Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2022

Open Access 01-12-2022 | Sudden Cardiac Death | Research

Whole exome sequencing in Brugada and long QT syndromes revealed novel rare and potential pathogenic mutations related to the dysfunction of the cardiac sodium channel

Authors: Jia Chen, Hong Li, Sicheng Guo, Zhe Yang, Shaoping Sun, JunJie Zeng, Hongjuan Gou, Yechang Chen, Feng Wang, Yanping Lin, Kun Huang, Hong Yue, Yuting Ma, Yubi Lin

Published in: Orphanet Journal of Rare Diseases | Issue 1/2022

Login to get access

Abstract

Background

Brugada syndrome (Brs) and long QT syndrome (LQTs) are the most observed “inherited primary arrhythmia syndromes” and “channelopathies”, which lead to sudden cardiac death.

Methods

Detailed clinical information of Brs and LQTs patients was collected. Genomic DNA samples of peripheral blood were conducted for whole-exome sequencing on the Illumina HiSeq 2000 platform. Then, we performed bioinformatics analysis for 200 genes susceptible to arrhythmias and cardiomyopathies. Protein interaction and transcriptomic co-expression were analyzed using the online website and GTEx database.

Results

All sixteen cases of Brs and six cases of LQTs were enrolled in the current study. Four Brs carried known pathogenic or likely pathogenic of single-point mutations, including SCN5A p.R661W, SCN5A p.R965C, and KCNH2 p.R692Q. One Brs carried the heterozygous compound mutations of DSG2 p.F531C and SCN5A p.A1374S. Two Brs carried the novel heterozygous truncated mutations (MAF < 0.001) of NEBL (p.R882X) and NPPA (p.R107X), respectively. Except for the indirect interaction between NEBL and SCN5A, NPPA directly interacts with SCN5A. These gene expressions had a specific and significant positive correlation in myocardial tissue, with high degrees of co-expression and synergy. Two Brs carried MYH7 p.E1902Q and MYH6 p.R1820Q, which were predicted as "damaging/possibly damaging" and "damaging/damaging" by Polyphen and SIFT algorithm. Two LQTs elicited the pathogenic single splicing mutation of KCNQ1 (c.922-1G > C). Three LQTs carried a single pathogenic mutation of SCN5A p.R1880H, KCNH2 p.D161N, and KCNQ1 p.R243S, respectively. One patient of LQTs carried a frameshift mutation of KCNH2 p. A188Gfs*143.

