Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2016

Open Access 01-12-2016 | Research article

The anti-Staphylococcus aureus activity of the phenanthrene fraction from fibrous roots of Bletilla striata

Authors: Jing-Jing Guo, Bin-Ling Dai, Ni-Pi Chen, Li-Xia Jin, Fu-Sheng Jiang, Zhi-Shan Ding, Chao-Dong Qian

Published in: BMC Complementary Medicine and Therapies | Issue 1/2016

Login to get access

Abstract

Background

Bletillae Rhizoma, the tuber of Bletilla striata, has been used in Chinese traditional medicine to treat infectious diseases. Chemical studies indicated that phenanthrene was one of the most important components of the herb, with a broad spectrum of antibiotic activity against Gram-positive bacteria. The objective of this study was to further characterize the antibacterial activity of the phenanthrene fraction from the fibrous root of the pseudobulb of B. striata.

Methods

The phenanthrene fraction (EF60) from the ethanol extract of fibrous roots of Bletilla striata pseudobulbs was isolated using polyamide column chromatography. The antibacterial activity of the fraction was evaluated in vitro using a 96-well microtiter plate and microbroth dilution method. The cytotoxicity of EF60 against mammalian cells was tested by hemolysis and MTT assays.

Results

EF60 was obtained using alcohol extraction and polyamide column chromatography, with a yield of 14.9 g per 1 kg of the fibrous roots of B. striata. In vitro tests indicated that EF60 was active against all tested strains of Staphylococcus aureus, including clinical isolates and methicillin-resistant S. aureus (MRSA). The minimum inhibitory concentration (MIC) values of EF60 against these pathogens ranged from 8 to 64 μg/mL. Minimum bactericidal concentration tests demonstrated that EF60 was bactericidal against S. aureus 3304 and ATCC 29213 and was bacteriostatic against S. aureus 3211, ATCC 25923, and ATCC 43300. Consistently, the time-kill assay indicated that EF60 could completely kill S. aureus ATCC 29213 at 2× the MIC within 3 h but could kill less than two logarithmic units of ATCC 43300, even at 4× the MIC within 24 h. The postantibiotic effects (PAE) of EF60 (4× MIC) against strains 29213 and 43300 were 2.0 and 0.38 h, respectively. Further studies indicated that EF60 (160 μg/mL) showed no cytotoxicity against human erythrocytes, and was minimally toxic to Human Umbilical Vein Endothelial Cells with an IC50 of 75 μg/mL.

