Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2019

Open Access 01-12-2019 | Stroke | Review

Neuroinflammation: friend and foe for ischemic stroke

Authors: Richard L. Jayaraj, Sheikh Azimullah, Rami Beiram, Fakhreya Y. Jalal, Gary A. Rosenberg

Published in: Journal of Neuroinflammation | Issue 1/2019

Login to get access

Abstract

Stroke, the third leading cause of death and disability worldwide, is undergoing a change in perspective with the emergence of new ideas on neurodegeneration. The concept that stroke is a disorder solely of blood vessels has been expanded to include the effects of a detrimental interaction between glia, neurons, vascular cells, and matrix components, which is collectively referred to as the neurovascular unit. Following the acute stroke, the majority of which are ischemic, there is secondary neuroinflammation that both promotes further injury, resulting in cell death, but conversely plays a beneficial role, by promoting recovery. The proinflammatory signals from immune mediators rapidly activate resident cells and influence infiltration of a wide range of inflammatory cells (neutrophils, monocytes/macrophages, different subtypes of T cells, and other inflammatory cells) into the ischemic region exacerbating brain damage. In this review, we discuss how neuroinflammation has both beneficial as well as detrimental roles and recent therapeutic strategies to combat pathological responses. Here, we also focus on time-dependent entry of immune cells to the ischemic area and the impact of other pathological mediators, including oxidative stress, excitotoxicity, matrix metalloproteinases (MMPs), high-mobility group box 1 (HMGB1), arachidonic acid metabolites, mitogen-activated protein kinase (MAPK), and post-translational modifications that could potentially perpetuate ischemic brain damage after the acute injury. Understanding the time-dependent role of inflammatory factors could help in developing new diagnostic, prognostic, and therapeutic neuroprotective strategies for post-stroke inflammation.
Literature
2.
go back to reference Lallukka T, Ervasti J, Lundström E, Mittendorfer-Rutz E, Friberg E, Virtanen M, et al. Trends in diagnosis-specific work disability before and after stroke: a longitudinal population-based study in Sweden. J Am Heart Assoc. 2018;7(1):e006991.PubMedPubMedCentralCrossRef Lallukka T, Ervasti J, Lundström E, Mittendorfer-Rutz E, Friberg E, Virtanen M, et al. Trends in diagnosis-specific work disability before and after stroke: a longitudinal population-based study in Sweden. J Am Heart Assoc. 2018;7(1):e006991.PubMedPubMedCentralCrossRef
3.
go back to reference Rammal SA, Almekhlafi MA. Diabetes mellitus and stroke in the Arab world. J Taibah University Med Sci. 2016;11(4):295–300.CrossRef Rammal SA, Almekhlafi MA. Diabetes mellitus and stroke in the Arab world. J Taibah University Med Sci. 2016;11(4):295–300.CrossRef
4.
go back to reference Feigin VL, Abajobir AA, Abate KH, Abd-Allah F, Abdulle AM, Abera SF, et al. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017;16(11):877–97.CrossRef Feigin VL, Abajobir AA, Abate KH, Abd-Allah F, Abdulle AM, Abera SF, et al. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017;16(11):877–97.CrossRef
5.
go back to reference Catanese L, Tarsia J, Fisher M. Acute ischemic stroke therapy overview. Circulation Research. 2017;120(3):541–58.PubMedCrossRef Catanese L, Tarsia J, Fisher M. Acute ischemic stroke therapy overview. Circulation Research. 2017;120(3):541–58.PubMedCrossRef
6.
go back to reference Dugue R, Nath M, Dugue A, Barone FC. Roles of pro-and anti-inflammatory cytokines in traumatic brain injury and acute ischemic stroke. Mechanisms of Neuroinflammation: IntechOpen; 2017. Dugue R, Nath M, Dugue A, Barone FC. Roles of pro-and anti-inflammatory cytokines in traumatic brain injury and acute ischemic stroke. Mechanisms of Neuroinflammation: IntechOpen; 2017.
