Skip to main content
Top
Published in: Neurocritical Care 3/2023

12-10-2022 | Subarachnoid Hemorrhage | Original work

SIRT1 Activation Promotes Long-Term Functional Recovery After Subarachnoid Hemorrhage in Rats

Authors: Dongmei Chu, Xuan Li, Xingguang Qu, Deepti Diwan, David S. Warner, Gregory J. Zipfel, Huaxin Sheng

Published in: Neurocritical Care | Issue 3/2023

Login to get access

Abstract

Background

An increase in sirtuin 1 (SIRT1) reportedly attenuates early brain injury, delayed cerebral ischemia, and short-term neurologic deficits in rodent models of subarachnoid hemorrhage (SAH). This study investigates the effect of resveratrol, a SIRT1 activator, on long-term functional recovery in a clinically relevant rat model of SAH.

Methods

Thirty male Wistar rats were subjected to fresh arterial blood injection into the prechiasmatic space and randomized to receive 7 days of intraperitoneal resveratrol (20 mg/kg) or vehicle injections. Body weight and rotarod performance were measured on days 0, 3, 7, and 34 post SAH. The neurologic score was assessed 7 and 34 days post SAH. Morris water maze performance was evaluated 29–33 days post SAH. Brain SIRT1 activity and CA1 neuronal survival were also assessed.

Results

Blood pressure rapidly increased in all SAH rats, and no between-group differences in blood pressure, blood gases, or glucose were detected. SAH induced weight loss during the first 7 days, which gradually recovered in both groups. Neurologic score and rotarod performance were significantly improved after resveratrol treatment at 34 days post SAH (p = 0.01 and 0.04, respectively). Latency to find the Morris water maze hidden platform was shortened (p = 0.02). In the resveratrol group, more CA1 neurons survived following SAH (p = 0.1). An increase in brain SIRT1 activity was confirmed in the resveratrol group (p < 0.05).

