Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2017

Open Access 01-12-2017 | Research

Survivin a radiogenetic promoter for glioblastoma viral gene therapy independently from CArG motifs

Authors: George E. Naoum, Zeng B. Zhu, Donald J. Buchsbaum, David T. Curiel, Waleed O. Arafat

Published in: Clinical and Translational Medicine | Issue 1/2017

Login to get access

Abstract

Background

Radiogenetic therapy is a novel approach in the treatment of cancer, which employs genetic modification to alter the sensitivity of tumor cells to the effect of applied radiation.

Aim

To select a potent radiation inducible promoter in the context of brain tumors and to investigate if CArG radio responsive motifs or other elements in the promoter nucleotide sequences can correlate to its response to radiation.

Methods

To select initial candidates for promoter inducible elements, the levels of mRNA expression of six different promoters were assessed using Quantitative RTPCR in D54 MG cells before and after radiation exposure. Recombinant Ad/reporter genes driven by five different promoters; CMV, VEGF, FLT-1, DR5 and survivin were constructed. Glioma cell lines were infected with different multiplicity of infection of the (promoter) Ad or CMV Ad. Cells were then exposed to a range of radiation (0–12 Gy) at single fraction. Fluorescent microscopy, Luc assay and X-gal staining was used to detect the level of expression of related genes. Different glioma cell lines and normal astrocytes were infected with Ad survivin and exposed to radiation. The promoters were analyzed for presence of CArG radio-responsive motifs and CCAAT box consensus using NCBI blast bioinformatics software.

Results

Radiotherapy increases the expression of gene expression by 1.25–2.5 fold in different promoters other than survivin after 2 h of radiation. RNA analysis was done and has shown an increase in copy number of tenfold for survivin. Most importantly cells treated with RT and Ad Luc driven by survivin promoter showed a fivefold increase in expression after 2 Gy of radiation in comparison to non-irradiated cells. Presence or absence of CArG motifs did not correlate with promoter response to radiation. Survivin with the best response to radiation had the lowest number of CCAAT box.