Conclusions

The truncated mutations of NEBL (p.R882X) and NPPA (p.R107X) may induce Brugada syndrome by abnormally affecting cardiac sodium channel. SCN5A (p.R661W, p.R965C and p.A1374S) and KCNH2 (p.R692Q) may cause Brugada syndrome, while SCN5A (p.R1880H), KCNQ1 (c.922-1G > C and p.R243S) and KCNH2 (p.D161N and p.A188Gfs*143) may lead to long QT syndrome.
Literature
1.
go back to reference Aiba T. Recent understanding of clinical sequencing and gene-based risk stratification in inherited primary arrhythmia syndrome. J Cardiol. 2019;73(5):335–42.PubMedCrossRef Aiba T. Recent understanding of clinical sequencing and gene-based risk stratification in inherited primary arrhythmia syndrome. J Cardiol. 2019;73(5):335–42.PubMedCrossRef
2.
go back to reference Gando I, Yang HQ, Coetzee WA. Functional significance of channelopathy gene variants in unexplained death. Forensic Sci Med Pathol. 2019;15(3):437–44.PubMedCrossRef Gando I, Yang HQ, Coetzee WA. Functional significance of channelopathy gene variants in unexplained death. Forensic Sci Med Pathol. 2019;15(3):437–44.PubMedCrossRef
3.
go back to reference Vutthikraivit W, Rattanawong P, Putthapiban P, Sukhumthammarat W, Vathesatogkit P, Ngarmukos T, et al. Worldwide prevalence of brugada syndrome: a systematic review and meta-analysis. Acta Cardiol Sin. 2018;34(3):267–77.PubMedPubMedCentral Vutthikraivit W, Rattanawong P, Putthapiban P, Sukhumthammarat W, Vathesatogkit P, Ngarmukos T, et al. Worldwide prevalence of brugada syndrome: a systematic review and meta-analysis. Acta Cardiol Sin. 2018;34(3):267–77.PubMedPubMedCentral
4.
go back to reference Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009;120(18):1761–7.PubMedPubMedCentralCrossRef Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009;120(18):1761–7.PubMedPubMedCentralCrossRef
5.
go back to reference Ioakeimidis NS, Papamitsou T, Meditskou S, Iakovidou-Kritsi Z. Sudden infant death syndrome due to long QT syndrome: a brief review of the genetic substrate and prevalence. J Biol Res. 2017;24:6. Ioakeimidis NS, Papamitsou T, Meditskou S, Iakovidou-Kritsi Z. Sudden infant death syndrome due to long QT syndrome: a brief review of the genetic substrate and prevalence. J Biol Res. 2017;24:6.
6.
go back to reference Arbelo E, Brugada J. Risk stratification and treatment of brugada syndrome. Curr Cardiol Rep. 2014;16(7):508.PubMedCrossRef Arbelo E, Brugada J. Risk stratification and treatment of brugada syndrome. Curr Cardiol Rep. 2014;16(7):508.PubMedCrossRef
7.
go back to reference Zareba W. Sex and genotype in long QT syndrome risk stratification. JAMA Cardiol. 2019;4(3):254–5.PubMedCrossRef Zareba W. Sex and genotype in long QT syndrome risk stratification. JAMA Cardiol. 2019;4(3):254–5.PubMedCrossRef
8.
go back to reference Aleong RG, Milan DJ, Ellinor PT. The diagnosis and treatment of cardiac ion channelopathies: congenital long QT syndrome and Brugada syndrome. Curr Treat Options Cardiovasc Med. 2007;9(5):364–71.PubMedCrossRef Aleong RG, Milan DJ, Ellinor PT. The diagnosis and treatment of cardiac ion channelopathies: congenital long QT syndrome and Brugada syndrome. Curr Treat Options Cardiovasc Med. 2007;9(5):364–71.PubMedCrossRef
9.
go back to reference Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of cardiology/American heart association task force on clinical practice guidelines and the heart rhythm society. J Am Coll Cardiol. 2018;72(14):e91-91e220.PubMedCrossRef Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of cardiology/American heart association task force on clinical practice guidelines and the heart rhythm society. J Am Coll Cardiol. 2018;72(14):e91-91e220.PubMedCrossRef
10.