Conclusions

Treatment with resveratrol for 1 week significantly improved the neurologic score, rotarod performance, and latency to find the Morris water maze hidden platform 34 days post SAH. These findings indicate that SIRT1 activation warrants further investigation as a mechanistic target for SAH therapy.
Literature
1.
go back to reference Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, Jarho E, Lahtela-Kakkonen M, Mai A, Altucci L. Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenet. 2016;8:61.CrossRef Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, Jarho E, Lahtela-Kakkonen M, Mai A, Altucci L. Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenet. 2016;8:61.CrossRef
2.
go back to reference Pillarisetti S. A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic diseases. Recent Pat Cardiovasc Drug Discov. 2008;3:156–64.PubMedCrossRef Pillarisetti S. A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic diseases. Recent Pat Cardiovasc Drug Discov. 2008;3:156–64.PubMedCrossRef
3.
go back to reference Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004;73:417–35.PubMedCrossRef Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004;73:417–35.PubMedCrossRef
4.
go back to reference Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol. 2003;23:3173–85.PubMedPubMedCentralCrossRef Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol. 2003;23:3173–85.PubMedPubMedCentralCrossRef
5.
go back to reference Grimm AA, Brace CS, Wang T, Stormo GD, Imai S. A nutrient-sensitive interaction between Sirt1 and HNF-1alpha regulates Crp expression. Aging Cell. 2011;10:305–17.PubMedCrossRef Grimm AA, Brace CS, Wang T, Stormo GD, Imai S. A nutrient-sensitive interaction between Sirt1 and HNF-1alpha regulates Crp expression. Aging Cell. 2011;10:305–17.PubMedCrossRef
6.
go back to reference Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, Permutt MA, Imai S. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005;2:105–17.PubMedCrossRef Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, Permutt MA, Imai S. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005;2:105–17.PubMedCrossRef
8.
go back to reference Imai S. SIRT1 and caloric restriction: an insight into possible trade-offs between robustness and frailty. Curr Opin Clin Nutr Metab Care. 2009;12:350–6.PubMedPubMedCentralCrossRef Imai S. SIRT1 and caloric restriction: an insight into possible trade-offs between robustness and frailty. Curr Opin Clin Nutr Metab Care. 2009;12:350–6.PubMedPubMedCentralCrossRef
9.
go back to reference Imai S. From heterochromatin islands to the NAD World: a hierarchical view of aging through the functions of mammalian Sirt1 and systemic NAD biosynthesis. Biochim Biophys Acta. 2009;1790:997–1004.PubMedPubMedCentralCrossRef Imai S. From heterochromatin islands to the NAD World: a hierarchical view of aging through the functions of mammalian Sirt1 and systemic NAD biosynthesis. Biochim Biophys Acta. 2009;1790:997–1004.PubMedPubMedCentralCrossRef
10.
go back to reference Imai S, The NAD. World: a new systemic regulatory network for metabolism and aging–Sirt1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys. 2009;53:65–74.PubMedPubMedCentralCrossRef Imai S, The NAD. World: a new systemic regulatory network for metabolism and aging–Sirt1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys. 2009;53:65–74.PubMedPubMedCentralCrossRef
11.
go back to reference Imai S. “Clocks” in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochim Biophys Acta. 2010;1804:1584–90.PubMedCrossRef Imai S. “Clocks” in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochim Biophys Acta. 2010;1804:1584–90.PubMedCrossRef
12.
go back to reference Imai S. Dissecting systemic control of metabolism and aging in the NAD World: the importance of SIRT1 and NAMPT-mediated NAD biosynthesis. FEBS Lett. 2011;585:1657–62.PubMedPubMedCentralCrossRef Imai S. Dissecting systemic control of metabolism and aging in the NAD World: the importance of SIRT1 and NAMPT-mediated NAD biosynthesis. FEBS Lett. 2011;585:1657–62.PubMedPubMedCentralCrossRef
13.
go back to reference Imai S. A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis. Pharmacol Res. 2010;62:42–7.PubMedPubMedCentralCrossRef Imai S. A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis. Pharmacol Res. 2010;62:42–7.PubMedPubMedCentralCrossRef