Conclusion

Survivin is a selective potent radiation inducible promoter for glioblastoma viral gene therapy and this response to radiation could be independent of CArG motifs.
Literature
1.
3.
go back to reference Patel TR, Yu JB, Piepmeier JM (2012) Role of neurosurgery and radiation therapy in the management of brain tumors. Hematol Oncol Clin North Am 26(4):757–777CrossRefPubMed Patel TR, Yu JB, Piepmeier JM (2012) Role of neurosurgery and radiation therapy in the management of brain tumors. Hematol Oncol Clin North Am 26(4):757–777CrossRefPubMed
4.
go back to reference Fiveash JB et al (2016) A phase 2 study of radiosurgery and temozolomide for patients with 1 to 4 brain metastases. Adv Radiat Oncol 1(2):83–88CrossRef Fiveash JB et al (2016) A phase 2 study of radiosurgery and temozolomide for patients with 1 to 4 brain metastases. Adv Radiat Oncol 1(2):83–88CrossRef
5.
go back to reference Kelley K et al (2016) Radioresistance of brain tumors. Cancers (Basel) 8(4):42CrossRef Kelley K et al (2016) Radioresistance of brain tumors. Cancers (Basel) 8(4):42CrossRef
7.
go back to reference Ziegler DS et al (2008) Resistance of human glioblastoma multiforme cells to growth factor inhibitors is overcome by blockade of inhibitor of apoptosis proteins. J Clin Invest 118(9):3109–3122CrossRefPubMedPubMedCentral Ziegler DS et al (2008) Resistance of human glioblastoma multiforme cells to growth factor inhibitors is overcome by blockade of inhibitor of apoptosis proteins. J Clin Invest 118(9):3109–3122CrossRefPubMedPubMedCentral
9.
go back to reference Guindalini RSC, Machado MCM, Garicochea B (2013) Monitoring survivin expression in cancer: implications for prognosis and therapy. Mol Diagn Ther 17(6):331–342CrossRef Guindalini RSC, Machado MCM, Garicochea B (2013) Monitoring survivin expression in cancer: implications for prognosis and therapy. Mol Diagn Ther 17(6):331–342CrossRef
10.
go back to reference Kwiatkowska A et al (2013) Strategies in gene therapy for glioblastoma. Cancers (Basel) 5(4):1271–1305CrossRef Kwiatkowska A et al (2013) Strategies in gene therapy for glioblastoma. Cancers (Basel) 5(4):1271–1305CrossRef
11.
go back to reference Natsume A, Yoshida J (2008) Gene therapy for high-grade glioma: current approaches and future directions. Cell Adhes Migr 2(3):186–191CrossRef Natsume A, Yoshida J (2008) Gene therapy for high-grade glioma: current approaches and future directions. Cell Adhes Migr 2(3):186–191CrossRef
12.
go back to reference Sonabend AM, Ulasov IV, Lesniak MS (2007) Gene therapy trials for the treatment of high-grade gliomas. Gene Ther Mol Biol 11(A):79–92PubMedPubMedCentral Sonabend AM, Ulasov IV, Lesniak MS (2007) Gene therapy trials for the treatment of high-grade gliomas. Gene Ther Mol Biol 11(A):79–92PubMedPubMedCentral
13.
14.
go back to reference Yao KC et al (2003) Molecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J Neurosurg 98(2):378–384CrossRefPubMed Yao KC et al (2003) Molecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J Neurosurg 98(2):378–384CrossRefPubMed
15.
go back to reference Arafat W et al (2015) Targeted radiotherapy potentiates the cytotoxicity of a novel anti-human DR5 monoclonal antibody and the adenovirus encoding soluble TRAIL in prostate cancer. J Egypt Natl Cancer Inst 27(4):205–215CrossRef Arafat W et al (2015) Targeted radiotherapy potentiates the cytotoxicity of a novel anti-human DR5 monoclonal antibody and the adenovirus encoding soluble TRAIL in prostate cancer. J Egypt Natl Cancer Inst 27(4):205–215CrossRef
16.
go back to reference Arafat WO et al (2003) An adenovirus encoding proapoptotic Bax synergistically radiosensitizes malignant glioma. Int J Radiat Oncol Biol Phys 55(4):1037–1050CrossRefPubMed Arafat WO et al (2003) An adenovirus encoding proapoptotic Bax synergistically radiosensitizes malignant glioma. Int J Radiat Oncol Biol Phys 55(4):1037–1050CrossRefPubMed
