with correlation to gene expression of glucose transporters: a small-animal pet investigation. J Nucl Med. 2008;49:1320–7.CrossRef Shoghi KI, Gropler RJ, Sharp T, Herrero P, Fettig N, Su Y, et al. Time course of alterations in myocardial glucose utilization in the zucker diabetic fatty rat with correlation to gene expression of glucose transporters: a small-animal pet investigation. J Nucl Med. 2008;49:1320–7.CrossRef
8.
go back to reference van den Brom CE, Huisman MC, Vlasblom R, Boontje NM, Duijst S, Lubberink M, et al. Altered myocardial substrate metabolism is associated with myocardial dysfunction in early diabetic cardiomyopathy in rats: studies using positron emission tomography. Cardiovasc Diabetol. 2009;8:39.CrossRef van den Brom CE, Huisman MC, Vlasblom R, Boontje NM, Duijst S, Lubberink M, et al. Altered myocardial substrate metabolism is associated with myocardial dysfunction in early diabetic cardiomyopathy in rats: studies using positron emission tomography. Cardiovasc Diabetol. 2009;8:39.CrossRef
9.
go back to reference Fallavollita JA, Luisi AJ Jr, Yun E, deKemp RA, Canty JM Jr. An abbreviated hyperinsulinemic-euglycemic clamp results in similar myocardial glucose utilization in both diabetic and non-diabetic patients with ischemic cardiomyopathy. J Nucl Cardiol. 2010;17:637–45.CrossRef Fallavollita JA, Luisi AJ Jr, Yun E, deKemp RA, Canty JM Jr. An abbreviated hyperinsulinemic-euglycemic clamp results in similar myocardial glucose utilization in both diabetic and non-diabetic patients with ischemic cardiomyopathy. J Nucl Cardiol. 2010;17:637–45.CrossRef
10.
go back to reference Lee YH, Kim KJ, Yoo ME, Kim G, Yoon HJ, Jo K, et al. Association of non-alcoholic steatohepatitis with subclinical myocardial dysfunction in non-cirrhotic patients. J Hepatol. 2018;68:764–72.CrossRef Lee YH, Kim KJ, Yoo ME, Kim G, Yoon HJ, Jo K, et al. Association of non-alcoholic steatohepatitis with subclinical myocardial dysfunction in non-cirrhotic patients. J Hepatol. 2018;68:764–72.CrossRef
11.
go back to reference American Diabetes Association. Standards of medical care in diabetes-2017. Diabetes Care. 2017;40:S1–S135.CrossRef American Diabetes Association. Standards of medical care in diabetes-2017. Diabetes Care. 2017;40:S1–S135.CrossRef
12.
go back to reference Ozguven S, Ones T, Yilmaz Y, Turoglu HT, Imeryuz N. The role of active brown adipose tissue in human metabolism. Eur J Nucl Med Mol Imaging. 2016;43:355–61.CrossRef Ozguven S, Ones T, Yilmaz Y, Turoglu HT, Imeryuz N. The role of active brown adipose tissue in human metabolism. Eur J Nucl Med Mol Imaging. 2016;43:355–61.CrossRef
13.
go back to reference Goceri E, Shah ZK, Layman R, Jiang X, Gurcan MN. Quantification of liver fat: a comprehensive review. Comput Biol Med. 2016;71:174–89.CrossRef Goceri E, Shah ZK, Layman R, Jiang X, Gurcan MN. Quantification of liver fat: a comprehensive review. Comput Biol Med. 2016;71:174–89.CrossRef
14.
go back to reference Rosenquist KJ, Pedley A, Massaro JM, Therkelsen KE, Murabito JM, Hoffmann U, et al. Visceral and subcutaneous fat quality and cardiometabolic risk. JACC Cardiovasc Imaging. 2013;6:762–71.CrossRef Rosenquist KJ, Pedley A, Massaro JM, Therkelsen KE, Murabito JM, Hoffmann U, et al. Visceral and subcutaneous fat quality and cardiometabolic risk. JACC Cardiovasc Imaging. 2013;6:762–71.CrossRef
15.
go back to reference Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR Am J Roentgenol. 2008;190:W151–6.CrossRef Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR Am J Roentgenol. 2008;190:W151–6.CrossRef
16.
go back to reference Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–63.CrossRef Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–63.CrossRef
17.
go back to reference Jeong J, Kong E, Chun K, Cho I. The impact of energy substrates, hormone level and subject-related factors on physiologic myocardial (18)F-FDG uptake in normal humans. Nucl Med Mol Imaging. 2013;47:225–31.CrossRef Jeong J, Kong E, Chun K, Cho I. The impact of energy substrates, hormone level and subject-related factors on physiologic myocardial (18)F-FDG uptake in normal humans. Nucl Med Mol Imaging. 2013;47:225–31.CrossRef
18.
