Skip to main content
Top
Published in: Calcified Tissue International 2/2014

01-02-2014 | Original Research

Strontium Localization in Bone Tissue Studied by X-Ray Absorption Spectroscopy

Authors: Christian Grundahl Frankær, Anders Christer Raffalt, Kenny Stahl

Published in: Calcified Tissue International | Issue 2/2014

Login to get access

Abstract

Strontium has recently been introduced as a pharmacological agent for the treatment and prevention of osteoporosis. We determined the localization of strontium incorporated into bone matrix from dogs treated with Sr malonate by X-ray absorption spectroscopy. A new approach for analyzing the X-ray absorption spectra resulted in a compositional model and allowed the relative distribution of strontium in the different bone components to be estimated. Approximately 35–45 % of the strontium present is incorporated into calcium hydroxyapatite (CaHA) by substitution of some of the calcium ions occupying highly ordered sites, and at least 30 % is located at less ordered sites where only the first solvation shell is resolved, suggesting that strontium is surrounded by only oxygen atoms similar to Sr2+ in solution. Strontium was furthermore shown to be absorbed in collagen in which it obtains a higher structural order than when present in serum but less order than when it is incorporated into CaHA. The total amount of strontium in the samples was determined by inductively coupled plasma mass spectrometry, and the amount of Sr was found to increase with increasing dose levels and treatment periods, whereas the relative distribution of strontium among the different components appears to be independent of treatment period and dose level.
Literature
1.
go back to reference Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468PubMedCrossRef Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468PubMedCrossRef
2.
go back to reference Reginster JY, Felsenberg D, Boonen S, Diez-Perez A, Rizzoli R, Brandi ML, Spector TD, Brixen K, Goemaere S, Cormier C, Balogh A, Delmas PD, Meunier PJ (2008) Effects of long-term strontium ranelate treatment on the risk of nonvertebral and vertebral fractures in postmenopausal osteoporosis: results of a five-year, randomized, placebo-controlled trial. Arthritis Rheum 58:1687–1695PubMedCrossRef Reginster JY, Felsenberg D, Boonen S, Diez-Perez A, Rizzoli R, Brandi ML, Spector TD, Brixen K, Goemaere S, Cormier C, Balogh A, Delmas PD, Meunier PJ (2008) Effects of long-term strontium ranelate treatment on the risk of nonvertebral and vertebral fractures in postmenopausal osteoporosis: results of a five-year, randomized, placebo-controlled trial. Arthritis Rheum 58:1687–1695PubMedCrossRef
3.
go back to reference Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, Devogelaer JP, Curiel MD, Sawicki A, Goemaere S, Sorensen OH, Felsenberg D, Meunier PJ (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816–2822PubMedCrossRef Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, Devogelaer JP, Curiel MD, Sawicki A, Goemaere S, Sorensen OH, Felsenberg D, Meunier PJ (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816–2822PubMedCrossRef
4.
go back to reference Bain SD, Jerome C, Shen V, Dupin-Roger I, Ammann P (2009) Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int 20:1417–1428PubMedCrossRef Bain SD, Jerome C, Shen V, Dupin-Roger I, Ammann P (2009) Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int 20:1417–1428PubMedCrossRef
5.
go back to reference Ozturan KE, Demir B, Yucel I, Cakıcı H, Yilmaz F, Haberal A (2011) Effect of strontium ranelate on fracture healing in the osteoporotic rats. J Orthop Res 29:138–142PubMedCrossRef Ozturan KE, Demir B, Yucel I, Cakıcı H, Yilmaz F, Haberal A (2011) Effect of strontium ranelate on fracture healing in the osteoporotic rats. J Orthop Res 29:138–142PubMedCrossRef
6.
go back to reference Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020PubMedCrossRef Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020PubMedCrossRef
7.