17.
go back to reference Arafat WO et al (2000) An adenovirus encoding proapoptotic Bax induces apoptosis and enhances the radiation effect in human ovarian cancer. Mol Ther 1(6):545–554CrossRefPubMed Arafat WO et al (2000) An adenovirus encoding proapoptotic Bax induces apoptosis and enhances the radiation effect in human ovarian cancer. Mol Ther 1(6):545–554CrossRefPubMed
18.
go back to reference Andtbacka RH et al (2015) Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 33(25):2780–2788CrossRefPubMed Andtbacka RH et al (2015) Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 33(25):2780–2788CrossRefPubMed
20.
go back to reference Cho DY et al (2013) Targeting cancer stem cells for treatment of glioblastoma multiforme. Cell Transpl 22(4):731–739CrossRef Cho DY et al (2013) Targeting cancer stem cells for treatment of glioblastoma multiforme. Cell Transpl 22(4):731–739CrossRef
21.
go back to reference Ren H et al (2003) Immunogene therapy of recurrent glioblastoma multiforme with a liposomally encapsulated replication-incompetent Semliki forest virus vector carrying the human interleukin-12 gene—a phase I/II clinical protocol. J Neurooncol 64(1–2):147–154PubMed Ren H et al (2003) Immunogene therapy of recurrent glioblastoma multiforme with a liposomally encapsulated replication-incompetent Semliki forest virus vector carrying the human interleukin-12 gene—a phase I/II clinical protocol. J Neurooncol 64(1–2):147–154PubMed
25.
go back to reference Kawakami Y et al (2003) Substitution of the adenovirus serotype 5 knob with a serotype 3 knob enhances multiple steps in virus replication. Cancer Res 63(6):1262–1269PubMed Kawakami Y et al (2003) Substitution of the adenovirus serotype 5 knob with a serotype 3 knob enhances multiple steps in virus replication. Cancer Res 63(6):1262–1269PubMed
26.
go back to reference Nuyts S et al (2001) Radio-responsive recA promoter significantly increases TNFalpha production in recombinant clostridia after 2 Gy irradiation. Gene Ther 8(15):1197–1201CrossRefPubMed Nuyts S et al (2001) Radio-responsive recA promoter significantly increases TNFalpha production in recombinant clostridia after 2 Gy irradiation. Gene Ther 8(15):1197–1201CrossRefPubMed
27.
go back to reference Weichselbaum RR et al (2002) Radiation-induced tumour necrosis factor-alpha expression: clinical application of transcriptional and physical targeting of gene therapy. Lancet Oncol 3(11):665–671CrossRefPubMed Weichselbaum RR et al (2002) Radiation-induced tumour necrosis factor-alpha expression: clinical application of transcriptional and physical targeting of gene therapy. Lancet Oncol 3(11):665–671CrossRefPubMed
28.
go back to reference Weichselbaum RR et al (2001) Molecular targeting of gene therapy and radiotherapy. Acta Oncol 40(6):735–738CrossRefPubMed Weichselbaum RR et al (2001) Molecular targeting of gene therapy and radiotherapy. Acta Oncol 40(6):735–738CrossRefPubMed
29.
go back to reference Du N et al (2003) Radioprotective effect of FLT3 ligand expression regulated by Egr-1 regulated element on radiation injury of SCID mice. Exp Hematol 31(3):191–196CrossRefPubMed Du N et al (2003) Radioprotective effect of FLT3 ligand expression regulated by Egr-1 regulated element on radiation injury of SCID mice. Exp Hematol 31(3):191–196CrossRefPubMed
30.
go back to reference Schmidt M et al (2004) Inducible promoters for gene therapy of head and neck cancer: an in vitro study. Eur Arch Otorhinolaryngol 261(4):208–215CrossRefPubMed Schmidt M et al (2004) Inducible promoters for gene therapy of head and neck cancer: an in vitro study. Eur Arch Otorhinolaryngol 261(4):208–215CrossRefPubMed
31.
32.
go back to reference Werner T (2001) Cluster analysis and promoter modelling as bioinformatics tools for the identification of target genes from expression array data. Pharmacogenomics 2(1):25–36CrossRefPubMed Werner T (2001) Cluster analysis and promoter modelling as bioinformatics tools for the identification of target genes from expression array data. Pharmacogenomics 2(1):25–36CrossRefPubMed
