Skip to main content
Top
Published in: Osteoporosis International 6/2009

01-06-2009 | Bone Quality Seminars: Ultrastructure

Diffraction techniques and vibrational spectroscopy opportunities to characterise bones

Authors: D. Bazin, C. Chappard, C. Combes, X. Carpentier, S. Rouzière, G. André, G. Matzen, M. Allix, D. Thiaudière, S. Reguer, P. Jungers, M. Daudon

Published in: Osteoporosis International | Issue 6/2009

Login to get access

Excerpt

From a histological point of view, bones that allow body mobility and protection of internal organs consist not only of different organic and inorganic tissues but include vascular and nervous elements as well. Moreover, due to its ability to host different ions and cations, its mineral part represents an important reservoir, playing a key role in the metabolic activity of the organism. From a structural point of view, bones can be considered as a composite material displaying a hierarchical structure at different scales [1, 2]. At the nanometre scale, an organic part, i.e. collagen fibrils and an inorganic part, i.e. calcium phosphate nanocrystals [3, 4] are intimately mixed to assure particular mechanical properties. …
Literature
2.
go back to reference Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499–505CrossRef Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499–505CrossRef
3.
go back to reference Elliott JC (2002) Calcium phosphate biominerals. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance, reviews in mineralogy and geochemistry, vol 48. Mineral Society of America, Washington DC, pp 427–453 Elliott JC (2002) Calcium phosphate biominerals. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance, reviews in mineralogy and geochemistry, vol 48. Mineral Society of America, Washington DC, pp 427–453
4.
go back to reference Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam
5.
go back to reference Guinier A (1956) X-ray diffraction in crystals, imperfect crystals and amorphous bodies. Dunod, Paris Guinier A (1956) X-ray diffraction in crystals, imperfect crystals and amorphous bodies. Dunod, Paris
6.
go back to reference Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2975PubMedCrossRef Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2975PubMedCrossRef
7.
go back to reference McKelvy ML, Britt TR, Davis BL, Gillie JK, Graves FB, Lentz LA (1998) Infrared spectroscopy. Anal Chem 70:119–177CrossRef McKelvy ML, Britt TR, Davis BL, Gillie JK, Graves FB, Lentz LA (1998) Infrared spectroscopy. Anal Chem 70:119–177CrossRef
8.
go back to reference Bertsch PM, Hunter DB (2001) Applications of synchrotron-based X-ray microprobes. Chem Rev 101:1809–1842PubMedCrossRef Bertsch PM, Hunter DB (2001) Applications of synchrotron-based X-ray microprobes. Chem Rev 101:1809–1842PubMedCrossRef
9.
go back to reference Dumas P, Sockalingum GD, Sule-Suso J (2006) Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications? Trends Biotechnol 25:40–44PubMedCrossRef Dumas P, Sockalingum GD, Sule-Suso J (2006) Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications? Trends Biotechnol 25:40–44PubMedCrossRef
10.
go back to reference Bazin D, Guczi L, Lynch J (2002) Anomalous wide angle X-ray scattering (AWAXS) and heterogeneous catalysis. Appl Catal 226:87–113CrossRef Bazin D, Guczi L, Lynch J (2002) Anomalous wide angle X-ray scattering (AWAXS) and heterogeneous catalysis. Appl Catal 226:87–113CrossRef
11.
go back to reference Gouadec G, Ph Colomban (2007) Raman Spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog Cryst Growth Charact Mater 53:1–56CrossRef Gouadec G, Ph Colomban (2007) Raman Spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog Cryst Growth Charact Mater 53:1–56CrossRef
12.
go back to reference Naray-Szabo S (1930) The structure of apatite (CaF)Ca4(PO4)3. Z. Kristallogr Kristallgeom Kristallphys Kristallchem 75:387–398 Naray-Szabo S (1930) The structure of apatite (CaF)Ca4(PO4)3. Z. Kristallogr Kristallgeom Kristallphys Kristallchem 75:387–398
13.
go back to reference White TJ, Zhi Li D (2003) Structural derivation and crystal chemistry of apatites. Acta Crystallogr B 59:1–16PubMedCrossRef White TJ, Zhi Li D (2003) Structural derivation and crystal chemistry of apatites. Acta Crystallogr B 59:1–16PubMedCrossRef
14.
go back to reference Rey C, Miquel JL, Facchini L, Legrand AP, Glimcher MJ (1995) Hydroxyl groups in bone mineral. Bone 16:583–586PubMedCrossRef Rey C, Miquel JL, Facchini L, Legrand AP, Glimcher MJ (1995) Hydroxyl groups in bone mineral. Bone 16:583–586PubMedCrossRef
15.