14.
go back to reference Imai S, Yoshino J. The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing. Diabetes Obes Metab. 2013;15(Suppl 3):26–33.PubMedCrossRef Imai S, Yoshino J. The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing. Diabetes Obes Metab. 2013;15(Suppl 3):26–33.PubMedCrossRef
15.
go back to reference Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107:149–59.PubMedCrossRef Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107:149–59.PubMedCrossRef
16.
go back to reference Ramsey KM, Mills KF, Satoh A, Imai S. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell. 2008;7:78–88.PubMedCrossRef Ramsey KM, Mills KF, Satoh A, Imai S. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell. 2008;7:78–88.PubMedCrossRef
17.
go back to reference Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009;324:651–4.PubMedPubMedCentralCrossRef Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009;324:651–4.PubMedPubMedCentralCrossRef
18.
go back to reference Satoh A, Brace CS, Ben-Josef G, West T, Wozniak DF, Holtzman DM, Herzog ED, Imai S. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J Neurosci. 2010;30:10220–32.PubMedPubMedCentralCrossRef Satoh A, Brace CS, Ben-Josef G, West T, Wozniak DF, Holtzman DM, Herzog ED, Imai S. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J Neurosci. 2010;30:10220–32.PubMedPubMedCentralCrossRef
19.
go back to reference Satoh A, Stein L, Imai S. The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity. Handb Exp Pharmacol. 2011;206:125–62.PubMedPubMedCentralCrossRef Satoh A, Stein L, Imai S. The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity. Handb Exp Pharmacol. 2011;206:125–62.PubMedPubMedCentralCrossRef
20.
go back to reference Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED, Yamada KA, Imai S. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013;18:416–30.PubMedPubMedCentralCrossRef Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED, Yamada KA, Imai S. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013;18:416–30.PubMedPubMedCentralCrossRef
21.
go back to reference Wang T, Zhang X, Bheda P, Revollo JR, Imai S, Wolberger C. Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nat Struct Mol Biol. 2006;13:661–2.PubMedCrossRef Wang T, Zhang X, Bheda P, Revollo JR, Imai S, Wolberger C. Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nat Struct Mol Biol. 2006;13:661–2.PubMedCrossRef
22.
go back to reference Yoshino J, Conte C, Fontana L, Mittendorfer B, Imai S, Schechtman KB, Gu C, Kunz I, Rossi Fanelli F, Patterson BW, et al. Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metab. 2012;16:658–64.PubMedPubMedCentralCrossRef Yoshino J, Conte C, Fontana L, Mittendorfer B, Imai S, Schechtman KB, Gu C, Kunz I, Rossi Fanelli F, Patterson BW, et al. Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metab. 2012;16:658–64.PubMedPubMedCentralCrossRef
23.
go back to reference Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011;14:528–36.PubMedPubMedCentralCrossRef Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011;14:528–36.PubMedPubMedCentralCrossRef
24.
go back to reference Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2004;305:1010–3.PubMedCrossRef Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2004;305:1010–3.PubMedCrossRef
25.
go back to reference Li XH, Chen C, Tu Y, Sun HT, Zhao ML, Cheng SX, Qu Y, Zhang S. Sirt1 promotes axonogenesis by deacetylation of Akt and inactivation of GSK3. Mol Neurobiol. 2013;48:490–9.PubMedCrossRef Li XH, Chen C, Tu Y, Sun HT, Zhao ML, Cheng SX, Qu Y, Zhang S. Sirt1 promotes axonogenesis by deacetylation of Akt and inactivation of GSK3. Mol Neurobiol. 2013;48:490–9.PubMedCrossRef
26.
go back to reference Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers JT, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem. 2006;281:21745–54.PubMedCrossRef Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers JT, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem. 2006;281:21745–54.PubMedCrossRef
27.