33.
go back to reference Takayama K et al (2007) Vascular endothelial growth factor promoter-based conditionally replicative adenoviruses for pan-carcinoma application. Cancer Gene Ther 14(1):105–116CrossRefPubMed Takayama K et al (2007) Vascular endothelial growth factor promoter-based conditionally replicative adenoviruses for pan-carcinoma application. Cancer Gene Ther 14(1):105–116CrossRefPubMed
34.
go back to reference Zhu ZB et al (2006) Targeting mesothelioma using an infectivity enhanced survivin-conditionally replicative adenoviruses. J Thorac Oncol 1(7):701–711PubMedPubMedCentral Zhu ZB et al (2006) Targeting mesothelioma using an infectivity enhanced survivin-conditionally replicative adenoviruses. J Thorac Oncol 1(7):701–711PubMedPubMedCentral
35.
go back to reference Yoshida T et al (2001) Promoter structure and transcription initiation sites of the human death receptor 5/TRAIL-R2 gene. FEBS Lett 507(3):381–385CrossRefPubMed Yoshida T et al (2001) Promoter structure and transcription initiation sites of the human death receptor 5/TRAIL-R2 gene. FEBS Lett 507(3):381–385CrossRefPubMed
36.
go back to reference Zhu ZB et al (2004) Transcriptional targeting of tumors with a novel tumor-specific survivin promoter. Cancer Gene Ther 11(4):256–262CrossRefPubMed Zhu ZB et al (2004) Transcriptional targeting of tumors with a novel tumor-specific survivin promoter. Cancer Gene Ther 11(4):256–262CrossRefPubMed
37.
go back to reference Kaliberov SA et al (2002) Adenovirus-mediated transfer of BAX driven by the vascular endothelial growth factor promoter induces apoptosis in lung cancer cells. Mol Ther 6(2):190–198CrossRefPubMed Kaliberov SA et al (2002) Adenovirus-mediated transfer of BAX driven by the vascular endothelial growth factor promoter induces apoptosis in lung cancer cells. Mol Ther 6(2):190–198CrossRefPubMed
38.
go back to reference Ulasov IV et al (2007) Survivin-driven and fiber-modified oncolytic adenovirus exhibits potent antitumor activity in established intracranial glioma. Hum Gene Ther 18(7):589–602CrossRefPubMed Ulasov IV et al (2007) Survivin-driven and fiber-modified oncolytic adenovirus exhibits potent antitumor activity in established intracranial glioma. Hum Gene Ther 18(7):589–602CrossRefPubMed
39.
go back to reference Rosenfeld ME et al (1995) Adenoviral-mediated delivery of the herpes simplex virus thymidine kinase gene selectively sensitizes human ovarian carcinoma cells to ganciclovir. Clin Cancer Res 1(12):1571–1580PubMed Rosenfeld ME et al (1995) Adenoviral-mediated delivery of the herpes simplex virus thymidine kinase gene selectively sensitizes human ovarian carcinoma cells to ganciclovir. Clin Cancer Res 1(12):1571–1580PubMed
40.
go back to reference Bao S et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760CrossRefPubMed Bao S et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760CrossRefPubMed
41.
go back to reference Cooney R et al (2006) Adenoviral-mediated gene transfer of nitric oxide synthase isoforms and vascular cell proliferation. J Vasc Res 43(5):462–472CrossRefPubMed Cooney R et al (2006) Adenoviral-mediated gene transfer of nitric oxide synthase isoforms and vascular cell proliferation. J Vasc Res 43(5):462–472CrossRefPubMed
42.
go back to reference Wu J et al (2006) The initiator motif is preferentially used as the core promoter element in ionizing radiation-responsive genes. Radiat Res 166(5):810–813CrossRefPubMed Wu J et al (2006) The initiator motif is preferentially used as the core promoter element in ionizing radiation-responsive genes. Radiat Res 166(5):810–813CrossRefPubMed
43.