go back to reference Mascia G, Bona RD, Ameri P, Canepa M, Porto I, Parati G, et al. Brugada syndrome and syncope: a practical approach for diagnosis and treatment. Europace. 2021;23(7):996–1002.PubMedCrossRef Mascia G, Bona RD, Ameri P, Canepa M, Porto I, Parati G, et al. Brugada syndrome and syncope: a practical approach for diagnosis and treatment. Europace. 2021;23(7):996–1002.PubMedCrossRef
12.
go back to reference El-Sherif N, Turitto G, Boutjdir M. Congenital long QT syndrome and torsade de pointes. Ann Noninvasive Electrocardiol. 2017;22(6):e12481.PubMedCentralCrossRef El-Sherif N, Turitto G, Boutjdir M. Congenital long QT syndrome and torsade de pointes. Ann Noninvasive Electrocardiol. 2017;22(6):e12481.PubMedCentralCrossRef
13.
go back to reference Wilde AA, Behr ER. Genetic testing for inherited cardiac disease. Nat Rev Cardiol. 2013;10(10):571–83.PubMedCrossRef Wilde AA, Behr ER. Genetic testing for inherited cardiac disease. Nat Rev Cardiol. 2013;10(10):571–83.PubMedCrossRef
14.
go back to reference Steinberg C. Diagnosis and clinical management of long-QT syndrome. Curr Opin Cardiol. 2018;33(1):31–41.PubMedCrossRef Steinberg C. Diagnosis and clinical management of long-QT syndrome. Curr Opin Cardiol. 2018;33(1):31–41.PubMedCrossRef
15.
go back to reference Shah SR, Park K, Alweis R. Long QT syndrome: a comprehensive review of the literature and current evidence. Curr Probl Cardiol. 2019;44(3):92–106.PubMedCrossRef Shah SR, Park K, Alweis R. Long QT syndrome: a comprehensive review of the literature and current evidence. Curr Probl Cardiol. 2019;44(3):92–106.PubMedCrossRef
16.
go back to reference Wilde A, Amin AS, Postema PG. Diagnosis, management and therapeutic strategies for congenital long QT syndrome. Heart. 2022;108(5):332–8.PubMedCrossRef Wilde A, Amin AS, Postema PG. Diagnosis, management and therapeutic strategies for congenital long QT syndrome. Heart. 2022;108(5):332–8.PubMedCrossRef
17.
go back to reference Chen J, Ma Y, Li H, Lin Z, Yang Z, Zhang Q, et al. Rare and potential pathogenic mutations of LMNA and LAMA4 associated with familial arrhythmogenic right ventricular cardiomyopathy/dysplasia with right ventricular heart failure, cerebral thromboembolism and hereditary electrocardiogram abnormality. Orphanet J Rare Dis. 2022;17(1):183.PubMedPubMedCentralCrossRef Chen J, Ma Y, Li H, Lin Z, Yang Z, Zhang Q, et al. Rare and potential pathogenic mutations of LMNA and LAMA4 associated with familial arrhythmogenic right ventricular cardiomyopathy/dysplasia with right ventricular heart failure, cerebral thromboembolism and hereditary electrocardiogram abnormality. Orphanet J Rare Dis. 2022;17(1):183.PubMedPubMedCentralCrossRef
18.
go back to reference Lin Y, Huang J, Zhu Z, Zhang Z, Xian J, Yang Z, et al. Overlap phenotypes of the left ventricular noncompaction and hypertrophic cardiomyopathy with complex arrhythmias and heart failure induced by the novel truncated DSC2 mutation. Orphanet J Rare Dis. 2021;16(1):496.PubMedPubMedCentralCrossRef Lin Y, Huang J, Zhu Z, Zhang Z, Xian J, Yang Z, et al. Overlap phenotypes of the left ventricular noncompaction and hypertrophic cardiomyopathy with complex arrhythmias and heart failure induced by the novel truncated DSC2 mutation. Orphanet J Rare Dis. 2021;16(1):496.PubMedPubMedCentralCrossRef
19.
go back to reference Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, Liu X. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet. 2015;24:2125–37.PubMedCrossRef Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, Liu X. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet. 2015;24:2125–37.PubMedCrossRef
20.