7.
go back to reference Khan M, Hashim H, Nisa Z, Kamran S, Alrukn S. thrombolysis for acute ischemic stroke: experience in Dubai, and comparison of Arab with non-Arab population. J Neurol Stroke. 2016;4(6):00156.CrossRef Khan M, Hashim H, Nisa Z, Kamran S, Alrukn S. thrombolysis for acute ischemic stroke: experience in Dubai, and comparison of Arab with non-Arab population. J Neurol Stroke. 2016;4(6):00156.CrossRef
8.
go back to reference Hajat C, Harrison O, Al Siksek Z. Weqaya: a population-wide cardiovascular screening program in Abu Dhabi, United Arab Emirates. Am J Public Health. 2012;102(5):909–14.PubMedPubMedCentralCrossRef Hajat C, Harrison O, Al Siksek Z. Weqaya: a population-wide cardiovascular screening program in Abu Dhabi, United Arab Emirates. Am J Public Health. 2012;102(5):909–14.PubMedPubMedCentralCrossRef
9.
go back to reference Abdulle A, Alnaeemi A, Aljunaibi A, Al Ali A, Al Saedi K, Al Zaabi E, et al. The UAE healthy future study: a pilot for a prospective cohort study of 20,000 United Arab Emirates nationals. BMC Public Health. 2018;18(1):101.PubMedPubMedCentralCrossRef Abdulle A, Alnaeemi A, Aljunaibi A, Al Ali A, Al Saedi K, Al Zaabi E, et al. The UAE healthy future study: a pilot for a prospective cohort study of 20,000 United Arab Emirates nationals. BMC Public Health. 2018;18(1):101.PubMedPubMedCentralCrossRef
10.
go back to reference Di Carlo A. Human and economic burden of stroke. Age and ageing. 2009;38(1):4–5. Di Carlo A. Human and economic burden of stroke. Age and ageing. 2009;38(1):4–5.
11.
go back to reference Mishra M, Hedna VS. Neuroinflammation after acute ischemic stroke: a volcano hard to contain. Chinese Journal of Contemporary Neurology and Neurosurgery. 2013;13(11):964–70. Mishra M, Hedna VS. Neuroinflammation after acute ischemic stroke: a volcano hard to contain. Chinese Journal of Contemporary Neurology and Neurosurgery. 2013;13(11):964–70.
12.
15.
go back to reference Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG. Does neuroinflammation fan the flame in neurodegenerative diseases? Molecular neurodegeneration. 2009;4(1):47.PubMedPubMedCentralCrossRef Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG. Does neuroinflammation fan the flame in neurodegenerative diseases? Molecular neurodegeneration. 2009;4(1):47.PubMedPubMedCentralCrossRef
16.
go back to reference Kim JY, Park J, Chang JY, Kim SH, Lee JE. Inflammation after ischemic stroke: the role of leukocytes and glial cells. Experimental neurobiology. 2016;25(5):241–51.PubMedPubMedCentralCrossRef Kim JY, Park J, Chang JY, Kim SH, Lee JE. Inflammation after ischemic stroke: the role of leukocytes and glial cells. Experimental neurobiology. 2016;25(5):241–51.PubMedPubMedCentralCrossRef
17.
go back to reference Emmrich JV, Ejaz S, Neher JJ, Williamson DJ, Baron JC. Regional distribution of selective neuronal loss and microglial activation across the MCA territory after transient focal ischemia: quantitative versus semiquantitative systematic immunohistochemical assessment. J Cereb Blood Flow Metab. 2015;35(1):20–7.PubMedCrossRef Emmrich JV, Ejaz S, Neher JJ, Williamson DJ, Baron JC. Regional distribution of selective neuronal loss and microglial activation across the MCA territory after transient focal ischemia: quantitative versus semiquantitative systematic immunohistochemical assessment. J Cereb Blood Flow Metab. 2015;35(1):20–7.PubMedCrossRef
18.
go back to reference Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, et al. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener. 2017;12(1):7.PubMedPubMedCentralCrossRef Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, et al. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener. 2017;12(1):7.PubMedPubMedCentralCrossRef
19.