go back to reference Loong CK, Rey C, Kuhn LT, Combes C, Wu Y, Chen SH, Glimcher MJ (2000) Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study. Bone 26:599–602PubMedCrossRef Loong CK, Rey C, Kuhn LT, Combes C, Wu Y, Chen SH, Glimcher MJ (2000) Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study. Bone 26:599–602PubMedCrossRef
16.
go back to reference Cho G, Wu Y, Ackerman JL (2003) Detection of hydroxyl ions in bone mineral by solid state NMR spectroscopy. Science 300:1123–1127PubMedCrossRef Cho G, Wu Y, Ackerman JL (2003) Detection of hydroxyl ions in bone mineral by solid state NMR spectroscopy. Science 300:1123–1127PubMedCrossRef
17.
go back to reference Vallet-Regı M, Gonzalez-Calbet MJ (2004) Calcium phosphates as substitution of bone tissues. Prog Solid State Chem 32:1–31CrossRef Vallet-Regı M, Gonzalez-Calbet MJ (2004) Calcium phosphates as substitution of bone tissues. Prog Solid State Chem 32:1–31CrossRef
18.
go back to reference Grynpas MD, Holmyard D (1988) Changes in quality of bone mineral on aging and in disease. Scanning Microsc 2:1045–1054PubMed Grynpas MD, Holmyard D (1988) Changes in quality of bone mineral on aging and in disease. Scanning Microsc 2:1045–1054PubMed
19.
go back to reference Kapolos J, Koutsoukos PG (1999) Formation of calcium phosphates in aqueous solutions in the presence of carbonate ions. Langmuir 15:6557–6562CrossRef Kapolos J, Koutsoukos PG (1999) Formation of calcium phosphates in aqueous solutions in the presence of carbonate ions. Langmuir 15:6557–6562CrossRef
20.
go back to reference Santos M, Gonzalez-Diaz PF (1977) A model for B carbonate apatite. Inorg Chem 16:2131–2134CrossRef Santos M, Gonzalez-Diaz PF (1977) A model for B carbonate apatite. Inorg Chem 16:2131–2134CrossRef
21.
go back to reference Elliott JC, Bonel G, Trombe JC (1980) Space group and lattice constants of Ca10 (PO4) 6CO3. J Appl Crystallogr 13:618–621CrossRef Elliott JC, Bonel G, Trombe JC (1980) Space group and lattice constants of Ca10 (PO4) 6CO3. J Appl Crystallogr 13:618–621CrossRef
22.
go back to reference Astala R, Stott MJ (2005) First principles investigation of mineral component of bone: CO3 substitutions in hydroxyapatite. Chem Mater 17:4125–4133CrossRef Astala R, Stott MJ (2005) First principles investigation of mineral component of bone: CO3 substitutions in hydroxyapatite. Chem Mater 17:4125–4133CrossRef
23.
go back to reference Suetsugu Y, Takahashi Y, Okamura FP, Tanaka J (2000) Structure analysis of a-type carbonate apatite by a single-crystal X-ray diffraction method. J Solid State Chem 155:292–297CrossRef Suetsugu Y, Takahashi Y, Okamura FP, Tanaka J (2000) Structure analysis of a-type carbonate apatite by a single-crystal X-ray diffraction method. J Solid State Chem 155:292–297CrossRef
24.
go back to reference Wilson RM, Elliott JC, Dowker SEP, Rodriguez-Lorenzo LM (2005) Rietveld refinements and spectroscopic studies of the Ca-deficient apatite. Biomaterials 26:1317–1327PubMedCrossRef Wilson RM, Elliott JC, Dowker SEP, Rodriguez-Lorenzo LM (2005) Rietveld refinements and spectroscopic studies of the Ca-deficient apatite. Biomaterials 26:1317–1327PubMedCrossRef
25.
go back to reference Bazin D, Chevallier P, Matzen G, Jungers P, Daudon M (2007) Heavy elements in urinary stones. Urol Res 35:179–184PubMedCrossRef Bazin D, Chevallier P, Matzen G, Jungers P, Daudon M (2007) Heavy elements in urinary stones. Urol Res 35:179–184PubMedCrossRef
26.
go back to reference Xu Y, Shawartz FW, Traina SJ (1994) Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ Sci Technol 28:1472–1480CrossRef Xu Y, Shawartz FW, Traina SJ (1994) Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ Sci Technol 28:1472–1480CrossRef
27.
go back to reference Lusvardi G, Menabue L, Saladini M (2002) Reactivity of biological and synthetic HAP towards Zn(II) ion, solid–liquid investigations. J Mater Sci Mater Med 13:91–98PubMedCrossRef Lusvardi G, Menabue L, Saladini M (2002) Reactivity of biological and synthetic HAP towards Zn(II) ion, solid–liquid investigations. J Mater Sci Mater Med 13:91–98PubMedCrossRef
28.