go back to reference Qian C, Jin J, Chen J, Li J, Yu X, Mo H, Chen G. SIRT1 activation by resveratrol reduces brain edema and neuronal apoptosis in an experimental rat subarachnoid hemorrhage model. Mol Med Rep. 2017;16:9627–35.PubMedCrossRef Qian C, Jin J, Chen J, Li J, Yu X, Mo H, Chen G. SIRT1 activation by resveratrol reduces brain edema and neuronal apoptosis in an experimental rat subarachnoid hemorrhage model. Mol Med Rep. 2017;16:9627–35.PubMedCrossRef
28.
go back to reference Li Z, Han X. Resveratrol alleviates early brain injury following subarachnoid hemorrhage: possible involvement of the AMPK/SIRT1/autophagy signaling pathway. Biol Chem. 2018;399:1339–50.PubMedCrossRef Li Z, Han X. Resveratrol alleviates early brain injury following subarachnoid hemorrhage: possible involvement of the AMPK/SIRT1/autophagy signaling pathway. Biol Chem. 2018;399:1339–50.PubMedCrossRef
29.
go back to reference Diwan D, Vellimana AK, Aum DJ, Clarke J, Nelson JW, Lawrence M, Han BH, Gidday JM, Zipfel GJ. Sirtuin 1 mediates protection against delayed cerebral ischemia in subarachnoid hemorrhage in response to hypoxic postconditioning. J Am Heart Assoc. 2021;10: e021113.PubMedPubMedCentralCrossRef Diwan D, Vellimana AK, Aum DJ, Clarke J, Nelson JW, Lawrence M, Han BH, Gidday JM, Zipfel GJ. Sirtuin 1 mediates protection against delayed cerebral ischemia in subarachnoid hemorrhage in response to hypoxic postconditioning. J Am Heart Assoc. 2021;10: e021113.PubMedPubMedCentralCrossRef
30.
go back to reference Clarke JV, Brier LM, Rahn RM, Diwan D, Yuan JY, Bice AR, Imai SI, Vellimana AK, Culver JP, Zipfel GJ. SIRT1 mediates hypoxic postconditioning- and resveratrol-induced protection against functional connectivity deficits after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2022;42:1210–23.PubMedPubMedCentralCrossRef Clarke JV, Brier LM, Rahn RM, Diwan D, Yuan JY, Bice AR, Imai SI, Vellimana AK, Culver JP, Zipfel GJ. SIRT1 mediates hypoxic postconditioning- and resveratrol-induced protection against functional connectivity deficits after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2022;42:1210–23.PubMedPubMedCentralCrossRef
31.
go back to reference Vellimana AK, Aum DJ, Diwan D, Clarke JV, Nelson JW, Lawrence M, Han BH, Gidday JM, Zipfel GJ. SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage. Exp Neurol. 2020;334: 113484.PubMedPubMedCentralCrossRef Vellimana AK, Aum DJ, Diwan D, Clarke JV, Nelson JW, Lawrence M, Han BH, Gidday JM, Zipfel GJ. SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage. Exp Neurol. 2020;334: 113484.PubMedPubMedCentralCrossRef
32.
go back to reference Chen J, Li M, Zhu X, Chen Y, Zhang C, Shi W, Chen Q, Wang Y. Anterior communicating artery aneurysms: anatomical considerations and microsurgical strategies. Front Neurol. 2020;11:1020.PubMedPubMedCentralCrossRef Chen J, Li M, Zhu X, Chen Y, Zhang C, Shi W, Chen Q, Wang Y. Anterior communicating artery aneurysms: anatomical considerations and microsurgical strategies. Front Neurol. 2020;11:1020.PubMedPubMedCentralCrossRef
33.
go back to reference Sasaki T, Hoffmann U, Kobayashi M, Sheng H, Ennaceur A, Lombard FW, Warner DS. Long-term cognitive deficits after subarachnoid hemorrhage in rats. Neurocrit Care. 2016;25:293–305.PubMedCrossRef Sasaki T, Hoffmann U, Kobayashi M, Sheng H, Ennaceur A, Lombard FW, Warner DS. Long-term cognitive deficits after subarachnoid hemorrhage in rats. Neurocrit Care. 2016;25:293–305.PubMedCrossRef
34.
go back to reference Prunell GF, Mathiesen T, Diemer NH, Svendgaard NA. Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery. 2003;52:165–175; discussion 175–166 Prunell GF, Mathiesen T, Diemer NH, Svendgaard NA. Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery. 2003;52:165–175; discussion 175–166
35.
go back to reference Prunell GF, Mathiesen T, Svendgaard NA. A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. NeuroReport. 2002;13:2553–6.PubMedCrossRef Prunell GF, Mathiesen T, Svendgaard NA. A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. NeuroReport. 2002;13:2553–6.PubMedCrossRef
36.
go back to reference Prunell GF, Mathiesen T, Svendgaard NA. Experimental subarachnoid hemorrhage: cerebral blood flow and brain metabolism during the acute phase in three different models in the rat. Neurosurgery. 2004;54:426–436; discussion 427–436 Prunell GF, Mathiesen T, Svendgaard NA. Experimental subarachnoid hemorrhage: cerebral blood flow and brain metabolism during the acute phase in three different models in the rat. Neurosurgery. 2004;54:426–436; discussion 427–436