go back to reference Kim JY, Kawabori M, Yenari MA. Innate inflammatory responses in stroke: mechanisms and potential therapeutic targets. Curr Med Chem. 2014;21(18):2076–97.PubMedPubMedCentralCrossRef Kim JY, Kawabori M, Yenari MA. Innate inflammatory responses in stroke: mechanisms and potential therapeutic targets. Curr Med Chem. 2014;21(18):2076–97.PubMedPubMedCentralCrossRef
20.
go back to reference Sun M, Deng B, Zhao X, Gao C, Yang L, Zhao H, et al. Isoflurane preconditioning provides neuroprotection against stroke by regulating the expression of the TLR4 signalling pathway to alleviate microglial activation. Sci Rep. 2015;5:11445.PubMedPubMedCentralCrossRef Sun M, Deng B, Zhao X, Gao C, Yang L, Zhao H, et al. Isoflurane preconditioning provides neuroprotection against stroke by regulating the expression of the TLR4 signalling pathway to alleviate microglial activation. Sci Rep. 2015;5:11445.PubMedPubMedCentralCrossRef
22.
go back to reference Zhou M, Wang CM, Yang WL, Wang P. Microglial CD14 activated by iNOS contributes to neuroinflammation in cerebral ischemia. Brain Res. 2013;1506:105–14.PubMedPubMedCentralCrossRef Zhou M, Wang CM, Yang WL, Wang P. Microglial CD14 activated by iNOS contributes to neuroinflammation in cerebral ischemia. Brain Res. 2013;1506:105–14.PubMedPubMedCentralCrossRef
23.
go back to reference Facci L, Barbierato M, Marinelli C, Argentini C, Skaper SD, Giusti P. Toll-like receptors 2, -3 and -4 prime microglia but not astrocytes across central nervous system regions for ATP-Dependent interleukin-1β release. Sci Rep. 2014;4:6824.PubMedPubMedCentralCrossRef Facci L, Barbierato M, Marinelli C, Argentini C, Skaper SD, Giusti P. Toll-like receptors 2, -3 and -4 prime microglia but not astrocytes across central nervous system regions for ATP-Dependent interleukin-1β release. Sci Rep. 2014;4:6824.PubMedPubMedCentralCrossRef
24.
go back to reference McDonough A, Lee RV, Noor S, Lee C, Le T, Iorga M, et al. Ischemia/reperfusion induces interferon-stimulated gene expression in microglia. J Neurosci. 2017;37(34):8292–308.PubMedPubMedCentralCrossRef McDonough A, Lee RV, Noor S, Lee C, Le T, Iorga M, et al. Ischemia/reperfusion induces interferon-stimulated gene expression in microglia. J Neurosci. 2017;37(34):8292–308.PubMedPubMedCentralCrossRef
25.
go back to reference Ponomarev ED, Veremeyko T, Weiner HL. MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia. 2013;61(1):91–103.PubMedCrossRef Ponomarev ED, Veremeyko T, Weiner HL. MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia. 2013;61(1):91–103.PubMedCrossRef
26.
go back to reference Parada E, Egea J, Buendia I, Negredo P, Cunha AC, Cardoso S, et al. The microglial α7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2. Antioxidants & redox signaling. 2013;19(11):1135–48.CrossRef Parada E, Egea J, Buendia I, Negredo P, Cunha AC, Cardoso S, et al. The microglial α7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2. Antioxidants & redox signaling. 2013;19(11):1135–48.CrossRef
27.
go back to reference Yuan Y, Zha H, Rangarajan P, Ling EA, Wu C. Anti-inflammatory effects of Edaravone and Scutellarin in activated microglia in experimentally induced ischemia injury in rats and in BV-2 microglia. BMC Neurosci. 2014;15:125.PubMedPubMedCentralCrossRef Yuan Y, Zha H, Rangarajan P, Ling EA, Wu C. Anti-inflammatory effects of Edaravone and Scutellarin in activated microglia in experimentally induced ischemia injury in rats and in BV-2 microglia. BMC Neurosci. 2014;15:125.PubMedPubMedCentralCrossRef
28.