go back to reference Cheung CW, Porter JF, MacKay G (2002) Removal of Cu(II) and Zn(II) ions by sorption onto bone char using batch agitation. Langmuir 18:650–656CrossRef Cheung CW, Porter JF, MacKay G (2002) Removal of Cu(II) and Zn(II) ions by sorption onto bone char using batch agitation. Langmuir 18:650–656CrossRef
29.
go back to reference Sheha RR (2007) Sorption behavior of Zn(II) ions on synthesized hydroxyapatites. J Colloif Interface Sci 310:18–26CrossRef Sheha RR (2007) Sorption behavior of Zn(II) ions on synthesized hydroxyapatites. J Colloif Interface Sci 310:18–26CrossRef
30.
go back to reference Cuisinier FJG, Steuer P, Voegel JC, Apfelbaum F, Mayer I (1995) Structural analyses of carbonate-containing apatite samples related to mineralized tissues. J Mater Sci Mater Med 6:85–89CrossRef Cuisinier FJG, Steuer P, Voegel JC, Apfelbaum F, Mayer I (1995) Structural analyses of carbonate-containing apatite samples related to mineralized tissues. J Mater Sci Mater Med 6:85–89CrossRef
31.
go back to reference Rey C, Combes C, Drouet C, Sfihi H, Barroug A (2007) Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Materials Science and Engineering C 27:198–205CrossRef Rey C, Combes C, Drouet C, Sfihi H, Barroug A (2007) Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Materials Science and Engineering C 27:198–205CrossRef
32.
go back to reference Cazalbou S, Eichert D, Drouet C, Combes C, Rey C (2004) Minéralisations biologiques à base de phosphate de calcium. C. R. Pale 3:563–572CrossRef Cazalbou S, Eichert D, Drouet C, Combes C, Rey C (2004) Minéralisations biologiques à base de phosphate de calcium. C. R. Pale 3:563–572CrossRef
33.
go back to reference Wang L, Guan X, Du C, Moradian-Oldak J, Nancollas GH (2007) Amelogenin promotes the formation of elongated apatite microstructures in a controlled crystallization system. J Phys Chem C 111:6398–6404CrossRef Wang L, Guan X, Du C, Moradian-Oldak J, Nancollas GH (2007) Amelogenin promotes the formation of elongated apatite microstructures in a controlled crystallization system. J Phys Chem C 111:6398–6404CrossRef
34.
go back to reference Seeman NC, Belcher AM (2002) Emulating biology: building nanostructures from the bottom up. Proc Natl Acad Sci U S A 99:6452–6455CrossRef Seeman NC, Belcher AM (2002) Emulating biology: building nanostructures from the bottom up. Proc Natl Acad Sci U S A 99:6452–6455CrossRef
35.
go back to reference Tseng YH, Mou CY, Chan JCC (2006) Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation. J Am Chem Soc 128:6909–6918PubMedCrossRef Tseng YH, Mou CY, Chan JCC (2006) Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation. J Am Chem Soc 128:6909–6918PubMedCrossRef
36.
go back to reference Lundager-Madsen HE (2008) Influence of foreign metal ions on crystal growth and morphology of brushite and its transformation to octacalcium phosphate and apatite. J Cryst Growth 310:2602–2612CrossRef Lundager-Madsen HE (2008) Influence of foreign metal ions on crystal growth and morphology of brushite and its transformation to octacalcium phosphate and apatite. J Cryst Growth 310:2602–2612CrossRef
37.
go back to reference Warren BE (1990) X-ray diffraction. Dover, New York Warren BE (1990) X-ray diffraction. Dover, New York
38.
go back to reference Rietveld HM (1969) A profile refinement method for nuclear and magnetic structure. J Appl Crystallogr 2:65–71CrossRef Rietveld HM (1969) A profile refinement method for nuclear and magnetic structure. J Appl Crystallogr 2:65–71CrossRef
39.
go back to reference Le Bail A, Loüer D (1978) Smoothing and validity of crystallite size distributions from X-ray line profile analysis. J Appl Crystallogr 11:50–55CrossRef Le Bail A, Loüer D (1978) Smoothing and validity of crystallite size distributions from X-ray line profile analysis. J Appl Crystallogr 11:50–55CrossRef
40.