go back to reference Raffalt AC (2011) Effects of strontium malonate (NB S101) on the compositional, structural and biomechanical properties of calcified tissues in rats and dogs. Dissertation, Technical University of Denmark Raffalt AC (2011) Effects of strontium malonate (NB S101) on the compositional, structural and biomechanical properties of calcified tissues in rats and dogs. Dissertation, Technical University of Denmark
8.
go back to reference Marie PJ, Felsenberg D, Brandi ML (2011) How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteporos Int 22:1659–1667CrossRef Marie PJ, Felsenberg D, Brandi ML (2011) How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteporos Int 22:1659–1667CrossRef
9.
go back to reference Li C, Paris O, Siegel S, Roschger P, Paschalis EP, Klaushofer K, Fratzl P (2010) Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J Bone Miner Res 25:968–975PubMed Li C, Paris O, Siegel S, Roschger P, Paschalis EP, Klaushofer K, Fratzl P (2010) Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J Bone Miner Res 25:968–975PubMed
10.
go back to reference Bazin D, Daudon M, Combes C, Rey C (2012) Characterization and some physicochemical aspects of pathological microcalcifications. Chem Rev 112:5092–5120PubMedCrossRef Bazin D, Daudon M, Combes C, Rey C (2012) Characterization and some physicochemical aspects of pathological microcalcifications. Chem Rev 112:5092–5120PubMedCrossRef
11.
go back to reference Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng, C 25:131–143CrossRef Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng, C 25:131–143CrossRef
12.
go back to reference Rey C, Combes C, Drouet C, Sfihi H, Barroug A (2007) Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Mater Sci Eng, C 27:198–205CrossRef Rey C, Combes C, Drouet C, Sfihi H, Barroug A (2007) Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Mater Sci Eng, C 27:198–205CrossRef
13.
go back to reference Cazalbou S, Eichert D, Drouet C, Combes C, Rey C (2004) Biological mineralisations based on calcium phosphate. Compte Rendu Palevol 3:563–572CrossRef Cazalbou S, Eichert D, Drouet C, Combes C, Rey C (2004) Biological mineralisations based on calcium phosphate. Compte Rendu Palevol 3:563–572CrossRef
14.
go back to reference Bazin D, Daudon M, Chappard C, Rehr JJ, Thiaudière D, Reguer S (2011) The status of strontium in biological apatites: an XANES investigation. J Synchrotron Rad 18:912–918CrossRef Bazin D, Daudon M, Chappard C, Rehr JJ, Thiaudière D, Reguer S (2011) The status of strontium in biological apatites: an XANES investigation. J Synchrotron Rad 18:912–918CrossRef
15.
go back to reference Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, Cutroni JA, Cidade GAG, Stucky GD, Morse DE, Hansma PK (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 4:612–616PubMedCrossRef Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, Cutroni JA, Cidade GAG, Stucky GD, Morse DE, Hansma PK (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 4:612–616PubMedCrossRef
16.
go back to reference Nudelman F, Pieterse K, George A, Bomans PHH, Freidrich H, Brylka LJ, Hilbers PAJ, With G, Sommerdijk NAJM (2010) The role of collagen in bone apatite formation in presence of hydroxyapatite nucleation inhibitors. Nat Mater 9:1004–1009PubMedCentralPubMedCrossRef Nudelman F, Pieterse K, George A, Bomans PHH, Freidrich H, Brylka LJ, Hilbers PAJ, With G, Sommerdijk NAJM (2010) The role of collagen in bone apatite formation in presence of hydroxyapatite nucleation inhibitors. Nat Mater 9:1004–1009PubMedCentralPubMedCrossRef
17.
go back to reference Bazin D, Chappard C, Combes C, Carpentier X, Rouzière S, André G, Matzen G, Allix M, Thiaudière D, Reguer S, Jungers P, Daudon M (2009) Diffraction techniques and vibrational spectroscopy opportunities to characterise bones. Osteoporos Int 20:1065–1075PubMedCrossRef Bazin D, Chappard C, Combes C, Carpentier X, Rouzière S, André G, Matzen G, Allix M, Thiaudière D, Reguer S, Jungers P, Daudon M (2009) Diffraction techniques and vibrational spectroscopy opportunities to characterise bones. Osteoporos Int 20:1065–1075PubMedCrossRef