go back to reference Liska GM, Lippert T, Russo E, Nieves N, Borlongan CV. A dual role for hyperbaric oxygen in stroke neuroprotection: preconditioning of the brain and stem cells. Cond Med. 2018;1(4):151–66.PubMedPubMedCentral Liska GM, Lippert T, Russo E, Nieves N, Borlongan CV. A dual role for hyperbaric oxygen in stroke neuroprotection: preconditioning of the brain and stem cells. Cond Med. 2018;1(4):151–66.PubMedPubMedCentral
29.
go back to reference Lalancette-Hébert M, Swarup V, Beaulieu JM, Bohacek I, Abdelhamid E, Weng YC, et al. Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. J Neurosci. 2012;32(30):10383–95.PubMedCrossRefPubMedCentral Lalancette-Hébert M, Swarup V, Beaulieu JM, Bohacek I, Abdelhamid E, Weng YC, et al. Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. J Neurosci. 2012;32(30):10383–95.PubMedCrossRefPubMedCentral
31.
go back to reference Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K. Microglia provide neuroprotection after ischemia. FASEB J. 2006;20(6):714–6.PubMedCrossRef Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K. Microglia provide neuroprotection after ischemia. FASEB J. 2006;20(6):714–6.PubMedCrossRef
32.
go back to reference Denes A, Vidyasagar R, Feng J, Narvainen J, McColl BW, Kauppinen RA, et al. Proliferating resident microglia after focal cerebral ischaemia in mice. J Cereb Blood Flow Metab. 2007;27(12):1941–53.PubMedCrossRef Denes A, Vidyasagar R, Feng J, Narvainen J, McColl BW, Kauppinen RA, et al. Proliferating resident microglia after focal cerebral ischaemia in mice. J Cereb Blood Flow Metab. 2007;27(12):1941–53.PubMedCrossRef
33.
go back to reference Arumugam TV, Salter JW, Chidlow JH, Ballantyne CM, Kevil CG, Granger DN. Contributions of LFA-1 and Mac-1 to brain injury and microvascular dysfunction induced by transient middle cerebral artery occlusion. Am J Physiol Heart Circ Physiol. 2004;287(6):H2555–H60.PubMedCrossRef Arumugam TV, Salter JW, Chidlow JH, Ballantyne CM, Kevil CG, Granger DN. Contributions of LFA-1 and Mac-1 to brain injury and microvascular dysfunction induced by transient middle cerebral artery occlusion. Am J Physiol Heart Circ Physiol. 2004;287(6):H2555–H60.PubMedCrossRef
34.
go back to reference Taylor RA, Chang CF, Goods BA, Hammond MD, Mac Grory B, Ai Y, et al. TGF-β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage. J Clin Invest. 2017;127(1):280–92.PubMedCrossRef Taylor RA, Chang CF, Goods BA, Hammond MD, Mac Grory B, Ai Y, et al. TGF-β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage. J Clin Invest. 2017;127(1):280–92.PubMedCrossRef
35.
go back to reference Jin WN, Shi SX, Li Z, Li M, Wood K, Gonzales RJ, et al. Depletion of microglia exacerbates postischemic inflammation and brain injury. J Cereb Blood Flow Metab. 2017;37(6):2224–36.PubMedPubMedCentralCrossRef Jin WN, Shi SX, Li Z, Li M, Wood K, Gonzales RJ, et al. Depletion of microglia exacerbates postischemic inflammation and brain injury. J Cereb Blood Flow Metab. 2017;37(6):2224–36.PubMedPubMedCentralCrossRef
36.
go back to reference Singhal G, Baune BT. Microglia: An interface between the loss of neuroplasticity and depression. Front Cell Neurosci. 2017;11(270). Singhal G, Baune BT. Microglia: An interface between the loss of neuroplasticity and depression. Front Cell Neurosci. 2017;11(270).