go back to reference Lin Y, Zhang Q, Zhong ZA, et al. Whole genome sequence identified a rare homozygous pathogenic mutation of the DSG2 gene in a familial arrhythmogenic cardiomyopathy involving both ventricles. Cardiology. 2017;138(1):41–54.PubMedCrossRef Lin Y, Zhang Q, Zhong ZA, et al. Whole genome sequence identified a rare homozygous pathogenic mutation of the DSG2 gene in a familial arrhythmogenic cardiomyopathy involving both ventricles. Cardiology. 2017;138(1):41–54.PubMedCrossRef
22.
go back to reference Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.PubMedPubMedCentralCrossRef Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.PubMedPubMedCentralCrossRef
24.
go back to reference Lin Y, He S, Liao Z, Feng R, Liu R, Peng Y, et al. Whole exome sequencing identified a pathogenic mutation in RYR2 in a Chinese family with unexplained sudden death. J Electrocardiol. 2018;51(2):309–15.PubMedCrossRef Lin Y, He S, Liao Z, Feng R, Liu R, Peng Y, et al. Whole exome sequencing identified a pathogenic mutation in RYR2 in a Chinese family with unexplained sudden death. J Electrocardiol. 2018;51(2):309–15.PubMedCrossRef
25.
go back to reference Yang Z, Li T, Xian J, Chen J, Huang Y, Zhang Q, et al. SGLT2 inhibitor dapagliflozin attenuates cardiac fibrosis and inflammation by reverting the HIF-2α signaling pathway in arrhythmogenic cardiomyopathy. FASEB J. 2022;36(7):e22410.PubMedCrossRef Yang Z, Li T, Xian J, Chen J, Huang Y, Zhang Q, et al. SGLT2 inhibitor dapagliflozin attenuates cardiac fibrosis and inflammation by reverting the HIF-2α signaling pathway in arrhythmogenic cardiomyopathy. FASEB J. 2022;36(7):e22410.PubMedCrossRef
26.
go back to reference Lin Y, Huang J, Zhao T, He S, Huang Z, Chen X, et al. Compound and heterozygous mutations of DSG2 identified by whole exome sequencing in arrhythmogenic right ventricular cardiomyopathy/dysplasia with ventricular tachycardia. J Electrocardiol. 2018;51(5):837–43.PubMedCrossRef Lin Y, Huang J, Zhao T, He S, Huang Z, Chen X, et al. Compound and heterozygous mutations of DSG2 identified by whole exome sequencing in arrhythmogenic right ventricular cardiomyopathy/dysplasia with ventricular tachycardia. J Electrocardiol. 2018;51(5):837–43.PubMedCrossRef
27.
go back to reference Lin Y, Huang J, He S, Feng R, Zhong Z, Liu Y, et al. Case report of familial sudden cardiac death caused by a DSG2 p.F531C mutation as genetic background when carrying with heterozygous KCNE5 p.D92E/E93X mutation. BMC Med Genet. 2018;19(1):148.PubMedPubMedCentralCrossRef Lin Y, Huang J, He S, Feng R, Zhong Z, Liu Y, et al. Case report of familial sudden cardiac death caused by a DSG2 p.F531C mutation as genetic background when carrying with heterozygous KCNE5 p.D92E/E93X mutation. BMC Med Genet. 2018;19(1):148.PubMedPubMedCentralCrossRef
28.
go back to reference Lin Y, Qin J, Shen Y, Huang J, Zhang Z, Zhu Z, et al. Identification of rare heterozygous linkage R965C–R1309H mutations in the pore-forming region of SCN5A gene associated with complex arrhythmia. Mol Genet Genomic Med. 2021;9(5):e1613.PubMedPubMedCentralCrossRef Lin Y, Qin J, Shen Y, Huang J, Zhang Z, Zhu Z, et al. Identification of rare heterozygous linkage R965C–R1309H mutations in the pore-forming region of SCN5A gene associated with complex arrhythmia. Mol Genet Genomic Med. 2021;9(5):e1613.PubMedPubMedCentralCrossRef
29.
go back to reference Hernandez DA, Bennett CM, Dunina-Barkovskaya L, et al. Nebulette is a powerful cytolinker organizing desmin and actin in mouse hearts. Mol Biol Cell. 2016;27(24):3869–82.PubMedPubMedCentralCrossRef Hernandez DA, Bennett CM, Dunina-Barkovskaya L, et al. Nebulette is a powerful cytolinker organizing desmin and actin in mouse hearts. Mol Biol Cell. 2016;27(24):3869–82.PubMedPubMedCentralCrossRef
30.
go back to reference Klauke B, Kossmann S, Gaertner A, et al. De novo desmin-mutation N116S is associated with arrhythmogenic right ventricular cardiomyopathy. Hum Mol Genet. 2010;19(23):4595–607.PubMedCrossRef Klauke B, Kossmann S, Gaertner A, et al. De novo desmin-mutation N116S is associated with arrhythmogenic right ventricular cardiomyopathy. Hum Mol Genet. 2010;19(23):4595–607.PubMedCrossRef