41.
go back to reference Bazin DC, Sayers DA, Rehr JJ (1997) Comparison between X-ray absorption spectroscopy, anomalous wide angle X-ray scattering, anomalous small angle X-ray scattering, and diffraction anomalous fine structure techniques applied to nanometer scale metallic clusters. J Phys Chem B 101:11040–11050CrossRef Bazin DC, Sayers DA, Rehr JJ (1997) Comparison between X-ray absorption spectroscopy, anomalous wide angle X-ray scattering, anomalous small angle X-ray scattering, and diffraction anomalous fine structure techniques applied to nanometer scale metallic clusters. J Phys Chem B 101:11040–11050CrossRef
42.
go back to reference Klug H, Alexander L (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd ed. Wiley, New York Klug H, Alexander L (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd ed. Wiley, New York
43.
go back to reference Bacon GE, Goodship AE (2007) The healing process for fractured tibia bones of sheep studied by neutron diffraction. J Appl Crystallogr 40:349–353CrossRef Bacon GE, Goodship AE (2007) The healing process for fractured tibia bones of sheep studied by neutron diffraction. J Appl Crystallogr 40:349–353CrossRef
44.
go back to reference Heidelbach F, Riekel C, Wenk HR (1999) Quantitative texture analysis of small domains with synchrotron radiation X-rays. J Appl Crystallogr 32:841–849CrossRef Heidelbach F, Riekel C, Wenk HR (1999) Quantitative texture analysis of small domains with synchrotron radiation X-rays. J Appl Crystallogr 32:841–849CrossRef
45.
go back to reference Hamilton WC (1969) Comparison of X-ray and Neutron diffraction structural results: A study in methods of error analysis. Acta Crystallogr A 25:194–206CrossRef Hamilton WC (1969) Comparison of X-ray and Neutron diffraction structural results: A study in methods of error analysis. Acta Crystallogr A 25:194–206CrossRef
46.
go back to reference Wilson RM, Elliott JC, Dowker SEP, Smith RI (2004) Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials 25:2205–2213PubMedCrossRef Wilson RM, Elliott JC, Dowker SEP, Smith RI (2004) Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials 25:2205–2213PubMedCrossRef
47.
go back to reference Arcos D, Rodríguez-Carvajal J, Vallet-Regí M (2004) Neutron scattering for the study of improved bone implants. Phys Rev B Condens Matter 350:E607–E610CrossRef Arcos D, Rodríguez-Carvajal J, Vallet-Regí M (2004) Neutron scattering for the study of improved bone implants. Phys Rev B Condens Matter 350:E607–E610CrossRef
48.
go back to reference Arcos D, Rodríguez-Carvajal J, Vallet-Regí M (2004) The effect of the silicon incorporation on the hydroxylapatite structure. A neutron diffraction study. Solid State Sc 6:987–994CrossRef Arcos D, Rodríguez-Carvajal J, Vallet-Regí M (2004) The effect of the silicon incorporation on the hydroxylapatite structure. A neutron diffraction study. Solid State Sc 6:987–994CrossRef
49.
go back to reference Bacon GE, Bacon PJ, Griffiths RK (1979) The orientation of apatite crystals in bone. J Appl Crystallogr 12:99–103CrossRef Bacon GE, Bacon PJ, Griffiths RK (1979) The orientation of apatite crystals in bone. J Appl Crystallogr 12:99–103CrossRef
50.
go back to reference Cedola A, Mastrogiacomo M, Lagomarsino S, Cancedda R, Giannini C, Guagliardi A, Ladisa M, Burghammer M, Rustichelli F, Komlev V (2007) Orientation of mineral crystals by collagen fibers during in vivo bone engineering: an X-ray diffraction imaging study. Spectrochim Acta B 62:642–647CrossRef Cedola A, Mastrogiacomo M, Lagomarsino S, Cancedda R, Giannini C, Guagliardi A, Ladisa M, Burghammer M, Rustichelli F, Komlev V (2007) Orientation of mineral crystals by collagen fibers during in vivo bone engineering: an X-ray diffraction imaging study. Spectrochim Acta B 62:642–647CrossRef
51.
go back to reference Zhou H, Burger C, Sics I, Hsiao BS, Chu B, Graham B, Glimcher MJ (2007) Small angle X-ray study of the three-dimensional collagen/mineral superstructure in intramuscular fish bone. J Appl Crystallogr 40:666–668CrossRef Zhou H, Burger C, Sics I, Hsiao BS, Chu B, Graham B, Glimcher MJ (2007) Small angle X-ray study of the three-dimensional collagen/mineral superstructure in intramuscular fish bone. J Appl Crystallogr 40:666–668CrossRef
52.
go back to reference Gupta S, Roschger P, Zizak I, Fratzl-Zelman N, Nader A, Klaushofer K, Fratzl P (2003) Mineralized microstructure of calcified avian tendons: a scanning small angle X-ray scattering study. Calcif Tissue Int 72:567–576PubMedCrossRef Gupta S, Roschger P, Zizak I, Fratzl-Zelman N, Nader A, Klaushofer K, Fratzl P (2003) Mineralized microstructure of calcified avian tendons: a scanning small angle X-ray scattering study. Calcif Tissue Int 72:567–576PubMedCrossRef
53.
go back to reference Gupta HS, Wagermaier W, Zickler GA, Hartmann J, Funari SS, Roschger P, Wagner HD, Fratzl P (2006) Fibrillar level fracture in bone beyond the yield point. Int J Fract 139:425–436CrossRef Gupta HS, Wagermaier W, Zickler GA, Hartmann J, Funari SS, Roschger P, Wagner HD, Fratzl P (2006) Fibrillar level fracture in bone beyond the yield point. Int J Fract 139:425–436CrossRef
54.