37.
go back to reference Takata K, Sheng H, Borel CO, Laskowitz DT, Warner DS, Lombard FW. Simvastatin treatment duration and cognitive preservation in experimental subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2009;21:326–33.PubMedCrossRef Takata K, Sheng H, Borel CO, Laskowitz DT, Warner DS, Lombard FW. Simvastatin treatment duration and cognitive preservation in experimental subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2009;21:326–33.PubMedCrossRef
38.
go back to reference Parra A, McGirt MJ, Sheng H, Laskowitz DT, Pearlstein RD, Warner DS. Mouse model of subarachnoid hemorrhage associated cerebral vasospasm: methodological analysis. Neurol Res. 2002;24:510–6.PubMedCrossRef Parra A, McGirt MJ, Sheng H, Laskowitz DT, Pearlstein RD, Warner DS. Mouse model of subarachnoid hemorrhage associated cerebral vasospasm: methodological analysis. Neurol Res. 2002;24:510–6.PubMedCrossRef
39.
go back to reference Takata K, Sheng H, Borel CO, Laskowitz DT, Warner DS, Lombard FW. Long-term cognitive dysfunction following experimental subarachnoid hemorrhage: new perspectives. Exp Neurol. 2008;213:336–44.PubMedCrossRef Takata K, Sheng H, Borel CO, Laskowitz DT, Warner DS, Lombard FW. Long-term cognitive dysfunction following experimental subarachnoid hemorrhage: new perspectives. Exp Neurol. 2008;213:336–44.PubMedCrossRef
40.
go back to reference Buunk AM, Groen RJM, Veenstra WS, Metzemaekers JDM, van der Hoeven JH, van Dijk JMC, Spikman JM. Cognitive deficits after aneurysmal and angiographically negative subarachnoid hemorrhage: Memory, attention, executive functioning, and emotion recognition. Neuropsychology. 2016;30:961–9.PubMedCrossRef Buunk AM, Groen RJM, Veenstra WS, Metzemaekers JDM, van der Hoeven JH, van Dijk JMC, Spikman JM. Cognitive deficits after aneurysmal and angiographically negative subarachnoid hemorrhage: Memory, attention, executive functioning, and emotion recognition. Neuropsychology. 2016;30:961–9.PubMedCrossRef
41.
go back to reference Beeckmans K, Crunelle CL, Van den Bossche J, Dierckx E, Michiels K, Vancoillie P, Hauman H, Sabbe B. Cognitive outcome after surgical clipping versus endovascular coiling in patients with subarachnoid hemorrhage due to ruptured anterior communicating artery aneurysm. Acta Neurol Belg. 2020;120:123–32.PubMedCrossRef Beeckmans K, Crunelle CL, Van den Bossche J, Dierckx E, Michiels K, Vancoillie P, Hauman H, Sabbe B. Cognitive outcome after surgical clipping versus endovascular coiling in patients with subarachnoid hemorrhage due to ruptured anterior communicating artery aneurysm. Acta Neurol Belg. 2020;120:123–32.PubMedCrossRef
42.
go back to reference Buunk AM, Spikman JM, Metzemaekers JDM, van Dijk JMC, Groen RJM. Return to work after subarachnoid hemorrhage: the influence of cognitive deficits. PLoS ONE. 2019;14: e0220972.PubMedPubMedCentralCrossRef Buunk AM, Spikman JM, Metzemaekers JDM, van Dijk JMC, Groen RJM. Return to work after subarachnoid hemorrhage: the influence of cognitive deficits. PLoS ONE. 2019;14: e0220972.PubMedPubMedCentralCrossRef
43.
go back to reference Ma N, Feng X, Wu Z, Wang D, Liu A. Cognitive impairments and risk factors after ruptured anterior communicating artery aneurysm treatment in low-grade patients without severe complications: a multicenter retrospective study. Front Neurol. 2021;12: 613785.PubMedPubMedCentralCrossRef Ma N, Feng X, Wu Z, Wang D, Liu A. Cognitive impairments and risk factors after ruptured anterior communicating artery aneurysm treatment in low-grade patients without severe complications: a multicenter retrospective study. Front Neurol. 2021;12: 613785.PubMedPubMedCentralCrossRef
44.
go back to reference Mohanty M, Dhandapani S, Gupta SK, Shahid AH, Patra DP, Sharma A, Mathuriya SN. Cognitive impairments after clipping of ruptured anterior circulation aneurysms. World Neurosurg. 2018;117:e430–7.PubMedCrossRef Mohanty M, Dhandapani S, Gupta SK, Shahid AH, Patra DP, Sharma A, Mathuriya SN. Cognitive impairments after clipping of ruptured anterior circulation aneurysms. World Neurosurg. 2018;117:e430–7.PubMedCrossRef