18.
go back to reference Miller RM, Hukins DWL, Hasnain SS, Lagarde P (1981) Extended X-ray absorption fine structure EXAFS studies of the calcium ion environment in bone mineral and related calcium phosphates. Biochem Biophys Res Commun 99:102–106PubMedCrossRef Miller RM, Hukins DWL, Hasnain SS, Lagarde P (1981) Extended X-ray absorption fine structure EXAFS studies of the calcium ion environment in bone mineral and related calcium phosphates. Biochem Biophys Res Commun 99:102–106PubMedCrossRef
19.
go back to reference Binsted N, Hasnain SS, Hukins DWL (1982) Developmental changes in bone mineral structure demonstrated by extended X-ray absorption fine structure EXAFS spectroscopy. Biochem Biophys Res Commun 107:89–92PubMedCrossRef Binsted N, Hasnain SS, Hukins DWL (1982) Developmental changes in bone mineral structure demonstrated by extended X-ray absorption fine structure EXAFS spectroscopy. Biochem Biophys Res Commun 107:89–92PubMedCrossRef
20.
go back to reference Harries JE, Hukins DWL, Hasnain SS (1986) Analysis of the EXAFS spectrum of hydroxyapatite. J Phys C 19:6859–6872CrossRef Harries JE, Hukins DWL, Hasnain SS (1986) Analysis of the EXAFS spectrum of hydroxyapatite. J Phys C 19:6859–6872CrossRef
21.
go back to reference Harries JE, Hukins DWL, Holt C, Hasnain SS (1987) Conversion of amorphous calcium phosphate into hydroxyapatite investigated by EXAFS spectroscopy. J Cryst Growth 84:563–570CrossRef Harries JE, Hukins DWL, Holt C, Hasnain SS (1987) Conversion of amorphous calcium phosphate into hydroxyapatite investigated by EXAFS spectroscopy. J Cryst Growth 84:563–570CrossRef
22.
go back to reference Harries JE, Hukins DWL, Hasnain SS (1988) Calcium environment in bone mineral determined by EXAFS spectroscopy. Calcif Tissue Int 43:250–253PubMedCrossRef Harries JE, Hukins DWL, Hasnain SS (1988) Calcium environment in bone mineral determined by EXAFS spectroscopy. Calcif Tissue Int 43:250–253PubMedCrossRef
23.
go back to reference Peters F, Schwarz K, Epple M (2000) The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim Acta 361:131–138CrossRef Peters F, Schwarz K, Epple M (2000) The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim Acta 361:131–138CrossRef
24.
go back to reference Liou S-C, Chen S-Y, Lee H-Y, Bow J-S (2004) Structural characterization of nanosized calcium deficient apatite powders. Biomaterials 25:189–196PubMedCrossRef Liou S-C, Chen S-Y, Lee H-Y, Bow J-S (2004) Structural characterization of nanosized calcium deficient apatite powders. Biomaterials 25:189–196PubMedCrossRef
25.
go back to reference Eichert D, Salomé M, Banu M, Susini J, Rey C (2005) Preliminary characterization of calcium chemical environment in apatitic and non-apatitic calcium phosphates of biological interest by X-ray absorption spectroscopy. Spectrochim Acta B 60:850–858CrossRef Eichert D, Salomé M, Banu M, Susini J, Rey C (2005) Preliminary characterization of calcium chemical environment in apatitic and non-apatitic calcium phosphates of biological interest by X-ray absorption spectroscopy. Spectrochim Acta B 60:850–858CrossRef
26.
go back to reference Nguyen C, Ea HK, Thiaudière D, Reguer S, Hannouche D, Daudon M, Lioté F, Bazin D (2011) Calcifications in human osteoarthritic articular cartilage: ex vivo assessment of calcium compounds using XANES spectroscopy. J Synchrotron Rad 18:475–480CrossRef Nguyen C, Ea HK, Thiaudière D, Reguer S, Hannouche D, Daudon M, Lioté F, Bazin D (2011) Calcifications in human osteoarthritic articular cartilage: ex vivo assessment of calcium compounds using XANES spectroscopy. J Synchrotron Rad 18:475–480CrossRef
27.
go back to reference Sery A, Manceau A, Greaves GN (1996) Chemical state of Cd in apatite phosphate ores as determined by EXAFS spectroscopy. Am Mineral 81:864–873 Sery A, Manceau A, Greaves GN (1996) Chemical state of Cd in apatite phosphate ores as determined by EXAFS spectroscopy. Am Mineral 81:864–873
28.