go back to reference Scott SD, Joiner MC, Marples B (2002) Optimizing radiation-responsive gene promoters for radiogenetic cancer therapy. Gene Ther 9(20):1396–1402CrossRefPubMed Scott SD, Joiner MC, Marples B (2002) Optimizing radiation-responsive gene promoters for radiogenetic cancer therapy. Gene Ther 9(20):1396–1402CrossRefPubMed
46.
go back to reference Nieder C et al (2005) Treatment of unresectable glioblastoma multiforme. Anticancer Res 25(6c):4605–4610PubMed Nieder C et al (2005) Treatment of unresectable glioblastoma multiforme. Anticancer Res 25(6c):4605–4610PubMed
47.
go back to reference Pinsker M, Lumenta C (2001) Experiences with reoperation on recurrent glioblastoma multiforme. Zentralbl Neurochir 62(2):43–47CrossRefPubMed Pinsker M, Lumenta C (2001) Experiences with reoperation on recurrent glioblastoma multiforme. Zentralbl Neurochir 62(2):43–47CrossRefPubMed
48.
go back to reference Dey M, Ulasov IV, Lesniak MS (2010) Virotherapy against malignant glioma stem cells. Cancer Lett 289(1):1–10CrossRefPubMed Dey M, Ulasov IV, Lesniak MS (2010) Virotherapy against malignant glioma stem cells. Cancer Lett 289(1):1–10CrossRefPubMed
49.
go back to reference Murphy AM, Rabkin SD (2013) Current status of gene therapy for brain tumors. Transl Res 161(4):339–354CrossRefPubMed Murphy AM, Rabkin SD (2013) Current status of gene therapy for brain tumors. Transl Res 161(4):339–354CrossRefPubMed
50.
51.
go back to reference Johnston SJ, Carroll JS (2015) Transcription factors and chromatin proteins as therapeutic targets in cancer. Biochim Biophys Acta 1855(2):183–192PubMed Johnston SJ, Carroll JS (2015) Transcription factors and chromatin proteins as therapeutic targets in cancer. Biochim Biophys Acta 1855(2):183–192PubMed
52.
go back to reference Wittkopp PJ, Kalay G (2012) Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 13(1):59–69CrossRef Wittkopp PJ, Kalay G (2012) Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 13(1):59–69CrossRef
53.
go back to reference Nishizawa M et al (2015) Post-transcriptional inducible gene regulation by natural antisense RNA. Front Biosci (Landmark Ed) 20:1–36CrossRef Nishizawa M et al (2015) Post-transcriptional inducible gene regulation by natural antisense RNA. Front Biosci (Landmark Ed) 20:1–36CrossRef
54.
go back to reference Yeh JE, Toniolo PA, Frank DA (2013) Targeting transcription factors: promising new strategies for cancer therapy. Curr Opin Oncol 25(6):652–658CrossRefPubMed Yeh JE, Toniolo PA, Frank DA (2013) Targeting transcription factors: promising new strategies for cancer therapy. Curr Opin Oncol 25(6):652–658CrossRefPubMed
55.
go back to reference Rad SM et al (2015) Transcription factor decoy: a pre-transcriptional approach for gene downregulation purpose in cancer. Tumour Biol 36(7):4871–4881CrossRefPubMed Rad SM et al (2015) Transcription factor decoy: a pre-transcriptional approach for gene downregulation purpose in cancer. Tumour Biol 36(7):4871–4881CrossRefPubMed
56.
go back to reference Kim TM, Park PJ (2011) Advances in analysis of transcriptional regulatory networks. Wiley Interdiscip Rev Syst Biol Med 3(1):21–35CrossRefPubMed Kim TM, Park PJ (2011) Advances in analysis of transcriptional regulatory networks. Wiley Interdiscip Rev Syst Biol Med 3(1):21–35CrossRefPubMed
57.
go back to reference Arafat WO et al (2004) Survivin as a novel radiation/tissue specific promoter for adenovirus based gene therapy. Cancer Res 64(7 Supplement):959 Arafat WO et al (2004) Survivin as a novel radiation/tissue specific promoter for adenovirus based gene therapy. Cancer Res 64(7 Supplement):959
58.
go back to reference Arafat WO et al (2004) Survivin as a novel radiation/CIS platinum/tumor specific promoter for conditional oncolytic viral therapy. J Clin Oncol 22(14_suppl):1535 Arafat WO et al (2004) Survivin as a novel radiation/CIS platinum/tumor specific promoter for conditional oncolytic viral therapy. J Clin Oncol 22(14_suppl):1535
59.
60.