Conclusions

Our studies indicated that EF60 is worthy of further investigation as a potential phytotherapeutic agent for treating infections caused by S. aureus and MRSA.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nathan C, Cars O. Antibiotic resistance-problems, progress, and prospects. New Engl J Med. 2014;371:1761–3.CrossRefPubMed Nathan C, Cars O. Antibiotic resistance-problems, progress, and prospects. New Engl J Med. 2014;371:1761–3.CrossRefPubMed
2.
go back to reference Spellberg B, Bartlett J, Wunderink R, Gilbert DN. Novel approaches are needed to develop tomorrow’s antibacterial therapies. Am J Resp Crit Care Med. 2015;191(2):135–40.CrossRefPubMedPubMedCentral Spellberg B, Bartlett J, Wunderink R, Gilbert DN. Novel approaches are needed to develop tomorrow’s antibacterial therapies. Am J Resp Crit Care Med. 2015;191(2):135–40.CrossRefPubMedPubMedCentral
3.
go back to reference Michael GB, Freitag C, Wendlandt S, Eidam C, Feßler AT, Lopes GV, et al. Emerging issues in antimicrobial resistance of bacteria from food-producing animals. Future Microbiol. 2015;10:427–43.CrossRefPubMed Michael GB, Freitag C, Wendlandt S, Eidam C, Feßler AT, Lopes GV, et al. Emerging issues in antimicrobial resistance of bacteria from food-producing animals. Future Microbiol. 2015;10:427–43.CrossRefPubMed
4.
go back to reference Mediavilla JR, Chen L, Mathema B, Kreiswirth BN. Global epidemiology of community- associated methicillin resistant Staphylococcus aureus (CA-MRSA). Curr Opin Microbiol. 2012;15:588–95.CrossRefPubMed Mediavilla JR, Chen L, Mathema B, Kreiswirth BN. Global epidemiology of community- associated methicillin resistant Staphylococcus aureus (CA-MRSA). Curr Opin Microbiol. 2012;15:588–95.CrossRefPubMed
5.
go back to reference Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como-Sabetti K, Jernigan JA, et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med. 2005;352:1436–44.CrossRefPubMed Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como-Sabetti K, Jernigan JA, et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med. 2005;352:1436–44.CrossRefPubMed
6.
go back to reference Johnson AP, Uttley AH, Woodford N, George RC. Resistance to vancomycin and teicoplanin: an emerging clinical problem. Clin Microbiol Rev. 1990;3:280–91.CrossRefPubMedPubMedCentral Johnson AP, Uttley AH, Woodford N, George RC. Resistance to vancomycin and teicoplanin: an emerging clinical problem. Clin Microbiol Rev. 1990;3:280–91.CrossRefPubMedPubMedCentral
7.
go back to reference Kahne D, Leimkuhler C, Lu W, Walsh C. Glycopeptide and lipoglycopeptide antibiotics. Chem Rev. 2005;105:425–48.CrossRefPubMed Kahne D, Leimkuhler C, Lu W, Walsh C. Glycopeptide and lipoglycopeptide antibiotics. Chem Rev. 2005;105:425–48.CrossRefPubMed
8.
go back to reference Butler MS, Hansford KA, Blaskovich MA, Halai R, Cooper MA. Glycopeptide antibiotics: back to the future. J Antibiot (Tokyo). 2014;67(9):631–44.CrossRef Butler MS, Hansford KA, Blaskovich MA, Halai R, Cooper MA. Glycopeptide antibiotics: back to the future. J Antibiot (Tokyo). 2014;67(9):631–44.CrossRef
9.
go back to reference Dorman HJD, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol. 2000;88:308–16.CrossRefPubMed Dorman HJD, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol. 2000;88:308–16.CrossRefPubMed
10.
go back to reference Simoes M, Bennett RN, Rosa EA. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat Prod Rep. 2009;26(6):746–57.CrossRefPubMed Simoes M, Bennett RN, Rosa EA. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat Prod Rep. 2009;26(6):746–57.CrossRefPubMed
11.
go back to reference Sun LL, Yang YH, Liu JK, Cheng WF, Zhou M. Studies on botanical origin of Bletilla striata and its textual research herb textual research. J Chinese Med Mater. 2010;33(12):1965–8. Sun LL, Yang YH, Liu JK, Cheng WF, Zhou M. Studies on botanical origin of Bletilla striata and its textual research herb textual research. J Chinese Med Mater. 2010;33(12):1965–8.