31.
go back to reference Kataoka S, Serizawa N, Kitamura K, et al. An overlap of Brugada syndrome and arrhythmogenic right ventricular cardiomyopathy/dysplasia. J Arrhythm. 2016;32(1):70–3.PubMedCrossRef Kataoka S, Serizawa N, Kitamura K, et al. An overlap of Brugada syndrome and arrhythmogenic right ventricular cardiomyopathy/dysplasia. J Arrhythm. 2016;32(1):70–3.PubMedCrossRef
32.
go back to reference Hoogendijk MG. Diagnostic dilemmas: overlapping features of brugada syndrome and arrhythmogenic right ventricular cardiomyopathy. Front Physiol. 2012;3:144.PubMedPubMedCentralCrossRef Hoogendijk MG. Diagnostic dilemmas: overlapping features of brugada syndrome and arrhythmogenic right ventricular cardiomyopathy. Front Physiol. 2012;3:144.PubMedPubMedCentralCrossRef
34.
go back to reference Cerrone M, Lin X, Zhang M, et al. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. Circulation. 2014;129(10):1092–103.PubMedCrossRef Cerrone M, Lin X, Zhang M, et al. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. Circulation. 2014;129(10):1092–103.PubMedCrossRef
35.
go back to reference Sato PY, Musa H, Coombs W, et al. Loss of plakophilin-2 expression leads to decreased sodium current and slower conduction velocity in cultured cardiac myocytes. Circ Res. 2009;105(6):523–6.PubMedPubMedCentralCrossRef Sato PY, Musa H, Coombs W, et al. Loss of plakophilin-2 expression leads to decreased sodium current and slower conduction velocity in cultured cardiac myocytes. Circ Res. 2009;105(6):523–6.PubMedPubMedCentralCrossRef
37.
go back to reference Zhang Z, Zhang Q, Lal H, Nam YJ. Generation of Nppa-tagBFP reporter knock-in mouse line for studying cardiac chamber specification. Genesis. 2019;57(6):e23294.PubMedPubMedCentralCrossRef Zhang Z, Zhang Q, Lal H, Nam YJ. Generation of Nppa-tagBFP reporter knock-in mouse line for studying cardiac chamber specification. Genesis. 2019;57(6):e23294.PubMedPubMedCentralCrossRef
38.
go back to reference Maiellaro-Rafferty K, Wansapura JP, Mendsaikhan U, et al. Altered regional cardiac wall mechanics are associated with differential cardiomyocyte calcium handling due to nebulette mutations in preclinical inherited dilated cardiomyopathy. J Mol Cell Cardiol. 2013;60:151–60.PubMedPubMedCentralCrossRef Maiellaro-Rafferty K, Wansapura JP, Mendsaikhan U, et al. Altered regional cardiac wall mechanics are associated with differential cardiomyocyte calcium handling due to nebulette mutations in preclinical inherited dilated cardiomyopathy. J Mol Cell Cardiol. 2013;60:151–60.PubMedPubMedCentralCrossRef
39.
go back to reference Low SK, Takahashi A, Ebana Y, et al. Identification of six new genetic loci associated with atrial fibrillation in the Japanese population. Nat Genet. 2017;49(6):953–8.PubMedCrossRef Low SK, Takahashi A, Ebana Y, et al. Identification of six new genetic loci associated with atrial fibrillation in the Japanese population. Nat Genet. 2017;49(6):953–8.PubMedCrossRef
40.
go back to reference Gudbjartsson DF, Arnar DO, Helgadottir A, et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007;448(7151):353–7.PubMedCrossRef Gudbjartsson DF, Arnar DO, Helgadottir A, et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007;448(7151):353–7.PubMedCrossRef
41.
go back to reference Pereira NL, Tosakulwong N, Scott CG, et al. Circulating atrial natriuretic peptide genetic association study identifies a novel gene cluster associated with stroke in whites. Circ Cardiovasc Genet. 2015;8(1):141–9.PubMedCrossRef Pereira NL, Tosakulwong N, Scott CG, et al. Circulating atrial natriuretic peptide genetic association study identifies a novel gene cluster associated with stroke in whites. Circ Cardiovasc Genet. 2015;8(1):141–9.PubMedCrossRef