go back to reference Korbas M, Rokita E, Meyer-Klaucke W, Ryczek J (2004) Bone tissue incorporates in vitro gallium with a local structure similar to gallium-doped brushite. J Biol Inorg Chem 9:67–76PubMedCrossRef Korbas M, Rokita E, Meyer-Klaucke W, Ryczek J (2004) Bone tissue incorporates in vitro gallium with a local structure similar to gallium-doped brushite. J Biol Inorg Chem 9:67–76PubMedCrossRef
29.
go back to reference Bazin D, Carpentier X, Brocheriou I, Dorfmuller P, Aubert S, Chappard C, Thiaudière D, Reguer S, Waychunas G, Jungers P, Daudon M (2009) Revisiting the localisation of Zn2+ cations sorbed on pathological apatite calcifications made through X-ray absorption spectroscopy. Biochimie 91:1294–1300PubMedCrossRef Bazin D, Carpentier X, Brocheriou I, Dorfmuller P, Aubert S, Chappard C, Thiaudière D, Reguer S, Waychunas G, Jungers P, Daudon M (2009) Revisiting the localisation of Zn2+ cations sorbed on pathological apatite calcifications made through X-ray absorption spectroscopy. Biochimie 91:1294–1300PubMedCrossRef
30.
go back to reference Sugiyama S, Moriga T, Hayashi H, Moffat JB (2001) Characterization of Ca, Sr, Ba and Pb HAP: X-ray diffraction, photoelectron, EXAFS and MAS NMR spectroscopies. Bull Chem Soc Jpn 74:187–192CrossRef Sugiyama S, Moriga T, Hayashi H, Moffat JB (2001) Characterization of Ca, Sr, Ba and Pb HAP: X-ray diffraction, photoelectron, EXAFS and MAS NMR spectroscopies. Bull Chem Soc Jpn 74:187–192CrossRef
31.
go back to reference Kumta PN, Sfeir C, Lee D-H, Olton D, Choi D (2005) Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Acta Biomater 1:65–83PubMedCrossRef Kumta PN, Sfeir C, Lee D-H, Olton D, Choi D (2005) Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Acta Biomater 1:65–83PubMedCrossRef
32.
go back to reference Raffalt AC, Andersen JET, Christgau S (2008) Application of inductively coupled plasma-mass spectrometry (ICP-MS) and quality assurance to study the incorporation of strontium into bone, bone marrow, and teeth of dogs after one month of treatment with strontium malonate. Anal Bioanal Chem 391:2199–2207PubMedCrossRef Raffalt AC, Andersen JET, Christgau S (2008) Application of inductively coupled plasma-mass spectrometry (ICP-MS) and quality assurance to study the incorporation of strontium into bone, bone marrow, and teeth of dogs after one month of treatment with strontium malonate. Anal Bioanal Chem 391:2199–2207PubMedCrossRef
33.
go back to reference Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2:65–71CrossRef Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2:65–71CrossRef
34.
go back to reference Carlson S, Clausén M, Gridneva L, Sommarin B, Svensson C (2006) XAFS experiments at beamline I811, MAX-lab synchrotron source, Sweden. J Synchrotron Rad 13:359–364CrossRef Carlson S, Clausén M, Gridneva L, Sommarin B, Svensson C (2006) XAFS experiments at beamline I811, MAX-lab synchrotron source, Sweden. J Synchrotron Rad 13:359–364CrossRef
35.
go back to reference Ressler T (1998) WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. J Synchrotron Rad 5:118–122CrossRef Ressler T (1998) WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. J Synchrotron Rad 5:118–122CrossRef
36.
go back to reference Ubgade R, Sarode PR (1987) Study of strontium compounds and minerals by X-ray absorption spectroscopy. Phys Status Solidi A 99:295–301CrossRef Ubgade R, Sarode PR (1987) Study of strontium compounds and minerals by X-ray absorption spectroscopy. Phys Status Solidi A 99:295–301CrossRef
37.
go back to reference Newville M (2001) IFEFFIT: interactive XAFS analysis and FEFF fitting. J Synchrotron Rad 8:322–324CrossRef Newville M (2001) IFEFFIT: interactive XAFS analysis and FEFF fitting. J Synchrotron Rad 8:322–324CrossRef
38.
go back to reference Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Rad 12:537–541CrossRef Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Rad 12:537–541CrossRef
39.