go back to reference Ahmed MM (2004) Regulation of radiation-induced apoptosis by early growth response-1 gene in solid tumors. Curr Cancer Drug Targets 4(1):43–52CrossRefPubMed Ahmed MM (2004) Regulation of radiation-induced apoptosis by early growth response-1 gene in solid tumors. Curr Cancer Drug Targets 4(1):43–52CrossRefPubMed
61.
go back to reference Kufe D, Weichselbaum R (2003) Radiation therapy: activation for gene transcription and the development of genetic radiotherapy-therapeutic strategies in oncology. Cancer Biol Ther 2(4):326–329CrossRefPubMed Kufe D, Weichselbaum R (2003) Radiation therapy: activation for gene transcription and the development of genetic radiotherapy-therapeutic strategies in oncology. Cancer Biol Ther 2(4):326–329CrossRefPubMed
62.
go back to reference Datta R et al (1993) Reactive oxygen intermediates target CC(A/T)6GG sequences to mediate activation of the early growth response 1 transcription factor gene by ionizing radiation. Proc Natl Acad Sci USA 90(6):2419–2422CrossRefPubMedPubMedCentral Datta R et al (1993) Reactive oxygen intermediates target CC(A/T)6GG sequences to mediate activation of the early growth response 1 transcription factor gene by ionizing radiation. Proc Natl Acad Sci USA 90(6):2419–2422CrossRefPubMedPubMedCentral
63.
go back to reference Hsu H et al (2003) Combined radiation and cytochrome CYP4B1/4-ipomeanol gene therapy using the EGR1 promoter. Anticancer Res 23(3b):2723–2728PubMed Hsu H et al (2003) Combined radiation and cytochrome CYP4B1/4-ipomeanol gene therapy using the EGR1 promoter. Anticancer Res 23(3b):2723–2728PubMed
64.
go back to reference Mezhir JJ et al (2006) Ionizing radiation: a genetic switch for cancer therapy. Cancer Gene Ther 13(1):1–6CrossRefPubMed Mezhir JJ et al (2006) Ionizing radiation: a genetic switch for cancer therapy. Cancer Gene Ther 13(1):1–6CrossRefPubMed
65.
go back to reference Tsai-Morris CH, Cao XM, Sukhatme VP (1988) 5′ Flanking sequence and genomic structure of Egr-1, a murine mitogen inducible zinc finger encoding gene. Nucleic Acids Res 16(18):8835–8846CrossRefPubMedPubMedCentral Tsai-Morris CH, Cao XM, Sukhatme VP (1988) 5′ Flanking sequence and genomic structure of Egr-1, a murine mitogen inducible zinc finger encoding gene. Nucleic Acids Res 16(18):8835–8846CrossRefPubMedPubMedCentral
66.
go back to reference Pennati M, Folini M, Zaffaroni N (2007) Targeting survivin in cancer therapy: fulfilled promises and open questions. Carcinogenesis 28(6):1133–1139CrossRefPubMed Pennati M, Folini M, Zaffaroni N (2007) Targeting survivin in cancer therapy: fulfilled promises and open questions. Carcinogenesis 28(6):1133–1139CrossRefPubMed
67.
go back to reference Nenoi M et al (2001) Regulation of the catalase gene promoter by Sp1, CCAAT-recognizing factors, and a WT1/Egr-related factor in hydrogen peroxide-resistant HP100 cells. Cancer Res 61(15):5885–5894PubMed Nenoi M et al (2001) Regulation of the catalase gene promoter by Sp1, CCAAT-recognizing factors, and a WT1/Egr-related factor in hydrogen peroxide-resistant HP100 cells. Cancer Res 61(15):5885–5894PubMed
68.
go back to reference Wu J et al (2006) The initiator motif is preferentially used as the core promoter element in ionizing radiation-responsive genes. Radiat Res 166(5):810–813CrossRefPubMed Wu J et al (2006) The initiator motif is preferentially used as the core promoter element in ionizing radiation-responsive genes. Radiat Res 166(5):810–813CrossRefPubMed
Metadata
Title
Survivin a radiogenetic promoter for glioblastoma viral gene therapy independently from CArG motifs
Authors
George E. Naoum
Zeng B. Zhu
Donald J. Buchsbaum
David T. Curiel
Waleed O. Arafat
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2017
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-017-0140-y

Other articles of this Issue 1/2017

Clinical and Translational Medicine 1/2017 Go to the issue