43.
go back to reference Abraham RL, Yang T, Blair M, Roden DM, Darbar D. Augmented potassium current is a shared phenotype for two genetic defects associated with familial atrial fibrillation. J Mol Cell Cardiol. 2010;48(1):181–90.PubMedCrossRef Abraham RL, Yang T, Blair M, Roden DM, Darbar D. Augmented potassium current is a shared phenotype for two genetic defects associated with familial atrial fibrillation. J Mol Cell Cardiol. 2010;48(1):181–90.PubMedCrossRef
44.
go back to reference Disertori M, Quintarelli S, Grasso M, et al. Autosomal recessive atrial dilated cardiomyopathy with standstill evolution associated with mutation of natriuretic peptide precursor A. Circ Cardiovasc Genet. 2013;6(1):27–36.PubMedCrossRef Disertori M, Quintarelli S, Grasso M, et al. Autosomal recessive atrial dilated cardiomyopathy with standstill evolution associated with mutation of natriuretic peptide precursor A. Circ Cardiovasc Genet. 2013;6(1):27–36.PubMedCrossRef
46.
go back to reference Menon A, Hong L, Savio-Galimberti E, et al. Electrophysiologic and molecular mechanisms of a frameshift NPPA mutation linked with familial atrial fibrillation. J Mol Cell Cardiol. 2019;132:24–35.PubMedPubMedCentralCrossRef Menon A, Hong L, Savio-Galimberti E, et al. Electrophysiologic and molecular mechanisms of a frameshift NPPA mutation linked with familial atrial fibrillation. J Mol Cell Cardiol. 2019;132:24–35.PubMedPubMedCentralCrossRef
47.
go back to reference Luo Y, Xia Q, Xia Z, Tang Y. Atrial natriuretic peptide reduces the α-subunit of the epithelial sodium channel mRNA expression in the mouse stria vascularis. Biomed Rep. 2015;3(2):159–62.PubMedCrossRef Luo Y, Xia Q, Xia Z, Tang Y. Atrial natriuretic peptide reduces the α-subunit of the epithelial sodium channel mRNA expression in the mouse stria vascularis. Biomed Rep. 2015;3(2):159–62.PubMedCrossRef
48.
go back to reference Zhang J, Zhao Z, Zu C, et al. Atrial natriuretic peptide modulates the proliferation of human gastric cancer cells via KCNQ1 expression. Oncol Lett. 2013;6(2):407–14.PubMedPubMedCentralCrossRef Zhang J, Zhao Z, Zu C, et al. Atrial natriuretic peptide modulates the proliferation of human gastric cancer cells via KCNQ1 expression. Oncol Lett. 2013;6(2):407–14.PubMedPubMedCentralCrossRef
49.
go back to reference Aam W, Amin AS. Clinical spectrum of SCN5A mutations: long QT syndrome, Brugada syndrome, and cardiomyopathy. JACC Clin Electrophysiol. 2018;4(5):569–79.CrossRef Aam W, Amin AS. Clinical spectrum of SCN5A mutations: long QT syndrome, Brugada syndrome, and cardiomyopathy. JACC Clin Electrophysiol. 2018;4(5):569–79.CrossRef
50.
go back to reference Kapplinger JD, Tester DJ, Alders M, et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 2010;7(1):33–46.PubMedCrossRef Kapplinger JD, Tester DJ, Alders M, et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 2010;7(1):33–46.PubMedCrossRef
51.
go back to reference Sommariva E, Pappone C, Martinelli BF, et al. Genetics can contribute to the prognosis of Brugada syndrome: a pilot model for risk stratification. Eur J Hum Genet. 2013;21(9):911–7.PubMedPubMedCentralCrossRef Sommariva E, Pappone C, Martinelli BF, et al. Genetics can contribute to the prognosis of Brugada syndrome: a pilot model for risk stratification. Eur J Hum Genet. 2013;21(9):911–7.PubMedPubMedCentralCrossRef
52.
go back to reference Yoshikane Y, Yoshinaga M, Hamamoto K, Hirose S. A case of long QT syndrome with triple gene abnormalities: digenic mutations in KCNH2 and SCN5A and gene variant in KCNE1. Heart Rhythm. 2013;10(4):600–3.PubMedCrossRef Yoshikane Y, Yoshinaga M, Hamamoto K, Hirose S. A case of long QT syndrome with triple gene abnormalities: digenic mutations in KCNH2 and SCN5A and gene variant in KCNE1. Heart Rhythm. 2013;10(4):600–3.PubMedCrossRef
