Skip to main content
Top
Published in: Forensic Science, Medicine and Pathology 3/2019

01-09-2019 | Review

Functional significance of channelopathy gene variants in unexplained death

Authors: Ivan Gando, Hua-Qian Yang, William A. Coetzee

Published in: Forensic Science, Medicine and Pathology | Issue 3/2019

Login to get access

Abstract

Determining the cause of unexplained death in all age groups, including infants, is a priority in forensic medicine. The triple risk model proposed for sudden infant death syndrome involves the intersection of three risks: (1) a critical developmental period in homeostatic control (2), exogenous stressors, and (3) a vulnerable infant. Even though sex and age factor into some forms of inherited arrhythmogenic deaths in young individuals and adults, more appropriate a dual-risk disease model for adults involves exogenous stressors and a vulnerable individual. The vulnerability aspect clearly has a genetic component as underscored by a number of recent large-scale and high-throughput genetic testing studies performed in attempt to define the causes of sudden unexplained death. These studies often focus on ‘cardiac’ and channelopathy genes. Genetic testing often identify lists of rare or ultra-rare nonsynonymous variants, classified according to the ACMG guidelines as ‘pathogenic’ or ‘likely pathogenic’, which may form the basis of diagnostic decisions and/or family counseling. However, computer algorithms used to categorize gene variants are not completely accurate and these variants are often not functionally tested to determine their pathogenicity. Due to conflicting computational predictions, a large number of variants are labeled as ‘variants of uncertain significance’ or VUS. Functional testing of these VUS can greatly assist to reclassify these VUS as ‘likely benign’ or ‘likely pathogenic’. However, functional testing has its limits and by itself cannot be used to determine cause of death. Going forward, computer algorithms must be improved to take account of variants across multiple genes and efforts must be expanded to obtain clinical, familial and segregation data. Forensic genetic testing needs to be held to the same rigorous standards as defined by the NIH Clinical Genome Resource Consortium, where functional evaluation of a channelopathy variant is only one (but important) aspect of the overall picture.
Literature
1.
go back to reference Minino AM. Death in the United States, 2011. NCHS Data Brief. 2013;115:1–8. Minino AM. Death in the United States, 2011. NCHS Data Brief. 2013;115:1–8.
4.
go back to reference Arnestad M, Crotti L, Rognum TO, Insolia R, Pedrazzini M, Ferrandi C, et al. Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation. 2007;115:361–7.CrossRefPubMed Arnestad M, Crotti L, Rognum TO, Insolia R, Pedrazzini M, Ferrandi C, et al. Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation. 2007;115:361–7.CrossRefPubMed
5.
go back to reference Filiano JJ, Kinney HC. A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple-risk model. Biol Neonate. 1994;65:194–7.CrossRefPubMed Filiano JJ, Kinney HC. A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple-risk model. Biol Neonate. 1994;65:194–7.CrossRefPubMed
6.
go back to reference Zareba W, Moss AJ, Locati EH, Lehmann MH, Peterson DR, Hall WJ, et al. Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. J Am Coll Cardiol. 2003;42:103–9.CrossRefPubMed Zareba W, Moss AJ, Locati EH, Lehmann MH, Peterson DR, Hall WJ, et al. Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. J Am Coll Cardiol. 2003;42:103–9.CrossRefPubMed
10.
go back to reference Brugada J, Brugada R, Brugada P. Channelopathies: a new category of diseases causing sudden death. Herz. 2007;32:185–91.CrossRefPubMed Brugada J, Brugada R, Brugada P. Channelopathies: a new category of diseases causing sudden death. Herz. 2007;32:185–91.CrossRefPubMed
11.
go back to reference Basso C, Carturan E, Pilichou K, Rizzo S, Corrado D, Thiene G. Sudden cardiac death with normal heart: molecular autopsy. Cardiovasc Pathol. 2010;19:321–5.CrossRefPubMed Basso C, Carturan E, Pilichou K, Rizzo S, Corrado D, Thiene G. Sudden cardiac death with normal heart: molecular autopsy. Cardiovasc Pathol. 2010;19:321–5.CrossRefPubMed
12.