37.
go back to reference Bylicky MA, Mueller GP, Day RM. Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury. Oxid Med Cell Longev. 2018;2018:6501031.PubMedPubMedCentralCrossRef Bylicky MA, Mueller GP, Day RM. Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury. Oxid Med Cell Longev. 2018;2018:6501031.PubMedPubMedCentralCrossRef
38.
go back to reference Takano T, Oberheim N, Cotrina ML, Nedergaard M. Astrocytes and ischemic injury. Stroke. 2009;40(3 suppl 1):S8–S12.PubMedCrossRef Takano T, Oberheim N, Cotrina ML, Nedergaard M. Astrocytes and ischemic injury. Stroke. 2009;40(3 suppl 1):S8–S12.PubMedCrossRef
39.
go back to reference Ketheeswaranathan P, Turner NA, Spary EJ, Batten TF, McColl BW, Saha S. Changes in glutamate transporter expression in mouse forebrain areas following focal ischemia. Brain Res. 2011;1418:93–103.PubMedCrossRef Ketheeswaranathan P, Turner NA, Spary EJ, Batten TF, McColl BW, Saha S. Changes in glutamate transporter expression in mouse forebrain areas following focal ischemia. Brain Res. 2011;1418:93–103.PubMedCrossRef
40.
go back to reference Hennessy E, Griffin ÉW, Cunningham C. Astrocytes are primed by chronic neurodegeneration to produce exaggerated chemokine and cell infiltration responses to acute stimulation with the cytokines IL-1β and TNF-α. J Neurosci. 2015;35(22):8411–22.PubMedPubMedCentralCrossRef Hennessy E, Griffin ÉW, Cunningham C. Astrocytes are primed by chronic neurodegeneration to produce exaggerated chemokine and cell infiltration responses to acute stimulation with the cytokines IL-1β and TNF-α. J Neurosci. 2015;35(22):8411–22.PubMedPubMedCentralCrossRef
41.
go back to reference Wang H, Song G, Chuang H, Chiu C, Abdelmaksoud A, Ye Y, et al. Portrait of glial scar in neurological diseases. Int J Immunopathol Pharmacol. 2018;31:2058738418801406.PubMedPubMedCentral Wang H, Song G, Chuang H, Chiu C, Abdelmaksoud A, Ye Y, et al. Portrait of glial scar in neurological diseases. Int J Immunopathol Pharmacol. 2018;31:2058738418801406.PubMedPubMedCentral
42.
go back to reference Sykova E. Glial diffusion barriers during aging and pathological states. Prog Brain Res. 2001;132:339–63.PubMedCrossRef Sykova E. Glial diffusion barriers during aging and pathological states. Prog Brain Res. 2001;132:339–63.PubMedCrossRef
43.
go back to reference Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: versatile breakers and makers. J Cereb Blood Flow Metab. 2016;36(9):1481–507.PubMedPubMedCentralCrossRef Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: versatile breakers and makers. J Cereb Blood Flow Metab. 2016;36(9):1481–507.PubMedPubMedCentralCrossRef
44.
go back to reference Overman JJ, Clarkson AN, Wanner IB, Overman WT, Eckstein I, Maguire JL, et al. A role for ephrin-A5 in axonal sprouting, recovery, and activity-dependent plasticity after stroke. Proc Natl Acad Sci U S A. 2012;109(33):E2230–9.PubMedPubMedCentralCrossRef Overman JJ, Clarkson AN, Wanner IB, Overman WT, Eckstein I, Maguire JL, et al. A role for ephrin-A5 in axonal sprouting, recovery, and activity-dependent plasticity after stroke. Proc Natl Acad Sci U S A. 2012;109(33):E2230–9.PubMedPubMedCentralCrossRef
45.
go back to reference Nowicka D, Rogozinska K, Aleksy M, Witte OW, Skangiel-Kramska J. Spatiotemporal dynamics of astroglial and microglial responses after photothrombotic stroke in the rat brain. Acta Neurobiol Exp. 2008;68(2):155. Nowicka D, Rogozinska K, Aleksy M, Witte OW, Skangiel-Kramska J. Spatiotemporal dynamics of astroglial and microglial responses after photothrombotic stroke in the rat brain. Acta Neurobiol Exp. 2008;68(2):155.