go back to reference Almer JD, Stock SR (2005) Micromechanical response of mineral and collagen phases in bone. J Struct Biol 152:14–27PubMedCrossRef Almer JD, Stock SR (2005) Micromechanical response of mineral and collagen phases in bone. J Struct Biol 152:14–27PubMedCrossRef
55.
go back to reference DeMaeyer E, Verbeeck R, Nassens D (1993) Stoichiometry of Na+ and CO 3 2− containing apatites obtained by hydrolysis of monetite. Inorg Chem 32:5709–5714CrossRef DeMaeyer E, Verbeeck R, Nassens D (1993) Stoichiometry of Na+ and CO 3 2− containing apatites obtained by hydrolysis of monetite. Inorg Chem 32:5709–5714CrossRef
56.
go back to reference Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1996) Rietveld structure refinements of calcium hydroxyapatite containing magnesium. Acta Crystallogr B 52:87–92CrossRef Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1996) Rietveld structure refinements of calcium hydroxyapatite containing magnesium. Acta Crystallogr B 52:87–92CrossRef
57.
go back to reference Tian T, Jiang D, Zhang J, Lin Q (2008) Synthesis of Si-substituted hydroxyapatite by a wet mechanochemical method. Mat Sci Eng C28:57–63 Tian T, Jiang D, Zhang J, Lin Q (2008) Synthesis of Si-substituted hydroxyapatite by a wet mechanochemical method. Mat Sci Eng C28:57–63
58.
go back to reference Marchat D, Bernache-Assolant D, Champion E (2007) Cadmium fixation by synthetic hydroxyapatite in aqueous solution—thermal behavior. J Hazard Mater A139:453–460CrossRef Marchat D, Bernache-Assolant D, Champion E (2007) Cadmium fixation by synthetic hydroxyapatite in aqueous solution—thermal behavior. J Hazard Mater A139:453–460CrossRef
59.
go back to reference Landi E, Sprio S, Sandri M, Celotti G, Tampieri A (2008) Development of Sr and CO 3 2− co-substituted hydroxyapatites for biomedical applications. Acta Biomater 4:656–663PubMedCrossRef Landi E, Sprio S, Sandri M, Celotti G, Tampieri A (2008) Development of Sr and CO 3 2− co-substituted hydroxyapatites for biomedical applications. Acta Biomater 4:656–663PubMedCrossRef
60.
go back to reference Laperche V, Traina SJ, Gaddam P, Logan TJ (1996) Chemical and mineralogical characterizations of Pb in a contaminated soil: reactions with synthetic apatite. Environ Sci Technol 30:3321–3326CrossRef Laperche V, Traina SJ, Gaddam P, Logan TJ (1996) Chemical and mineralogical characterizations of Pb in a contaminated soil: reactions with synthetic apatite. Environ Sci Technol 30:3321–3326CrossRef
61.
go back to reference Zhu K, Yanagisawa K, Shimanouchi R, Onda A, Kajiyoshi K (2006) Hydrothermal synthesis and crystallographic study of Sr Pb HAP solid solutions. J Eur Ceram Soc 26:509–513CrossRef Zhu K, Yanagisawa K, Shimanouchi R, Onda A, Kajiyoshi K (2006) Hydrothermal synthesis and crystallographic study of Sr Pb HAP solid solutions. J Eur Ceram Soc 26:509–513CrossRef
62.
go back to reference Tamm T, Peld M (2006) Computational study of cation substitutions in apatites. J Solid State Chem 179:1581–1587CrossRef Tamm T, Peld M (2006) Computational study of cation substitutions in apatites. J Solid State Chem 179:1581–1587CrossRef
63.
go back to reference Bigi A, Boanini E, Capuccini C, Gazzano M (2007) Sr-substituted HAP nanocrystals. Inorg Chim Acta 360:1009–1016CrossRef Bigi A, Boanini E, Capuccini C, Gazzano M (2007) Sr-substituted HAP nanocrystals. Inorg Chim Acta 360:1009–1016CrossRef
64.
go back to reference Sayers DA, Lytle FW, Stern EA (1970) In: Henke BL, Newkirk JB, Mallett GR (eds) Advances in X-ray analysis, vol 13. Plenum, New York, pp 248-271 Sayers DA, Lytle FW, Stern EA (1970) In: Henke BL, Newkirk JB, Mallett GR (eds) Advances in X-ray analysis, vol 13. Plenum, New York, pp 248-271
65.