go back to reference Coote JH, Chauhan RA. The sympathetic innervation of the heart: important new insights. Auton Neurosci. 2016;199:17–23.CrossRefPubMed Coote JH, Chauhan RA. The sympathetic innervation of the heart: important new insights. Auton Neurosci. 2016;199:17–23.CrossRefPubMed
14.
go back to reference Maron BJ, Clark CE, Goldstein RE, Epstein SE. Potential role of QT interval prolongation in sudden infant death syndrome. Circulation. 1976;54:423–30.CrossRefPubMed Maron BJ, Clark CE, Goldstein RE, Epstein SE. Potential role of QT interval prolongation in sudden infant death syndrome. Circulation. 1976;54:423–30.CrossRefPubMed
15.
go back to reference Schwartz PJ. Cardiac sympathetic innervation and the sudden infant death syndrome. A possible pathogenetic link. Am J Med. 1976;60:167–72.CrossRefPubMed Schwartz PJ. Cardiac sympathetic innervation and the sudden infant death syndrome. A possible pathogenetic link. Am J Med. 1976;60:167–72.CrossRefPubMed
16.
go back to reference Schwartz PJ, Stramba-Badiale M, Segantini A, Austoni P, Bosi G, Giorgetti R, et al. Prolongation of the QT interval and the sudden infant death syndrome. N Engl J Med. 1998;338:1709–14.CrossRefPubMed Schwartz PJ, Stramba-Badiale M, Segantini A, Austoni P, Bosi G, Giorgetti R, et al. Prolongation of the QT interval and the sudden infant death syndrome. N Engl J Med. 1998;338:1709–14.CrossRefPubMed
17.
go back to reference Kukolich MK, Telsey A, Ott J, Motulsky AG. Sudden infant death syndrome: normal QT interval on ECGs of relatives. Pediatrics. 1977;60:51–4.PubMed Kukolich MK, Telsey A, Ott J, Motulsky AG. Sudden infant death syndrome: normal QT interval on ECGs of relatives. Pediatrics. 1977;60:51–4.PubMed
18.
go back to reference Kelly DH, Shannon DC, Liberthson RR. The role of the QT interval in the sudden infant death syndrome. Circulation. 1977;55:633–5.CrossRefPubMed Kelly DH, Shannon DC, Liberthson RR. The role of the QT interval in the sudden infant death syndrome. Circulation. 1977;55:633–5.CrossRefPubMed
19.
go back to reference Steinschneider A. Sudden infant death syndrome and prolongation of the QT interval. Am J Dis Child. 1978;132:688–91.PubMed Steinschneider A. Sudden infant death syndrome and prolongation of the QT interval. Am J Dis Child. 1978;132:688–91.PubMed
20.
go back to reference Davis AM, Glengarry J, Skinner JR. Sudden infant death: QT or not QT? That is no longer the question. Circ Arrhythm Electrophysiol. 2016;9(6). Davis AM, Glengarry J, Skinner JR. Sudden infant death: QT or not QT? That is no longer the question. Circ Arrhythm Electrophysiol. 2016;9(6).
21.
go back to reference Schwartz PJ, Priori SG, Dumaine R, Napolitano C, Antzelevitch C, Stramba-Badiale M, et al. A molecular link between the sudden infant death syndrome and the long-QT syndrome. N Engl J Med. 2000;343:262–7.CrossRefPubMed Schwartz PJ, Priori SG, Dumaine R, Napolitano C, Antzelevitch C, Stramba-Badiale M, et al. A molecular link between the sudden infant death syndrome and the long-QT syndrome. N Engl J Med. 2000;343:262–7.CrossRefPubMed
22.
go back to reference Ackerman MJ, Siu BL, Sturner WQ, Tester DJ, Valdivia CR, Makielski JC, et al. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA. 2001;286:2264–9.CrossRefPubMed Ackerman MJ, Siu BL, Sturner WQ, Tester DJ, Valdivia CR, Makielski JC, et al. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA. 2001;286:2264–9.CrossRefPubMed
23.