46.
go back to reference Endoh M, Maiese K, Wagner J. Expression of the inducible form of nitric oxide synthase by reactive astrocytes after transient global ischemia. Brain Res. 1994;651(1-2):92–100.PubMedCrossRef Endoh M, Maiese K, Wagner J. Expression of the inducible form of nitric oxide synthase by reactive astrocytes after transient global ischemia. Brain Res. 1994;651(1-2):92–100.PubMedCrossRef
47.
go back to reference Li M, Li Z, Yao Y, Jin W-N, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci. 2017;114(3):E396–405.PubMedCrossRef Li M, Li Z, Yao Y, Jin W-N, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci. 2017;114(3):E396–405.PubMedCrossRef
48.
go back to reference Liu Z, Li Y, Cui Y, Roberts C, Lu M, Wilhelmsson U, et al. Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia. 2014;62(12):2022–33.PubMedPubMedCentralCrossRef Liu Z, Li Y, Cui Y, Roberts C, Lu M, Wilhelmsson U, et al. Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia. 2014;62(12):2022–33.PubMedPubMedCentralCrossRef
49.
go back to reference Szydlowska K, Zawadzka M, Kaminska B. Neuroprotectant FK506 inhibits glutamate-induced apoptosis of astrocytes in vitro and in vivo. J Neurochem. 2006;99(3):965–75.PubMedCrossRef Szydlowska K, Zawadzka M, Kaminska B. Neuroprotectant FK506 inhibits glutamate-induced apoptosis of astrocytes in vitro and in vivo. J Neurochem. 2006;99(3):965–75.PubMedCrossRef
50.
go back to reference Dvoriantchikova G, Barakat D, Brambilla R, Agudelo C, Hernandez E, Bethea JR, et al. Inactivation of astroglial NF-kappa B promotes survival of retinal neurons following ischemic injury. Eur J Neurosci. 2009;30(2):175–85.PubMedPubMedCentralCrossRef Dvoriantchikova G, Barakat D, Brambilla R, Agudelo C, Hernandez E, Bethea JR, et al. Inactivation of astroglial NF-kappa B promotes survival of retinal neurons following ischemic injury. Eur J Neurosci. 2009;30(2):175–85.PubMedPubMedCentralCrossRef
51.
go back to reference Vogelgesang A, Becker KJ, Dressel A. Immunological consequences of ischemic stroke. Acta Neurol Scand. 2014;129(1):1–12.PubMedCrossRef Vogelgesang A, Becker KJ, Dressel A. Immunological consequences of ischemic stroke. Acta Neurol Scand. 2014;129(1):1–12.PubMedCrossRef
54.
go back to reference Armulik A, Mäe M, Betsholtz C. Pericytes and the blood–brain barrier: recent advances and implications for the delivery of CNS therapy. Ther Deliv. 2011;2(4):419–22.PubMedCrossRef Armulik A, Mäe M, Betsholtz C. Pericytes and the blood–brain barrier: recent advances and implications for the delivery of CNS therapy. Ther Deliv. 2011;2(4):419–22.PubMedCrossRef
55.
go back to reference Fernandez-Klett F, Priller J. Diverse functions of pericytes in cerebral blood flow regulation and ischemia. J Cereb Blood Flow Metab. 2015;35(6):883–7.PubMedPubMedCentralCrossRef Fernandez-Klett F, Priller J. Diverse functions of pericytes in cerebral blood flow regulation and ischemia. J Cereb Blood Flow Metab. 2015;35(6):883–7.PubMedPubMedCentralCrossRef
56.
57.
go back to reference Jansson D, Rustenhoven J, Feng S, Hurley D, Oldfield RL, Bergin PS, et al. A role for human brain pericytes in neuroinflammation. J Neuroinflammation. 2014;11:104.PubMedPubMedCentralCrossRef Jansson D, Rustenhoven J, Feng S, Hurley D, Oldfield RL, Bergin PS, et al. A role for human brain pericytes in neuroinflammation. J Neuroinflammation. 2014;11:104.PubMedPubMedCentralCrossRef
58.
go back to reference Persidsky Y, Hill J, Zhang M, Dykstra H, Winfield M, Reichenbach NL, et al. Dysfunction of brain pericytes in chronic neuroinflammation. J Cereb Blood Flow Metab. 2016;36(4):794–807.PubMedCrossRef Persidsky Y, Hill J, Zhang M, Dykstra H, Winfield M, Reichenbach NL, et al. Dysfunction of brain pericytes in chronic neuroinflammation. J Cereb Blood Flow Metab. 2016;36(4):794–807.PubMedCrossRef
59.