go back to reference Bazin D, Rehr JJ (2003) Limits and advantages of XANES for nanometer scale metallic clusters. J Phys Chem B 107:12398–12402CrossRef Bazin D, Rehr JJ (2003) Limits and advantages of XANES for nanometer scale metallic clusters. J Phys Chem B 107:12398–12402CrossRef
66.
go back to reference Harries JE, Hukins DWL, Hasnain SS (1988) Calcium environment in bone mineral determined by EXAFS spectroscopy. Calcif Tissue Int 43:250–253PubMedCrossRef Harries JE, Hukins DWL, Hasnain SS (1988) Calcium environment in bone mineral determined by EXAFS spectroscopy. Calcif Tissue Int 43:250–253PubMedCrossRef
67.
go back to reference Harries JE, Hasnain SS, Shah JS (1987) EXAFS study of structural disorder in carbonate-containing hydroxyapatites. Calcif Tissue Int 41:346–350PubMedCrossRef Harries JE, Hasnain SS, Shah JS (1987) EXAFS study of structural disorder in carbonate-containing hydroxyapatites. Calcif Tissue Int 41:346–350PubMedCrossRef
68.
go back to reference Eichert D, Salomé M, Banu M, Susini J, Rey C (2005) Preliminary characterization of calcium chemical environment in apatitic and non-apatitic calcium phosphates of biological interest by XAS. Spectrochim Acta B 60:850–858CrossRef Eichert D, Salomé M, Banu M, Susini J, Rey C (2005) Preliminary characterization of calcium chemical environment in apatitic and non-apatitic calcium phosphates of biological interest by XAS. Spectrochim Acta B 60:850–858CrossRef
69.
go back to reference Liou SC, Chen SY, Lee HY, Bow JS (2004) Structural characterization of nanosized calcium deficient apatite powders. Biomaterials 25:189–196PubMedCrossRef Liou SC, Chen SY, Lee HY, Bow JS (2004) Structural characterization of nanosized calcium deficient apatite powders. Biomaterials 25:189–196PubMedCrossRef
70.
go back to reference Eanes ED, Powers L, Costa JL (1981) EXAFS studies on calcium in crystalline and amorphous solids of biological interest. Cell Calcium 2:251–262CrossRef Eanes ED, Powers L, Costa JL (1981) EXAFS studies on calcium in crystalline and amorphous solids of biological interest. Cell Calcium 2:251–262CrossRef
71.
go back to reference Miller RM, Hukins DWL, Hasnain SS, Lagarde P (1981) EXAFS studies of the calcium ion environment in bone mineral and related calcium phosphates. Biochem Biophys Res Com 99:102–106PubMedCrossRef Miller RM, Hukins DWL, Hasnain SS, Lagarde P (1981) EXAFS studies of the calcium ion environment in bone mineral and related calcium phosphates. Biochem Biophys Res Com 99:102–106PubMedCrossRef
72.
go back to reference Holt C, Van Kemenade MJJM, Nelson LS, Hukins DWL, Bailey RT, Harries JE, Hasnain SS, DeBruyn PL (1989) Amorphous calcium phosphate prepared at pH 6 and 6.5. Mater Res Bull 24:55–62CrossRef Holt C, Van Kemenade MJJM, Nelson LS, Hukins DWL, Bailey RT, Harries JE, Hasnain SS, DeBruyn PL (1989) Amorphous calcium phosphate prepared at pH 6 and 6.5. Mater Res Bull 24:55–62CrossRef
73.
go back to reference Nelson LS, Holt C, Harries JE, Hukins DWL (1989) Amorphous calcium phosphates of different composition give very similar EXAFS spectra. Physica B 158:105–106CrossRef Nelson LS, Holt C, Harries JE, Hukins DWL (1989) Amorphous calcium phosphates of different composition give very similar EXAFS spectra. Physica B 158:105–106CrossRef
74.
go back to reference Harries JE, Hukins DWL, Holt C, Hasnain SS (1987) Conversion of amorphous calcium phosphate into HAP investigated by EXAFS spectroscopy. J Cryst Growth 84:563–570CrossRef Harries JE, Hukins DWL, Holt C, Hasnain SS (1987) Conversion of amorphous calcium phosphate into HAP investigated by EXAFS spectroscopy. J Cryst Growth 84:563–570CrossRef
75.
go back to reference Korbas M, Rotika E, Meyer-Klaucke W, Ryczek J (2004) Bone tissue incorporates in vitro gallium with a local structure similar to gallium-doped brushite. J Biol Inorg Chem 9:67–76PubMedCrossRef Korbas M, Rotika E, Meyer-Klaucke W, Ryczek J (2004) Bone tissue incorporates in vitro gallium with a local structure similar to gallium-doped brushite. J Biol Inorg Chem 9:67–76PubMedCrossRef
76.