53.
go back to reference Silva D, Martins FM, Cavaco D, et al. Natural history of Brugada syndrome in a patient with congenital heart disease. Rev Port Cardiol. 2015;34(7–8):493.e1-4.CrossRef Silva D, Martins FM, Cavaco D, et al. Natural history of Brugada syndrome in a patient with congenital heart disease. Rev Port Cardiol. 2015;34(7–8):493.e1-4.CrossRef
54.
go back to reference Priori SG, Napolitano C, Gasparini M, et al. Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome: a prospective evaluation of 52 families. Circulation. 2000;102(20):2509–15.PubMedCrossRef Priori SG, Napolitano C, Gasparini M, et al. Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome: a prospective evaluation of 52 families. Circulation. 2000;102(20):2509–15.PubMedCrossRef
56.
go back to reference Murray A, Donger C, Fenske C, et al. Splicing mutations in KCNQ1: a mutation hot spot at codon 344 that produces in frame transcripts. Circulation. 1999;100(10):1077–84.PubMedCrossRef Murray A, Donger C, Fenske C, et al. Splicing mutations in KCNQ1: a mutation hot spot at codon 344 that produces in frame transcripts. Circulation. 1999;100(10):1077–84.PubMedCrossRef
57.
go back to reference Matavel A, Medei E, Lopes CM. PKA and PKC partially rescue long QT type 1 phenotype by restoring channel-PIP2 interactions. Channels. 2010;4(1):3–11.PubMedCrossRef Matavel A, Medei E, Lopes CM. PKA and PKC partially rescue long QT type 1 phenotype by restoring channel-PIP2 interactions. Channels. 2010;4(1):3–11.PubMedCrossRef
58.
go back to reference Kapa S, Tester DJ, Salisbury BA, et al. Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants. Circulation. 2009;120(18):1752–60.PubMedPubMedCentralCrossRef Kapa S, Tester DJ, Salisbury BA, et al. Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants. Circulation. 2009;120(18):1752–60.PubMedPubMedCentralCrossRef
59.
go back to reference Franqueza L, Lin M, Shen J, Splawski I, Keating MT, Sanguinetti MC. Long QT syndrome-associated mutations in the S4–S5 linker of KvLQT1 potassium channels modify gating and interaction with minK subunits. J Biol Chem. 1999;274(30):21063–70.PubMedCrossRef Franqueza L, Lin M, Shen J, Splawski I, Keating MT, Sanguinetti MC. Long QT syndrome-associated mutations in the S4–S5 linker of KvLQT1 potassium channels modify gating and interaction with minK subunits. J Biol Chem. 1999;274(30):21063–70.PubMedCrossRef
60.
go back to reference Barsheshet A, Goldenberg I, O-Uchi J, et al. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to β-blocker therapy in type 1 long-QT syndrome. Circulation. 2012;125(16):1988–96.PubMedPubMedCentralCrossRef Barsheshet A, Goldenberg I, O-Uchi J, et al. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to β-blocker therapy in type 1 long-QT syndrome. Circulation. 2012;125(16):1988–96.PubMedPubMedCentralCrossRef
62.
go back to reference Liu JF, Goldenberg I, Moss AJ, et al. Phenotypic variability in Caucasian and Japanese patients with matched LQT1 mutations. Ann Noninvasive Electrocardiol. 2008;13(3):234–41.PubMedPubMedCentralCrossRef Liu JF, Goldenberg I, Moss AJ, et al. Phenotypic variability in Caucasian and Japanese patients with matched LQT1 mutations. Ann Noninvasive Electrocardiol. 2008;13(3):234–41.PubMedPubMedCentralCrossRef
63.
go back to reference Napolitano C, Priori SG, Schwartz PJ, et al. Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice. JAMA. 2005;294(23):2975–80.PubMedCrossRef Napolitano C, Priori SG, Schwartz PJ, et al. Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice. JAMA. 2005;294(23):2975–80.PubMedCrossRef
64.