go back to reference Nakagomi T, Kubo S, Nakano-Doi A, Sakuma R, Lu S, Narita A, et al. Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem cells (Dayton, Ohio). 2015;33(6):1962–74.CrossRef Nakagomi T, Kubo S, Nakano-Doi A, Sakuma R, Lu S, Narita A, et al. Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem cells (Dayton, Ohio). 2015;33(6):1962–74.CrossRef
60.
go back to reference Ozen I, Deierborg T, Miharada K, Padel T, Englund E, Genove G, et al. Brain pericytes acquire a microglial phenotype after stroke. Acta neuropathologica. 2014;128(3):381–96.PubMedPubMedCentralCrossRef Ozen I, Deierborg T, Miharada K, Padel T, Englund E, Genove G, et al. Brain pericytes acquire a microglial phenotype after stroke. Acta neuropathologica. 2014;128(3):381–96.PubMedPubMedCentralCrossRef
61.
go back to reference Sakuma R, Kawahara M, Nakano-Doi A, Takahashi A, Tanaka Y, Narita A, et al. Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. J Neuroinflammation. 2016;13(1):57.PubMedPubMedCentralCrossRef Sakuma R, Kawahara M, Nakano-Doi A, Takahashi A, Tanaka Y, Narita A, et al. Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. J Neuroinflammation. 2016;13(1):57.PubMedPubMedCentralCrossRef
62.
go back to reference Shi Y, Zhang L, Pu H, Mao L, Hu X, Jiang X, et al. Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun. 2016;7:10523.PubMedPubMedCentralCrossRef Shi Y, Zhang L, Pu H, Mao L, Hu X, Jiang X, et al. Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun. 2016;7:10523.PubMedPubMedCentralCrossRef
63.
go back to reference Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV. Effects of the chemokine CCL2 on blood–brain barrier permeability during ischemia–reperfusion injury. J Cereb Blood Flow Metab. 2006;26(6):797–810.PubMedCrossRef Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV. Effects of the chemokine CCL2 on blood–brain barrier permeability during ischemia–reperfusion injury. J Cereb Blood Flow Metab. 2006;26(6):797–810.PubMedCrossRef
64.
go back to reference Candelario-Jalil E. Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics. Curr Opin Investig Drugs. 2009;10(7):644–54.PubMed Candelario-Jalil E. Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics. Curr Opin Investig Drugs. 2009;10(7):644–54.PubMed
65.
go back to reference Ceulemans A-G, Zgavc T, Kooijman R, Hachimi-Idrissi S, Sarre S, Michotte Y. The dual role of the neuroinflammatory response after ischemic stroke: modulatory effects of hypothermia. J Neuroinflammation. 2010;7(1):74.PubMedPubMedCentralCrossRef Ceulemans A-G, Zgavc T, Kooijman R, Hachimi-Idrissi S, Sarre S, Michotte Y. The dual role of the neuroinflammatory response after ischemic stroke: modulatory effects of hypothermia. J Neuroinflammation. 2010;7(1):74.PubMedPubMedCentralCrossRef
66.
go back to reference Kleinschnitz C, Blecharz K, Kahles T, Schwarz T, Kraft P, Gobel K, et al. Glucocorticoid insensitivity at the hypoxic blood-brain barrier can be reversed by inhibition of the proteasome. Stroke. 2011;42(4):1081–9.PubMedCrossRef Kleinschnitz C, Blecharz K, Kahles T, Schwarz T, Kraft P, Gobel K, et al. Glucocorticoid insensitivity at the hypoxic blood-brain barrier can be reversed by inhibition of the proteasome. Stroke. 2011;42(4):1081–9.PubMedCrossRef
67.
go back to reference Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, et al. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol. 2018;163-164:144–71.PubMedCrossRef Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, et al. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol. 2018;163-164:144–71.PubMedCrossRef
68.