go back to reference Schwartz PJ, Priori SG, Bloise R, Napolitano C, Ronchetti E, Piccinini A, et al. Molecular diagnosis in a child with sudden infant death syndrome. Lancet. 2001;358:1342–3.CrossRefPubMed Schwartz PJ, Priori SG, Bloise R, Napolitano C, Ronchetti E, Piccinini A, et al. Molecular diagnosis in a child with sudden infant death syndrome. Lancet. 2001;358:1342–3.CrossRefPubMed
24.
go back to reference Wedekind H, Smits JP, Schulze-Bahr E, Arnold R, Veldkamp MW, Bajanowski T, et al. De novo mutation in the SCN5A gene associated with early onset of sudden infant death. Circulation. 2001;104:1158–64.CrossRefPubMed Wedekind H, Smits JP, Schulze-Bahr E, Arnold R, Veldkamp MW, Bajanowski T, et al. De novo mutation in the SCN5A gene associated with early onset of sudden infant death. Circulation. 2001;104:1158–64.CrossRefPubMed
25.
go back to reference Wehrens XH, Marks AR. Sudden unexplained death caused by cardiac ryanodine receptor (RyR2) mutations. Mayo Clin Proc. 2004;79:1367–71.CrossRefPubMed Wehrens XH, Marks AR. Sudden unexplained death caused by cardiac ryanodine receptor (RyR2) mutations. Mayo Clin Proc. 2004;79:1367–71.CrossRefPubMed
26.
go back to reference Christiansen M, Tonder N, Larsen LA, Andersen PS, Simonsen H, Oyen N, et al. Mutations in the HERG K+−ion channel: a novel link between long QT syndrome and sudden infant death syndrome. Am J Cardiol. 2005;95:433–4.CrossRefPubMed Christiansen M, Tonder N, Larsen LA, Andersen PS, Simonsen H, Oyen N, et al. Mutations in the HERG K+−ion channel: a novel link between long QT syndrome and sudden infant death syndrome. Am J Cardiol. 2005;95:433–4.CrossRefPubMed
27.
go back to reference Plant LD, Bowers PN, Liu Q, Morgan T, Zhang T, State MW, et al. A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y. J Clin Invest. 2006;116:430–5.CrossRefPubMedPubMedCentral Plant LD, Bowers PN, Liu Q, Morgan T, Zhang T, State MW, et al. A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y. J Clin Invest. 2006;116:430–5.CrossRefPubMedPubMedCentral
28.
go back to reference Cronk LB, Ye B, Kaku T, Tester DJ, Vatta M, Makielski JC, et al. Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm. 2007;4:161–6.CrossRefPubMed Cronk LB, Ye B, Kaku T, Tester DJ, Vatta M, Makielski JC, et al. Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm. 2007;4:161–6.CrossRefPubMed
29.
go back to reference Otagiri T, Kijima K, Osawa M, Ishii K, Makita N, Matoba R, et al. Cardiac ion channel gene mutations in sudden infant death syndrome. Pediatr Res. 2008;64:482–7.CrossRefPubMed Otagiri T, Kijima K, Osawa M, Ishii K, Makita N, Matoba R, et al. Cardiac ion channel gene mutations in sudden infant death syndrome. Pediatr Res. 2008;64:482–7.CrossRefPubMed
30.
go back to reference Rhodes TE, Abraham RL, Welch RC, Vanoye CG, Crotti L, Arnestad M, et al. Cardiac potassium channel dysfunction in sudden infant death syndrome. J Mol Cell Cardiol. 2008;44:571–81.CrossRefPubMed Rhodes TE, Abraham RL, Welch RC, Vanoye CG, Crotti L, Arnestad M, et al. Cardiac potassium channel dysfunction in sudden infant death syndrome. J Mol Cell Cardiol. 2008;44:571–81.CrossRefPubMed
31.
go back to reference Tester DJ, Tan BH, Medeiros-Domingo A, Song C, Makielski JC, Ackerman MJ. Loss-of-function mutations in the KCNJ8-encoded Kir6.1 K(ATP) channel and sudden infant death syndrome. Circ Cardiovasc Genet. 2011;4:510–5.CrossRefPubMedPubMedCentral Tester DJ, Tan BH, Medeiros-Domingo A, Song C, Makielski JC, Ackerman MJ. Loss-of-function mutations in the KCNJ8-encoded Kir6.1 K(ATP) channel and sudden infant death syndrome. Circ Cardiovasc Genet. 2011;4:510–5.CrossRefPubMedPubMedCentral
32.