go back to reference Oliveira JP, Querido W, Caldas RJ, Campos APC, Abraçado LG, Farina M (2012) Strontium is incorporated in different levels into bones and teeth of rats treated with strontium ranelate. Calcif Tissue Int 91:186–195PubMedCrossRef Oliveira JP, Querido W, Caldas RJ, Campos APC, Abraçado LG, Farina M (2012) Strontium is incorporated in different levels into bones and teeth of rats treated with strontium ranelate. Calcif Tissue Int 91:186–195PubMedCrossRef
40.
go back to reference Seward TM, Henderson CMB, Charnock JM, Dreisner T (1999) An EXAFS study of solvation and ion pairing in aqueous strontium solutions to 300 °C. Geochim Cosmochim Acta 63:2409–2418CrossRef Seward TM, Henderson CMB, Charnock JM, Dreisner T (1999) An EXAFS study of solvation and ion pairing in aqueous strontium solutions to 300 °C. Geochim Cosmochim Acta 63:2409–2418CrossRef
41.
go back to reference Plate U, Arnold S, Stratmann U, Weismann HP, Höhling HJ (1998) General principle of ordered apatitic crystal formation in enamel and collagen rich hard tissues. Connect Tissue Res 38:149–157PubMedCrossRef Plate U, Arnold S, Stratmann U, Weismann HP, Höhling HJ (1998) General principle of ordered apatitic crystal formation in enamel and collagen rich hard tissues. Connect Tissue Res 38:149–157PubMedCrossRef
42.
go back to reference Ziv V, Wagner HD, Weiner S (1996) Microstructure–microhardness relations in parallel-fibered and lamellar bone. Bone 18:417–428PubMedCrossRef Ziv V, Wagner HD, Weiner S (1996) Microstructure–microhardness relations in parallel-fibered and lamellar bone. Bone 18:417–428PubMedCrossRef
43.
44.
go back to reference Tamm T, Peld M (2006) Computational study of cation substitutions in apatites. J Solid State Chem 179:1581–1587CrossRef Tamm T, Peld M (2006) Computational study of cation substitutions in apatites. J Solid State Chem 179:1581–1587CrossRef
45.
go back to reference Bigi A, Boanini E, Capuccini C, Gazzano M (2007) Strontium-substituted hydroxyapatite nanocrystals. Inorg Chim Acta 360:1009–1016CrossRef Bigi A, Boanini E, Capuccini C, Gazzano M (2007) Strontium-substituted hydroxyapatite nanocrystals. Inorg Chim Acta 360:1009–1016CrossRef
46.
go back to reference Terra J, Dourado ER, Eon J-G, Ellis DE, Gonzalez G, Rossi AM (2009) The structure of strontium-doped hydroxyapatite: an experimental and theoretical study. Phys Chem Chem Phys 11:568–577PubMedCrossRef Terra J, Dourado ER, Eon J-G, Ellis DE, Gonzalez G, Rossi AM (2009) The structure of strontium-doped hydroxyapatite: an experimental and theoretical study. Phys Chem Chem Phys 11:568–577PubMedCrossRef
47.
go back to reference O′Donnell MD, Fredholm Y, de Rouffignac A, Hill RG (2008) Structural analysis of a series of strontium-substituted apatites. Acta Biomater 4:1455–1464PubMedCrossRef O′Donnell MD, Fredholm Y, de Rouffignac A, Hill RG (2008) Structural analysis of a series of strontium-substituted apatites. Acta Biomater 4:1455–1464PubMedCrossRef
48.
go back to reference Ammann P, Badoud I, Barraud S, Dayer R, Rizzoli R (2007) Strontium ranelate treatment improves trabecular and cortical intrinsic bone tissue quality, a determinant of bone strength. J Bone Miner Res 22:1419–1425PubMedCrossRef Ammann P, Badoud I, Barraud S, Dayer R, Rizzoli R (2007) Strontium ranelate treatment improves trabecular and cortical intrinsic bone tissue quality, a determinant of bone strength. J Bone Miner Res 22:1419–1425PubMedCrossRef
49.
go back to reference Cattani-Lorente M, Rizzoli R, Ammann P (2013) In vitro bone exposure to strontium improves bone material level properties. Acta Biomater 9:7005–7013PubMedCrossRef Cattani-Lorente M, Rizzoli R, Ammann P (2013) In vitro bone exposure to strontium improves bone material level properties. Acta Biomater 9:7005–7013PubMedCrossRef
Metadata
Title
Strontium Localization in Bone Tissue Studied by X-Ray Absorption Spectroscopy
Authors
Christian Grundahl Frankær
Anders Christer Raffalt
Kenny Stahl
Publication date
01-02-2014
Publisher
Springer US
Published in
Calcified Tissue International / Issue 2/2014
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-013-9806-7

Other articles of this Issue 2/2014

Calcified Tissue International 2/2014 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.