go back to reference Lee HY, Nam HY, Shin SK. Comparison of myocardial F-18 FDG uptake between overnight and non-overnight fasting in non-diabetic healthy subjects. Jpn J Radiol. 2015;33:385–91.CrossRef Lee HY, Nam HY, Shin SK. Comparison of myocardial F-18 FDG uptake between overnight and non-overnight fasting in non-diabetic healthy subjects. Jpn J Radiol. 2015;33:385–91.CrossRef
19.
go back to reference Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61:21–8.CrossRef Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61:21–8.CrossRef
20.
go back to reference Kim G, Jo K, Kim KJ, Lee YH, Han E, Yoon HJ, et al. Visceral adiposity is associated with altered myocardial glucose uptake measured by (18)FDG-PET in 346 subjects with normal glucose tolerance, prediabetes, and type 2 diabetes. Cardiovasc Diabetol. 2015;14:148.CrossRef Kim G, Jo K, Kim KJ, Lee YH, Han E, Yoon HJ, et al. Visceral adiposity is associated with altered myocardial glucose uptake measured by (18)FDG-PET in 346 subjects with normal glucose tolerance, prediabetes, and type 2 diabetes. Cardiovasc Diabetol. 2015;14:148.CrossRef
21.
go back to reference Aroor AR, Mandavia CH, Sowers JR. Insulin resistance and heart failure. Molecular mechanisms Heart Fail Clin. 2012;8:609–17.CrossRef Aroor AR, Mandavia CH, Sowers JR. Insulin resistance and heart failure. Molecular mechanisms Heart Fail Clin. 2012;8:609–17.CrossRef
22.
go back to reference How OJ, Aasum E, Severson DL, Chan WY, Essop MF, Larsen TS. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes. 2006;55:466–73.CrossRef How OJ, Aasum E, Severson DL, Chan WY, Essop MF, Larsen TS. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes. 2006;55:466–73.CrossRef
23.
go back to reference Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: Unravelling the mechanism. Lancet. 2010;375:2267–77.CrossRef Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: Unravelling the mechanism. Lancet. 2010;375:2267–77.CrossRef
24.
go back to reference Perseghin G, Lattuada G, De Cobelli F, Esposito A, Belloni E, Ntali G, et al. Increased mediastinal fat and impaired left ventricular energy metabolism in young men with newly found fatty liver. Hepatology. 2008;47:51–8.CrossRef Perseghin G, Lattuada G, De Cobelli F, Esposito A, Belloni E, Ntali G, et al. Increased mediastinal fat and impaired left ventricular energy metabolism in young men with newly found fatty liver. Hepatology. 2008;47:51–8.CrossRef
25.
go back to reference VanWagner LB, Wilcox JE, Colangelo LA, Lloyd-Jones DM, Carr JJ, Lima JA, et al. Association of nonalcoholic fatty liver disease with subclinical myocardial remodeling and dysfunction: a population-based study. Hepatology. 2015;62:773–83.CrossRef VanWagner LB, Wilcox JE, Colangelo LA, Lloyd-Jones DM, Carr JJ, Lima JA, et al. Association of nonalcoholic fatty liver disease with subclinical myocardial remodeling and dysfunction: a population-based study. Hepatology. 2015;62:773–83.CrossRef
26.
go back to reference Wannamethee SG, Whincup PH, Shaper AG, Lennon L, Sattar N. Gamma-glutamyltransferase, hepatic enzymes, and risk of incident heart failure in older men. Arterioscler Thromb Vasc Biol. 2012;32:830–5.CrossRef Wannamethee SG, Whincup PH, Shaper AG, Lennon L, Sattar N. Gamma-glutamyltransferase, hepatic enzymes, and risk of incident heart failure in older men. Arterioscler Thromb Vasc Biol. 2012;32:830–5.CrossRef
27.
go back to reference Wang L, Gao P, Zhang M, Huang Z, Zhang D, Deng Q, et al. Prevalence and ethnic pattern of diabetes and Prediabetes in China in 2013. JAMA. 2017;317:2515–23.CrossRef Wang L, Gao P, Zhang M, Huang Z, Zhang D, Deng Q, et al. Prevalence and ethnic pattern of diabetes and Prediabetes in China in 2013. JAMA. 2017;317:2515–23.CrossRef
Metadata
Title
The association between diabetes mellitus and reduction in myocardial glucose uptake: a population-based 18F-FDG PET/CT study
Authors
Lijun Hu
Chun Qiu
Xiaosong Wang
Mei Xu
Xiaoliang Shao
Yuetao Wang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2018
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-018-0943-9

Other articles of this Issue 1/2018

BMC Cardiovascular Disorders 1/2018 Go to the issue