45.
46.
go back to reference Kreiter KT, Copeland D, Bernardini GL, Bates JE, Peery S, Claassen J, Du YE, Stern Y, Connolly ES, Mayer SA. Predictors of cognitive dysfunction after subarachnoid hemorrhage. Stroke. 2002;33:200–8.PubMedCrossRef Kreiter KT, Copeland D, Bernardini GL, Bates JE, Peery S, Claassen J, Du YE, Stern Y, Connolly ES, Mayer SA. Predictors of cognitive dysfunction after subarachnoid hemorrhage. Stroke. 2002;33:200–8.PubMedCrossRef
47.
go back to reference Duan H, Li L, Shen S, Ma Y, Yin X, Liu Z, Yuan C, Wang Y, Zhang J. Hydrogen sulfide reduces cognitive impairment in rats after subarachnoid hemorrhage by ameliorating neuroinflammation mediated by the TLR4/NF-kappaB pathway in microglia. Front Cell Neurosci. 2020;14:210.PubMedPubMedCentralCrossRef Duan H, Li L, Shen S, Ma Y, Yin X, Liu Z, Yuan C, Wang Y, Zhang J. Hydrogen sulfide reduces cognitive impairment in rats after subarachnoid hemorrhage by ameliorating neuroinflammation mediated by the TLR4/NF-kappaB pathway in microglia. Front Cell Neurosci. 2020;14:210.PubMedPubMedCentralCrossRef
48.
go back to reference Dong Y, Li Y, Feng D, Wang J, Wen H, Liu D, Zhao D, Liu H, Gao G, Yin Z, et al. Protective effect of HIF-1alpha against hippocampal apoptosis and cognitive dysfunction in an experimental rat model of subarachnoid hemorrhage. Brain Res. 2013;1517:114–21.PubMedCrossRef Dong Y, Li Y, Feng D, Wang J, Wen H, Liu D, Zhao D, Liu H, Gao G, Yin Z, et al. Protective effect of HIF-1alpha against hippocampal apoptosis and cognitive dysfunction in an experimental rat model of subarachnoid hemorrhage. Brain Res. 2013;1517:114–21.PubMedCrossRef
49.
go back to reference Geraghty JR, Lara-Angulo MN, Spegar M, Reeh J, Testai FD. Severe cognitive impairment in aneurysmal subarachnoid hemorrhage: Predictors and relationship to functional outcome. J Stroke Cerebrovasc Dis. 2020;29: 105027.PubMedPubMedCentralCrossRef Geraghty JR, Lara-Angulo MN, Spegar M, Reeh J, Testai FD. Severe cognitive impairment in aneurysmal subarachnoid hemorrhage: Predictors and relationship to functional outcome. J Stroke Cerebrovasc Dis. 2020;29: 105027.PubMedPubMedCentralCrossRef
50.
go back to reference McBride DW, Blackburn SL, Peeyush KT, Matsumura K, Zhang JH. The role of thromboinflammation in delayed cerebral ischemia after subarachnoid hemorrhage. Front Neurol. 2017;8:555.PubMedPubMedCentralCrossRef McBride DW, Blackburn SL, Peeyush KT, Matsumura K, Zhang JH. The role of thromboinflammation in delayed cerebral ischemia after subarachnoid hemorrhage. Front Neurol. 2017;8:555.PubMedPubMedCentralCrossRef
51.
go back to reference Clarke JV, Suggs JM, Diwan D, Lee JV, Lipsey K, Vellimana AK, Zipfel GJ. Microvascular platelet aggregation and thrombosis after subarachnoid hemorrhage: a review and synthesis. J Cereb Blood Flow Metab. 2020;40:1565–75.PubMedPubMedCentralCrossRef Clarke JV, Suggs JM, Diwan D, Lee JV, Lipsey K, Vellimana AK, Zipfel GJ. Microvascular platelet aggregation and thrombosis after subarachnoid hemorrhage: a review and synthesis. J Cereb Blood Flow Metab. 2020;40:1565–75.PubMedPubMedCentralCrossRef
52.
go back to reference Santos GA, Petersen N, Zamani AA, Du R, LaRose S, Monk A, Sorond FA, Tan CO. Pathophysiologic differences in cerebral autoregulation after subarachnoid hemorrhage. Neurology. 2016;86:1950–6.PubMedPubMedCentralCrossRef Santos GA, Petersen N, Zamani AA, Du R, LaRose S, Monk A, Sorond FA, Tan CO. Pathophysiologic differences in cerebral autoregulation after subarachnoid hemorrhage. Neurology. 2016;86:1950–6.PubMedPubMedCentralCrossRef
55.
go back to reference Leng LZ, Fink ME, Iadecola C. Spreading depolarization: a possible new culprit in the delayed cerebral ischemia of subarachnoid hemorrhage. Arch Neurol. 2011;68:31–6.PubMedCrossRef Leng LZ, Fink ME, Iadecola C. Spreading depolarization: a possible new culprit in the delayed cerebral ischemia of subarachnoid hemorrhage. Arch Neurol. 2011;68:31–6.PubMedCrossRef
56.