go back to reference Crotti L, Tester DJ, White WM, Bartos DC, Insolia R, Besana A, et al. Long QT syndrome-associated mutations in intrauterine fetal death. JAMA. 2013;309:1473–82.CrossRefPubMed Crotti L, Tester DJ, White WM, Bartos DC, Insolia R, Besana A, et al. Long QT syndrome-associated mutations in intrauterine fetal death. JAMA. 2013;309:1473–82.CrossRefPubMed
33.
go back to reference Klaver EC, Versluijs GM, Wilders R. Cardiac ion channel mutations in the sudden infant death syndrome. Int J Cardiol. 2011;152:162–70.CrossRefPubMed Klaver EC, Versluijs GM, Wilders R. Cardiac ion channel mutations in the sudden infant death syndrome. Int J Cardiol. 2011;152:162–70.CrossRefPubMed
34.
go back to reference Wedekind H, Bajanowski T, Friederich P, Breithardt G, Wulfing T, Siebrands C, et al. Sudden infant death syndrome and long QT syndrome: an epidemiological and genetic study. Int J Legal Med. 2006;120:129–37.CrossRefPubMed Wedekind H, Bajanowski T, Friederich P, Breithardt G, Wulfing T, Siebrands C, et al. Sudden infant death syndrome and long QT syndrome: an epidemiological and genetic study. Int J Legal Med. 2006;120:129–37.CrossRefPubMed
35.
go back to reference Glengarry JM, Crawford J, Morrow PL, Stables SR, Love DR, Skinner JR. Long QT molecular autopsy in sudden infant death syndrome. Arch Dis Child. 2014;99:635–40.CrossRefPubMedPubMedCentral Glengarry JM, Crawford J, Morrow PL, Stables SR, Love DR, Skinner JR. Long QT molecular autopsy in sudden infant death syndrome. Arch Dis Child. 2014;99:635–40.CrossRefPubMedPubMedCentral
36.
go back to reference Wang D, Shah KR, Um SY, Eng LS, Zhou B, Lin Y, et al. Cardiac channelopathy testing in 274 ethnically diverse sudden unexplained deaths. Forensic Sci Int. 2014;237:90–9.CrossRefPubMed Wang D, Shah KR, Um SY, Eng LS, Zhou B, Lin Y, et al. Cardiac channelopathy testing in 274 ethnically diverse sudden unexplained deaths. Forensic Sci Int. 2014;237:90–9.CrossRefPubMed
37.
go back to reference Bagnall RD, Weintraub RG, Ingles J, Duflou J, Yeates L, Lam L, et al. A prospective study of sudden cardiac death among children and young adults. N Engl J Med. 2016;374:2441–52.CrossRefPubMed Bagnall RD, Weintraub RG, Ingles J, Duflou J, Yeates L, Lam L, et al. A prospective study of sudden cardiac death among children and young adults. N Engl J Med. 2016;374:2441–52.CrossRefPubMed
38.
go back to reference Dewar LJ, Alcaide M, Fornika D, D'Amato L, Shafaatalab S, Stevens CM, et al. Investigating the genetic causes of sudden unexpected death in children through targeted next-generation sequencing analysis. Circ Cardiovasc Genet. 2017;10(4). Dewar LJ, Alcaide M, Fornika D, D'Amato L, Shafaatalab S, Stevens CM, et al. Investigating the genetic causes of sudden unexpected death in children through targeted next-generation sequencing analysis. Circ Cardiovasc Genet. 2017;10(4).