12.
go back to reference Takagi S, Yamaki M, Inoue K. Antimicrobial agents from Bletilla striata. Phytochemistry. 1983;22:1011–5.CrossRef Takagi S, Yamaki M, Inoue K. Antimicrobial agents from Bletilla striata. Phytochemistry. 1983;22:1011–5.CrossRef
13.
go back to reference Yamaki M, Bai L, Inoue K, Takagi S. Biphenanthrenes from Bletilla striata, Phytochemistry, 1989; 28:(12):3503–3350. Yamaki M, Bai L, Inoue K, Takagi S. Biphenanthrenes from Bletilla striata, Phytochemistry, 1989; 28:(12):3503–3350.
14.
go back to reference Kovács A, Vasas A, Hohmann J. Natural phenanthrenes and their biological activity. Phytochemistry. 2008;69:1084–110.CrossRefPubMed Kovács A, Vasas A, Hohmann J. Natural phenanthrenes and their biological activity. Phytochemistry. 2008;69:1084–110.CrossRefPubMed
15.
go back to reference Jiang F, Li W, Huang Y. Antioxidant, antityrosinase and antitumor activity comparison: the potential utilization of fibrous root part of Bletilla striata (Thunb.) Reichb.f. PLoS One. 2013;8(2):e58004.CrossRefPubMedPubMedCentral Jiang F, Li W, Huang Y. Antioxidant, antityrosinase and antitumor activity comparison: the potential utilization of fibrous root part of Bletilla striata (Thunb.) Reichb.f. PLoS One. 2013;8(2):e58004.CrossRefPubMedPubMedCentral
16.
go back to reference Qian CD, Jiang FS, Yu HS, Shen Y, Fu YH, Cheng DQ, et al. Antibacterial Biphenanthrenes from the fibrous roots of Bletilla striata. J Nat Prod. 2015;78(4):939–43.CrossRefPubMed Qian CD, Jiang FS, Yu HS, Shen Y, Fu YH, Cheng DQ, et al. Antibacterial Biphenanthrenes from the fibrous roots of Bletilla striata. J Nat Prod. 2015;78(4):939–43.CrossRefPubMed
17.
go back to reference Sun A, Liu J, Pang S, Lin J, Xu R. Two novel phenanthraquinones with anti-cancer activity isolated from Bletilla striata. Bioorg Med Chem Let. 2016;26(9):2375–9.CrossRef Sun A, Liu J, Pang S, Lin J, Xu R. Two novel phenanthraquinones with anti-cancer activity isolated from Bletilla striata. Bioorg Med Chem Let. 2016;26(9):2375–9.CrossRef
18.
go back to reference Xiao S, Xu D, Zhang M, Lin H, Ding L, Zhou S, Zhou Y. A novel phenanthrene-1,2-dione from Bletilla striata. Chinese J Org Chem. 2016;36(3):638–41.CrossRef Xiao S, Xu D, Zhang M, Lin H, Ding L, Zhou S, Zhou Y. A novel phenanthrene-1,2-dione from Bletilla striata. Chinese J Org Chem. 2016;36(3):638–41.CrossRef
19.
go back to reference Teng Y, Zhao WP, Qian CD, Li O, Zhu L, Wu XC. Gene cluster analysis for the biosynthesis of elgicins, novel lantibiotics produced by Paenibacillus elgii B69. BMC Microbiol. 2012;12:45.CrossRefPubMedPubMedCentral Teng Y, Zhao WP, Qian CD, Li O, Zhu L, Wu XC. Gene cluster analysis for the biosynthesis of elgicins, novel lantibiotics produced by Paenibacillus elgii B69. BMC Microbiol. 2012;12:45.CrossRefPubMedPubMedCentral
20.
go back to reference Romero-Tabarez M, Jansen R, Sylla M, Lunsdorf H, Haussler S, Santosa DA, et al. 7-O-malonyl macrolactin A, a new macrolactin antibiotic from Bacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a smallcolony variant of Burkholderia cepacia. Antimicrob Agents Chemother. 2006;50:1701–9.CrossRefPubMedPubMedCentral Romero-Tabarez M, Jansen R, Sylla M, Lunsdorf H, Haussler S, Santosa DA, et al. 7-O-malonyl macrolactin A, a new macrolactin antibiotic from Bacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a smallcolony variant of Burkholderia cepacia. Antimicrob Agents Chemother. 2006;50:1701–9.CrossRefPubMedPubMedCentral
21.
go back to reference Wu XC, Qian CD, Fang HH, Wen YP, Zhou JY, Zhan ZJ, et al. Paenimacrolidin, a novel macrolide antibiotic from Paenibacillus sp. F6-B70 active against methicillin-resistant Staphylococcus aureus. Microb Biotechnol. 2011;4(4):491–502.CrossRefPubMedPubMedCentral Wu XC, Qian CD, Fang HH, Wen YP, Zhou JY, Zhan ZJ, et al. Paenimacrolidin, a novel macrolide antibiotic from Paenibacillus sp. F6-B70 active against methicillin-resistant Staphylococcus aureus. Microb Biotechnol. 2011;4(4):491–502.CrossRefPubMedPubMedCentral