go back to reference Rowland MJ, Garry P, Ezra M, Corkill R, Baker I, Jezzard P, Westbrook J, Douaud G, Pattinson KTS. Early brain injury and cognitive impairment after aneurysmal subarachnoid haemorrhage. Sci Rep. 2021;11:23245.PubMedPubMedCentralCrossRef Rowland MJ, Garry P, Ezra M, Corkill R, Baker I, Jezzard P, Westbrook J, Douaud G, Pattinson KTS. Early brain injury and cognitive impairment after aneurysmal subarachnoid haemorrhage. Sci Rep. 2021;11:23245.PubMedPubMedCentralCrossRef
57.
go back to reference Vellimana AK, Diwan D, Clarke J, Gidday JM, Zipfel GJ. SIRT1 Activation: a potential strategy for harnessing endogenous protection against delayed cerebral ischemia after subarachnoid hemorrhage. Neurosurgery. 2018;65:1–5.PubMedPubMedCentralCrossRef Vellimana AK, Diwan D, Clarke J, Gidday JM, Zipfel GJ. SIRT1 Activation: a potential strategy for harnessing endogenous protection against delayed cerebral ischemia after subarachnoid hemorrhage. Neurosurgery. 2018;65:1–5.PubMedPubMedCentralCrossRef
58.
go back to reference Zhang XS, Wu Q, Wu LY, Ye ZN, Jiang TW, Li W, Zhuang Z, Zhou ML, Zhang X, Hang CH. Sirtuin 1 activation protects against early brain injury after experimental subarachnoid hemorrhage in rats. Cell Death Dis. 2016;7: e2416.PubMedPubMedCentralCrossRef Zhang XS, Wu Q, Wu LY, Ye ZN, Jiang TW, Li W, Zhuang Z, Zhou ML, Zhang X, Hang CH. Sirtuin 1 activation protects against early brain injury after experimental subarachnoid hemorrhage in rats. Cell Death Dis. 2016;7: e2416.PubMedPubMedCentralCrossRef
59.
go back to reference Peng Y, Jin J, Fan L, Xu H, He P, Li J, Chen T, Ruan W, Chen G. Rolipram attenuates early brain injury following experimental subarachnoid hemorrhage in rats: possibly via regulating the SIRT1/NF-kappaB pathway. Neurochem Res. 2018;43:785–95.PubMedCrossRef Peng Y, Jin J, Fan L, Xu H, He P, Li J, Chen T, Ruan W, Chen G. Rolipram attenuates early brain injury following experimental subarachnoid hemorrhage in rats: possibly via regulating the SIRT1/NF-kappaB pathway. Neurochem Res. 2018;43:785–95.PubMedCrossRef
60.
go back to reference Zhao L, Liu H, Yue L, Zhang J, Li X, Wang B, Lin Y, Qu Y. Melatonin attenuates early brain injury via the melatonin receptor/Sirt1/NF-kappaB signaling pathway following subarachnoid hemorrhage in mice. Mol Neurobiol. 2017;54:1612–21.PubMedCrossRef Zhao L, Liu H, Yue L, Zhang J, Li X, Wang B, Lin Y, Qu Y. Melatonin attenuates early brain injury via the melatonin receptor/Sirt1/NF-kappaB signaling pathway following subarachnoid hemorrhage in mice. Mol Neurobiol. 2017;54:1612–21.PubMedCrossRef
61.
go back to reference Zhou XM, Zhang X, Zhang XS, Zhuang Z, Li W, Sun Q, Li T, Wang CX, Zhu L, Shi JX, et al. SIRT1 inhibition by sirtinol aggravates brain edema after experimental subarachnoid hemorrhage. J Neurosci Res. 2014;92:714–22.PubMedCrossRef Zhou XM, Zhang X, Zhang XS, Zhuang Z, Li W, Sun Q, Li T, Wang CX, Zhu L, Shi JX, et al. SIRT1 inhibition by sirtinol aggravates brain edema after experimental subarachnoid hemorrhage. J Neurosci Res. 2014;92:714–22.PubMedCrossRef
62.
go back to reference Abozaid OAR, Sallam MW, El-Sonbaty S, Aziza S, Emad B, Ahmed ESA. Resveratrol-selenium nanoparticles alleviate neuroinflammation and neurotoxicity in a rat model of Alzheimer’s disease by regulating Sirt1/miRNA-134/GSK3beta expression. Biol Trace Elem Res. 2022;6:66. Abozaid OAR, Sallam MW, El-Sonbaty S, Aziza S, Emad B, Ahmed ESA. Resveratrol-selenium nanoparticles alleviate neuroinflammation and neurotoxicity in a rat model of Alzheimer’s disease by regulating Sirt1/miRNA-134/GSK3beta expression. Biol Trace Elem Res. 2022;6:66.
63.
go back to reference Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, Fokou PVT, Martins N, Sharifi-Rad J. Resveratrol: a double-edged sword in health benefits. Biomedicines. 2018;6:66.CrossRef Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, Fokou PVT, Martins N, Sharifi-Rad J. Resveratrol: a double-edged sword in health benefits. Biomedicines. 2018;6:66.CrossRef
Metadata
Title
SIRT1 Activation Promotes Long-Term Functional Recovery After Subarachnoid Hemorrhage in Rats
Authors
Dongmei Chu
Xuan Li
Xingguang Qu
Deepti Diwan
David S. Warner
Gregory J. Zipfel
Huaxin Sheng
Publication date
12-10-2022
Publisher
Springer US
Published in
Neurocritical Care / Issue 3/2023
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-022-01614-z

Other articles of this Issue 3/2023

Neurocritical Care 3/2023 Go to the issue