go back to reference Hermida JS, Dassonvalle E, Six I, et al. Prospective evaluation of the familial prevalence of the brugada syndrome. Am J Cardiol. 2010;106(12):1758–62.PubMedCrossRef Hermida JS, Dassonvalle E, Six I, et al. Prospective evaluation of the familial prevalence of the brugada syndrome. Am J Cardiol. 2010;106(12):1758–62.PubMedCrossRef
65.
go back to reference Te RAS, Agullo-Pascual E, James CA, et al. Multilevel analyses of SCN5A mutations in arrhythmogenic right ventricular dysplasia/cardiomyopathy suggest non-canonical mechanisms for disease pathogenesis. Cardiovasc Res. 2017;113(1):102–11.CrossRef Te RAS, Agullo-Pascual E, James CA, et al. Multilevel analyses of SCN5A mutations in arrhythmogenic right ventricular dysplasia/cardiomyopathy suggest non-canonical mechanisms for disease pathogenesis. Cardiovasc Res. 2017;113(1):102–11.CrossRef
66.
go back to reference Jongbloed R, Marcelis C, Velter C, Doevendans P, Geraedts J, Smeets H. DHPLC analysis of potassium ion channel genes in congenital long QT syndrome. Hum Mutat. 2002;20(5):382–91.PubMedCrossRef Jongbloed R, Marcelis C, Velter C, Doevendans P, Geraedts J, Smeets H. DHPLC analysis of potassium ion channel genes in congenital long QT syndrome. Hum Mutat. 2002;20(5):382–91.PubMedCrossRef
67.
go back to reference Ogawa K, Nakamura Y, Terano K, Ando T, Hishitani T, Hoshino K. Isolated non-compaction of the ventricular myocardium associated with long QT syndrome: a report of 2 cases. Circ J. 2009;73(11):2169–72.PubMedCrossRef Ogawa K, Nakamura Y, Terano K, Ando T, Hishitani T, Hoshino K. Isolated non-compaction of the ventricular myocardium associated with long QT syndrome: a report of 2 cases. Circ J. 2009;73(11):2169–72.PubMedCrossRef
68.
go back to reference Nagaoka I, Shimizu W, Itoh H, et al. Mutation site dependent variability of cardiac events in Japanese LQT2 form of congenital long-QT syndrome. Circ J. 2008;72(5):694–9.PubMedCrossRef Nagaoka I, Shimizu W, Itoh H, et al. Mutation site dependent variability of cardiac events in Japanese LQT2 form of congenital long-QT syndrome. Circ J. 2008;72(5):694–9.PubMedCrossRef
69.
go back to reference Kapplinger JD, Tester DJ, Salisbury BA, et al. Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. Heart Rhythm. 2009;6(9):1297–303.PubMedPubMedCentralCrossRef Kapplinger JD, Tester DJ, Salisbury BA, et al. Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. Heart Rhythm. 2009;6(9):1297–303.PubMedPubMedCentralCrossRef
71.
go back to reference Di Resta C, Pietrelli A, Sala S, et al. High-throughput genetic characterization of a cohort of Brugada syndrome patients. Hum Mol Genet. 2015;24(20):5828–35.PubMedCrossRef Di Resta C, Pietrelli A, Sala S, et al. High-throughput genetic characterization of a cohort of Brugada syndrome patients. Hum Mol Genet. 2015;24(20):5828–35.PubMedCrossRef
72.
go back to reference Allegue C, Gil R, Blanco-Verea A, et al. Prevalence of HCM and long QT syndrome mutations in young sudden cardiac death-related cases. Int J Legal Med. 2011;125(4):565–72.PubMedCrossRef Allegue C, Gil R, Blanco-Verea A, et al. Prevalence of HCM and long QT syndrome mutations in young sudden cardiac death-related cases. Int J Legal Med. 2011;125(4):565–72.PubMedCrossRef
Metadata
Title
Whole exome sequencing in Brugada and long QT syndromes revealed novel rare and potential pathogenic mutations related to the dysfunction of the cardiac sodium channel
Authors
Jia Chen
Hong Li
Sicheng Guo
Zhe Yang
Shaoping Sun
JunJie Zeng
Hongjuan Gou
Yechang Chen
Feng Wang
Yanping Lin
Kun Huang
Hong Yue
Yuting Ma
Yubi Lin
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2022
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-022-02542-z

Other articles of this Issue 1/2022

Orphanet Journal of Rare Diseases 1/2022 Go to the issue