39.
go back to reference Tester DJ, Wong LCH, Chanana P, Jaye A, Evans JM, FitzPatrick DR, et al. Cardiac genetic predisposition in sudden infant death syndrome. J Am Coll Cardiol. 2018;71:1217–27.CrossRefPubMed Tester DJ, Wong LCH, Chanana P, Jaye A, Evans JM, FitzPatrick DR, et al. Cardiac genetic predisposition in sudden infant death syndrome. J Am Coll Cardiol. 2018;71:1217–27.CrossRefPubMed
40.
go back to reference Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.CrossRefPubMedPubMedCentral Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.CrossRefPubMedPubMedCentral
41.
go back to reference Lin Y, Williams N, Wang D, Coetzee W, Zhou B, Eng LS, et al. Applying high-resolution variant classification to cardiac arrhythmogenic gene testing in a demographically diverse cohort of sudden unexplained deaths. Circ Cardiovasc Genet. 2017;10(6). Lin Y, Williams N, Wang D, Coetzee W, Zhou B, Eng LS, et al. Applying high-resolution variant classification to cardiac arrhythmogenic gene testing in a demographically diverse cohort of sudden unexplained deaths. Circ Cardiovasc Genet. 2017;10(6).
42.
go back to reference Ernst C, Hahnen E, Engel C, Nothnagel M, Weber J, Schmutzler RK, et al. Performance of in silico prediction tools for the classification of rare BRCA1/2 missense variants in clinical diagnostics. BMC Med Genet. 2018;11:35. Ernst C, Hahnen E, Engel C, Nothnagel M, Weber J, Schmutzler RK, et al. Performance of in silico prediction tools for the classification of rare BRCA1/2 missense variants in clinical diagnostics. BMC Med Genet. 2018;11:35.
43.
go back to reference Tavtigian SV, Greenblatt MS, Harrison SM, Nussbaum RL, Prabhu SA, Boucher KM, et al. Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genet Med. 2018;20:1054–60.CrossRefPubMedPubMedCentral Tavtigian SV, Greenblatt MS, Harrison SM, Nussbaum RL, Prabhu SA, Boucher KM, et al. Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genet Med. 2018;20:1054–60.CrossRefPubMedPubMedCentral
44.
go back to reference Li J, Zhao T, Zhang Y, Zhang K, Shi L, Chen Y, et al. Performance evaluation of pathogenicity-computation methods for missense variants. Nucleic Acids Res. 2018;46:7793–804.CrossRefPubMedPubMedCentral Li J, Zhao T, Zhang Y, Zhang K, Shi L, Chen Y, et al. Performance evaluation of pathogenicity-computation methods for missense variants. Nucleic Acids Res. 2018;46:7793–804.CrossRefPubMedPubMedCentral
45.
go back to reference Tandy-Connor S, Guiltinan J, Krempely K, LaDuca H, Reineke P, Gutierrez S, et al. False-positive results released by direct-to-consumer genetic tests highlight the importance of clinical confirmation testing for appropriate patient care. Genet Med. 2018. https://doi.org/10.1038/gim.2018.38. Tandy-Connor S, Guiltinan J, Krempely K, LaDuca H, Reineke P, Gutierrez S, et al. False-positive results released by direct-to-consumer genetic tests highlight the importance of clinical confirmation testing for appropriate patient care. Genet Med. 2018. https://​doi.​org/​10.​1038/​gim.​2018.​38.
46.
go back to reference Gando I, Morganstein J, Jana K, McDonald TV, Tang Y, Coetzee WA. Infant sudden death: mutations responsible for impaired Nav1.5 channel trafficking and function. Pacing Clin Electrophysiol. 2017;40:703–12.CrossRefPubMed Gando I, Morganstein J, Jana K, McDonald TV, Tang Y, Coetzee WA. Infant sudden death: mutations responsible for impaired Nav1.5 channel trafficking and function. Pacing Clin Electrophysiol. 2017;40:703–12.CrossRefPubMed
47.
go back to reference Saito Y, Nakamura K, Nishi N, Igawa O, Yoshida M, Miyoshi T, et al. TRPM4 mutation in patients with ventricular noncompaction and cardiac conduction disease. Circ Genom Precis Med. 2018;11:e002103.CrossRefPubMed Saito Y, Nakamura K, Nishi N, Igawa O, Yoshida M, Miyoshi T, et al. TRPM4 mutation in patients with ventricular noncompaction and cardiac conduction disease. Circ Genom Precis Med. 2018;11:e002103.CrossRefPubMed
48.