22.
go back to reference Kaul M, Mark L, Zhang Y, Parhi AK, LaVoie EJ, Pilch DS. An FtsZ-targeting prodrug with oral antistaphylococcal efficacy in vivo. Antimicrob Agents Chemother. 2013;57:5860–9.CrossRefPubMedPubMedCentral Kaul M, Mark L, Zhang Y, Parhi AK, LaVoie EJ, Pilch DS. An FtsZ-targeting prodrug with oral antistaphylococcal efficacy in vivo. Antimicrob Agents Chemother. 2013;57:5860–9.CrossRefPubMedPubMedCentral
23.
go back to reference Qian CD, Wu XC, Teng Y, Zhao WP, Li O, Fang SG, et al. Battacin (octapeptin B5), a new cyclic lipopeptide antibiotic from Paenibacillus tianmuensis active against multidrug-resistant gram-negative bacteria. Antimicrob Agents Chemother. 2012;56(3):1458–65.CrossRefPubMedPubMedCentral Qian CD, Wu XC, Teng Y, Zhao WP, Li O, Fang SG, et al. Battacin (octapeptin B5), a new cyclic lipopeptide antibiotic from Paenibacillus tianmuensis active against multidrug-resistant gram-negative bacteria. Antimicrob Agents Chemother. 2012;56(3):1458–65.CrossRefPubMedPubMedCentral
24.
go back to reference Huang ZH, Hu Y, Shou LF, Song MX. Isolation and partial characterization of cyclic lipopeptide antibiotics produced by Paenibacillus ehimensis B7. BMC Microbiol. 2013;13:87.CrossRefPubMedPubMedCentral Huang ZH, Hu Y, Shou LF, Song MX. Isolation and partial characterization of cyclic lipopeptide antibiotics produced by Paenibacillus ehimensis B7. BMC Microbiol. 2013;13:87.CrossRefPubMedPubMedCentral
25.
go back to reference Iravani A, Welty GS, Newton BR, Richard GA. Effects of changes in pH, medium, and inoculum size on the in vitro activity of amifloxacin against urinary isolates of Staphylococcus saprophyticus and Escherichia coli. Antimicrob Agents Chemother. 1985;27(4):449–51.CrossRefPubMedPubMedCentral Iravani A, Welty GS, Newton BR, Richard GA. Effects of changes in pH, medium, and inoculum size on the in vitro activity of amifloxacin against urinary isolates of Staphylococcus saprophyticus and Escherichia coli. Antimicrob Agents Chemother. 1985;27(4):449–51.CrossRefPubMedPubMedCentral
26.
go back to reference Boswell FJ, Andrews JM, Wise R. Postantibiotic effect of trovafloxacin on Pseudomonas aeruginosa. J Antimicrob Chemother. 1997;39:811–4.CrossRefPubMed Boswell FJ, Andrews JM, Wise R. Postantibiotic effect of trovafloxacin on Pseudomonas aeruginosa. J Antimicrob Chemother. 1997;39:811–4.CrossRefPubMed
27.
go back to reference Kondejewski LH, Farmer SW, Wishart DS, Hancock REW, Hodges RS. Gramicidin S is active against both gram-positive and gram-negative bacteria. Int J Pept Protein Res. 1996;47:460–6.CrossRefPubMed Kondejewski LH, Farmer SW, Wishart DS, Hancock REW, Hodges RS. Gramicidin S is active against both gram-positive and gram-negative bacteria. Int J Pept Protein Res. 1996;47:460–6.CrossRefPubMed
28.
go back to reference Boncler M, Różalski M, Krajewska U, Podsędek A, Watala C. Comparison of prestoblue and mtt assays of cellular viability in the assessment of anti-proliferative effects of plant extracts on human endothelial cells. J Pharmacol Toxicol Methods. 2014;69(1):9–16.CrossRefPubMed Boncler M, Różalski M, Krajewska U, Podsędek A, Watala C. Comparison of prestoblue and mtt assays of cellular viability in the assessment of anti-proliferative effects of plant extracts on human endothelial cells. J Pharmacol Toxicol Methods. 2014;69(1):9–16.CrossRefPubMed
29.
go back to reference Domadia PN, Bhunia A, Sivaraman J, Swarup S, Dasgupta D. Berberine targets assembly of Escherichia coli cell division protein FtsZ. Biochemistry. 2008;47:3225–34.CrossRefPubMed Domadia PN, Bhunia A, Sivaraman J, Swarup S, Dasgupta D. Berberine targets assembly of Escherichia coli cell division protein FtsZ. Biochemistry. 2008;47:3225–34.CrossRefPubMed
30.