go back to reference Sugiyama S, Moriga T, Hayashi H, Moffat JB (2001) Characterization of Ca, Sr, Ba and Pb HAP: X-ray diffraction, photoelectron, EXAFS and MAS NMR spectroscopies. Bull Chem Soc Jpn 74:187–192CrossRef Sugiyama S, Moriga T, Hayashi H, Moffat JB (2001) Characterization of Ca, Sr, Ba and Pb HAP: X-ray diffraction, photoelectron, EXAFS and MAS NMR spectroscopies. Bull Chem Soc Jpn 74:187–192CrossRef
77.
go back to reference Sery A, Manceau A, Greaves GN (1996) Chemical state of Cd in apatite phosphate ores as determined by EXAFS spectroscopy. Am Mineral 81:864–873 Sery A, Manceau A, Greaves GN (1996) Chemical state of Cd in apatite phosphate ores as determined by EXAFS spectroscopy. Am Mineral 81:864–873
78.
go back to reference Rokita E, Hermes C, Nolting HF, Ryczek J (1993) Substitution of calcium by Sr within selected calcium phosphates. J Cryst Growth 130:543–552CrossRef Rokita E, Hermes C, Nolting HF, Ryczek J (1993) Substitution of calcium by Sr within selected calcium phosphates. J Cryst Growth 130:543–552CrossRef
80.
go back to reference Bazin D, Carpentier X, Traxer O, Thiaudière D, Somogyi A, Reguer A, Waychunas G, Jungers P, Daudon M (2008) Very first tests on SOLEIL regarding the Zn environment in pathological calcifications made of apatite determined by X-ray absorption spectroscopy. J Synchrotron Radiat 15((Pt 5):506–509CrossRef Bazin D, Carpentier X, Traxer O, Thiaudière D, Somogyi A, Reguer A, Waychunas G, Jungers P, Daudon M (2008) Very first tests on SOLEIL regarding the Zn environment in pathological calcifications made of apatite determined by X-ray absorption spectroscopy. J Synchrotron Radiat 15((Pt 5):506–509CrossRef
81.
go back to reference Raman CV, Krishnan KS (1928) A new radiation. Indian J Phys 2:387–398 Raman CV, Krishnan KS (1928) A new radiation. Indian J Phys 2:387–398
83.
go back to reference Prince KC, Kuepper K, Neumann M, Cooco D, Bondino F, Zangrando M, Zacchigna M, Mateeucci M, Parmigiani F (2004) Resonant Raman X-ray scattering at the S2p edge of iron pyrite. J Phys Condens Matter 16:7397–7404CrossRef Prince KC, Kuepper K, Neumann M, Cooco D, Bondino F, Zangrando M, Zacchigna M, Mateeucci M, Parmigiani F (2004) Resonant Raman X-ray scattering at the S2p edge of iron pyrite. J Phys Condens Matter 16:7397–7404CrossRef
84.
go back to reference Zumbusch A, Holtom GR, Xie XS (1999) Vibrational microscopy using coherent anti-Stokes Raman scattering. Phys Rev Lett 82:4142–4145CrossRef Zumbusch A, Holtom GR, Xie XS (1999) Vibrational microscopy using coherent anti-Stokes Raman scattering. Phys Rev Lett 82:4142–4145CrossRef
85.
go back to reference Habelitz S, Marshall GW, Balooch M, Marshall SJ (2002) Nanoindentation and storage of teeth. J Biomech 35:995–998PubMedCrossRef Habelitz S, Marshall GW, Balooch M, Marshall SJ (2002) Nanoindentation and storage of teeth. J Biomech 35:995–998PubMedCrossRef
86.
go back to reference Carden A, Rajachar RM, Morris MD, Kohn DH (2004) Ultrastructure changes accompanying the mechanical deformation of bone tissues: a Raman imaging study. Calcif Tissue Int 72:166–175CrossRef Carden A, Rajachar RM, Morris MD, Kohn DH (2004) Ultrastructure changes accompanying the mechanical deformation of bone tissues: a Raman imaging study. Calcif Tissue Int 72:166–175CrossRef
87.
88.
go back to reference Boskey AL, Mendelsohn R (2005) Infrared spectroscopic characterization of mineralized tissues. Vibr Spectrosc 38:107–114CrossRef Boskey AL, Mendelsohn R (2005) Infrared spectroscopic characterization of mineralized tissues. Vibr Spectrosc 38:107–114CrossRef
89.
go back to reference Numata Y, Sakae T, Suwa T, Nakada H, Legeros RZ, Kobayashi K (2008) Qualitative and quantitative evaluation of bone and synthetic calcium phosphates using Raman spectroscopy. Key Eng Mater 361–363:135–138CrossRef Numata Y, Sakae T, Suwa T, Nakada H, Legeros RZ, Kobayashi K (2008) Qualitative and quantitative evaluation of bone and synthetic calcium phosphates using Raman spectroscopy. Key Eng Mater 361–363:135–138CrossRef
90.