go back to reference Bianchi B, Ozhathil LC, Medeiros-Domingo A, Gollob MH, Abriel H. Four TRPM4 cation channel mutations found in cardiac conduction diseases lead to altered protein stability. Front Physiol. 2018;9:177.CrossRefPubMedPubMedCentral Bianchi B, Ozhathil LC, Medeiros-Domingo A, Gollob MH, Abriel H. Four TRPM4 cation channel mutations found in cardiac conduction diseases lead to altered protein stability. Front Physiol. 2018;9:177.CrossRefPubMedPubMedCentral
49.
go back to reference Tian J, An XJ, Fu MY. Transient receptor potential melastatin 4 cation channel in pediatric heart block. Eur Rev Med Pharmacol Sci. 2017;21:79–84.PubMed Tian J, An XJ, Fu MY. Transient receptor potential melastatin 4 cation channel in pediatric heart block. Eur Rev Med Pharmacol Sci. 2017;21:79–84.PubMed
50.
go back to reference Hof T, Liu H, Salle L, Schott JJ, Ducreux C, Millat G, et al. TRPM4 non-selective cation channel variants in long QT syndrome. BMC Med Genet. 2017;18:31.CrossRefPubMedPubMedCentral Hof T, Liu H, Salle L, Schott JJ, Ducreux C, Millat G, et al. TRPM4 non-selective cation channel variants in long QT syndrome. BMC Med Genet. 2017;18:31.CrossRefPubMedPubMedCentral
51.
go back to reference Syam N, Chatel S, Ozhathil LC, Sottas V, Rougier JS, Baruteau A, et al. Variants of transient receptor potential melastatin member 4 in childhood atrioventricular block. J Am Heart Assoc. 2016;5(5). Syam N, Chatel S, Ozhathil LC, Sottas V, Rougier JS, Baruteau A, et al. Variants of transient receptor potential melastatin member 4 in childhood atrioventricular block. J Am Heart Assoc. 2016;5(5).
52.
go back to reference Liu H, Chatel S, Simard C, Syam N, Salle L, Probst V, et al. Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel. PLoS One. 2013;8:e54131.CrossRefPubMedPubMedCentral Liu H, Chatel S, Simard C, Syam N, Salle L, Probst V, et al. Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel. PLoS One. 2013;8:e54131.CrossRefPubMedPubMedCentral
53.
go back to reference Daumy X, Amarouch MY, Lindenbaum P, Bonnaud S, Charpentier E, Bianchi B, et al. Targeted resequencing identifies TRPM4 as a major gene predisposing to progressive familial heart block type I. Int J Cardiol. 2016;207:349–58.CrossRefPubMed Daumy X, Amarouch MY, Lindenbaum P, Bonnaud S, Charpentier E, Bianchi B, et al. Targeted resequencing identifies TRPM4 as a major gene predisposing to progressive familial heart block type I. Int J Cardiol. 2016;207:349–58.CrossRefPubMed
54.
go back to reference Baruteau AE, Probst V, Abriel H. Inherited progressive cardiac conduction disorders. Curr Opin Cardiol. 2015;30:33–9.CrossRefPubMed Baruteau AE, Probst V, Abriel H. Inherited progressive cardiac conduction disorders. Curr Opin Cardiol. 2015;30:33–9.CrossRefPubMed
55.
go back to reference Subbotina E, Williams N, Sampson BA, Tang Y, Coetzee WA. Functional characterization of TRPM4 variants identified in sudden unexpected natural death. Forensic Sci Int. 2018;293:37–46.CrossRefPubMed Subbotina E, Williams N, Sampson BA, Tang Y, Coetzee WA. Functional characterization of TRPM4 variants identified in sudden unexpected natural death. Forensic Sci Int. 2018;293:37–46.CrossRefPubMed
Metadata
Title
Functional significance of channelopathy gene variants in unexplained death
Authors
Ivan Gando
Hua-Qian Yang
William A. Coetzee
Publication date
01-09-2019
Publisher
Springer US
Published in
Forensic Science, Medicine and Pathology / Issue 3/2019
Print ISSN: 1547-769X
Electronic ISSN: 1556-2891
DOI
https://doi.org/10.1007/s12024-018-0063-y

Other articles of this Issue 3/2019

Forensic Science, Medicine and Pathology 3/2019 Go to the issue