go back to reference CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, Document M07-A8. 8th ed. Wayne: Clinical and Laboratory Standards Institute; 2009. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, Document M07-A8. 8th ed. Wayne: Clinical and Laboratory Standards Institute; 2009.
31.
32.
go back to reference Radulovic NS, Blagojevic PD, Stojanovic-Radic ZZ, Stojanovic NM. Antimicrobial plant metabolites: structural diversity and mechanism of action. Curr Med Chem. 2013;20(7):932–52.PubMed Radulovic NS, Blagojevic PD, Stojanovic-Radic ZZ, Stojanovic NM. Antimicrobial plant metabolites: structural diversity and mechanism of action. Curr Med Chem. 2013;20(7):932–52.PubMed
33.
go back to reference Djeussi DE, Noumedem JAK, Ngadjui BT, Kuete V. Antibacterial and antibiaotic-modulation activity of six Cameroonian medicinal plants against Gran-negative multi-drug resistant phenotypes. Bmc Compem Altern. 2016;16:124.CrossRef Djeussi DE, Noumedem JAK, Ngadjui BT, Kuete V. Antibacterial and antibiaotic-modulation activity of six Cameroonian medicinal plants against Gran-negative multi-drug resistant phenotypes. Bmc Compem Altern. 2016;16:124.CrossRef
34.
go back to reference Xue IC, Davey PG, Phillips G. Variation in postantibiotic effect of clindamycin against clinical isolates of Staphylococcus aureus and implications for dosing of patients with osteomyelitis. Antimicrob Agents Chemother. 1996;40(6):1403–7.PubMedPubMedCentral Xue IC, Davey PG, Phillips G. Variation in postantibiotic effect of clindamycin against clinical isolates of Staphylococcus aureus and implications for dosing of patients with osteomyelitis. Antimicrob Agents Chemother. 1996;40(6):1403–7.PubMedPubMedCentral
35.
go back to reference Pillar CM, Stoneburner A, Shinabarger DL, Krause KM, Nichols WW. The postantibiotic effect and post-beta-lactamase-inhibitor effect of ceftazidime, ceftaroline and aztreonam in combination with avibactam against target gram-negative bacteria. Lett Appl Microbiol. 2016;63(2):96–102.CrossRefPubMed Pillar CM, Stoneburner A, Shinabarger DL, Krause KM, Nichols WW. The postantibiotic effect and post-beta-lactamase-inhibitor effect of ceftazidime, ceftaroline and aztreonam in combination with avibactam against target gram-negative bacteria. Lett Appl Microbiol. 2016;63(2):96–102.CrossRefPubMed
36.
go back to reference Giguere S, Lee EA, Guldbech KM, Berghaus LJ. In vitro synergy, pharmacodynamics, and postantibiotic effect of 11 antimicrobial agents against Rhodococcus equi. Vet Microbiol. 2012;160(1–2):207–13.CrossRefPubMed Giguere S, Lee EA, Guldbech KM, Berghaus LJ. In vitro synergy, pharmacodynamics, and postantibiotic effect of 11 antimicrobial agents against Rhodococcus equi. Vet Microbiol. 2012;160(1–2):207–13.CrossRefPubMed
37.
go back to reference Babakhani F, Gomez A, Robert N, Sears P. Postantibiotic effect of fidaxomicin and its major metabolite, OP-1118, against Clostridium difficile. Antimicrob Agents Chemother. 2011;55(9):4427–9.CrossRefPubMedPubMedCentral Babakhani F, Gomez A, Robert N, Sears P. Postantibiotic effect of fidaxomicin and its major metabolite, OP-1118, against Clostridium difficile. Antimicrob Agents Chemother. 2011;55(9):4427–9.CrossRefPubMedPubMedCentral
38.
go back to reference Bassetti M, Righi E, Carnelutti A. New therapeutic options for skin and soft tissue infections. Curr Opin Infect Dis. 2016;29(2):99–108.CrossRefPubMed Bassetti M, Righi E, Carnelutti A. New therapeutic options for skin and soft tissue infections. Curr Opin Infect Dis. 2016;29(2):99–108.CrossRefPubMed
Metadata
Title
The anti-Staphylococcus aureus activity of the phenanthrene fraction from fibrous roots of Bletilla striata
Authors
Jing-Jing Guo
Bin-Ling Dai
Ni-Pi Chen
Li-Xia Jin
Fu-Sheng Jiang
Zhi-Shan Ding
Chao-Dong Qian
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2016
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-016-1488-z

Other articles of this Issue 1/2016

BMC Complementary Medicine and Therapies 1/2016 Go to the issue