go back to reference Morris MD, Carden A, Rajachar RM, Kohn DH (2002) Effects of applied load on bone tissue as observed by Raman spectroscopy. Proc SPIE 4614:47–54CrossRef Morris MD, Carden A, Rajachar RM, Kohn DH (2002) Effects of applied load on bone tissue as observed by Raman spectroscopy. Proc SPIE 4614:47–54CrossRef
91.
go back to reference Penel G, Leroy G, Rey C, Bres C (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63:475–481PubMedCrossRef Penel G, Leroy G, Rey C, Bres C (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63:475–481PubMedCrossRef
92.
go back to reference Rey C, Collins B, Goehl T, Dickson RI, Glimcher MJ (1989) The carbonate environment in bone mineral. A resolution enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164PubMedCrossRef Rey C, Collins B, Goehl T, Dickson RI, Glimcher MJ (1989) The carbonate environment in bone mineral. A resolution enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164PubMedCrossRef
93.
go back to reference Awonusi A, Morris MD, Tecklenburg MJM (2007) Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int 81:46–52PubMedCrossRef Awonusi A, Morris MD, Tecklenburg MJM (2007) Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int 81:46–52PubMedCrossRef
94.
go back to reference Timlin JA, Carden A, Morris MD (1999) Chemical microstructure of cortical bone probed by Raman transects. Appl Spectrosc 53:1429–1435CrossRef Timlin JA, Carden A, Morris MD (1999) Chemical microstructure of cortical bone probed by Raman transects. Appl Spectrosc 53:1429–1435CrossRef
95.
go back to reference Sahar ND, Hong SI, Kohn DH (2005) Micro- and nano-structural analyses of damage in bone. Micron 36:617–629PubMedCrossRef Sahar ND, Hong SI, Kohn DH (2005) Micro- and nano-structural analyses of damage in bone. Micron 36:617–629PubMedCrossRef
96.
go back to reference Timlin JA, Carden A, Morris MD, Rajachar RM, Kohn DH (2000) Raman spectroscopic markers for fatigue-related bovine bone microdamage. Anal Chem 72:2229–2236PubMedCrossRef Timlin JA, Carden A, Morris MD, Rajachar RM, Kohn DH (2000) Raman spectroscopic markers for fatigue-related bovine bone microdamage. Anal Chem 72:2229–2236PubMedCrossRef
97.
go back to reference McCreadie BR, Morris MD, Chen TC, Rao DS, Finney WF, Widjaja E, Goldstein SA (2006) Bone tissue compositional differences in women with and without osteoporotic fracture. Bone 39:1190–1195PubMedCrossRef McCreadie BR, Morris MD, Chen TC, Rao DS, Finney WF, Widjaja E, Goldstein SA (2006) Bone tissue compositional differences in women with and without osteoporotic fracture. Bone 39:1190–1195PubMedCrossRef
98.
go back to reference Daudon M, Bazin D, Jungers P, André G, Cousson A, Chevallier P, Véron E, Matzen G (2009) Opportunities offered by scanning electron microscopy, powder neutron diffraction and synchrotron radiation mX-ray fluorescence in the study of whewellite kidney stones. J App Cryst 42:109–115CrossRef Daudon M, Bazin D, Jungers P, André G, Cousson A, Chevallier P, Véron E, Matzen G (2009) Opportunities offered by scanning electron microscopy, powder neutron diffraction and synchrotron radiation mX-ray fluorescence in the study of whewellite kidney stones. J App Cryst 42:109–115CrossRef
99.
go back to reference Bazin D, Daudon M, Chevallier P, Rouzière S, Elkaim E, Thiaudière D, Fayard B, Foy E, Albouy PA, André G, Matzen G, Veron E (2006) Les techniques de rayonnement synchrotron au service de la caractérisation d’objets biologiques : un exemple d’application, les calculs rénaux. Annales de Biologie Clinique 64(2):125–139PubMed Bazin D, Daudon M, Chevallier P, Rouzière S, Elkaim E, Thiaudière D, Fayard B, Foy E, Albouy PA, André G, Matzen G, Veron E (2006) Les techniques de rayonnement synchrotron au service de la caractérisation d’objets biologiques : un exemple d’application, les calculs rénaux. Annales de Biologie Clinique 64(2):125–139PubMed
Metadata
Title
Diffraction techniques and vibrational spectroscopy opportunities to characterise bones
Authors
D. Bazin
C. Chappard
C. Combes
X. Carpentier
S. Rouzière
G. André
G. Matzen
M. Allix
D. Thiaudière
S. Reguer
P. Jungers
M. Daudon
Publication date
01-06-2009
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 6/2009
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-009-0868-3

Other articles of this Issue 6/2009

Osteoporosis International 6/2009 Go to the issue

Bone Quality Seminars: Ultrastructure

Bone microdamage