go back to reference Martynov MY, Gusev EI. Current knowledge on the neuroprotective and neuroregenerative properties of citicoline in acute ischemic stroke. J Exp Pharmacol. 2015;7:17–28.PubMedPubMedCentralCrossRef Martynov MY, Gusev EI. Current knowledge on the neuroprotective and neuroregenerative properties of citicoline in acute ischemic stroke. J Exp Pharmacol. 2015;7:17–28.PubMedPubMedCentralCrossRef
69.
go back to reference Jickling GC, Liu D, Ander BP, Stamova B, Zhan X, Sharp FR. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab. 2015;35(6):888–901.PubMedPubMedCentralCrossRef Jickling GC, Liu D, Ander BP, Stamova B, Zhan X, Sharp FR. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab. 2015;35(6):888–901.PubMedPubMedCentralCrossRef
70.
go back to reference Huang L, Wu ZB, Zhuge Q, Zheng W, Shao B, Wang B, et al. Glial scar formation occurs in the human brain after ischemic stroke. International journal of medical sciences. 2014;11(4):344–8.PubMedPubMedCentralCrossRef Huang L, Wu ZB, Zhuge Q, Zheng W, Shao B, Wang B, et al. Glial scar formation occurs in the human brain after ischemic stroke. International journal of medical sciences. 2014;11(4):344–8.PubMedPubMedCentralCrossRef
71.
go back to reference Döring Y, Drechsler M, Soehnlein O, Weber C. Neutrophils in atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology. 2015;35(2):288–95.PubMedCrossRef Döring Y, Drechsler M, Soehnlein O, Weber C. Neutrophils in atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology. 2015;35(2):288–95.PubMedCrossRef
72.
go back to reference Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol. 2007;184(1):53–68.PubMedCrossRef Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol. 2007;184(1):53–68.PubMedCrossRef
73.
go back to reference Perera MN, Ma HK, Arakawa S, Howells DW, Markus R, Rowe CC, et al. Inflammation following stroke. J Clin Neurosci. 2006;13(1):1–8.CrossRef Perera MN, Ma HK, Arakawa S, Howells DW, Markus R, Rowe CC, et al. Inflammation following stroke. J Clin Neurosci. 2006;13(1):1–8.CrossRef
74.
go back to reference Tu X-k, Yang W-z, Shi S-s, Wang C-h, Zhang G-l, Ni T-r, et al. Spatio-temporal distribution of inflammatory reaction and expression of TLR2/4 signaling pathway in rat brain following permanent focal cerebral ischemia. Neurochem Res. 2010;35(8):1147–55.PubMedCrossRef Tu X-k, Yang W-z, Shi S-s, Wang C-h, Zhang G-l, Ni T-r, et al. Spatio-temporal distribution of inflammatory reaction and expression of TLR2/4 signaling pathway in rat brain following permanent focal cerebral ischemia. Neurochem Res. 2010;35(8):1147–55.PubMedCrossRef
75.
go back to reference Furlan J, Vergouwen M, Silver F. White blood cell count as a marker of stroke severity and clinical outcomes after acute ischemic stroke (P03.011). Neurology. 2012;78(1 Supplement):P03.011–P03. Furlan J, Vergouwen M, Silver F. White blood cell count as a marker of stroke severity and clinical outcomes after acute ischemic stroke (P03.011). Neurology. 2012;78(1 Supplement):P03.011–P03.
76.
go back to reference Yan J, Liu J, Greer JM, McCombe PA. Increased expression of the hypoxia-related genes in peripheral blood leukocytes of human subjects with acute ischemic stroke. Clin Exp Neuroimmunology. 2014;5(2):216–26.CrossRef Yan J, Liu J, Greer JM, McCombe PA. Increased expression of the hypoxia-related genes in peripheral blood leukocytes of human subjects with acute ischemic stroke. Clin Exp Neuroimmunology. 2014;5(2):216–26.CrossRef
77.
go back to reference Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J. 2009;276(1):13–26.PubMedCrossRef Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J. 2009;276(1):13–26.PubMedCrossRef
78.
go back to reference Kriz J. Inflammation in ischemic brain injury: timing is important. Crit Rev Neurobiol. 2006;18(1-2):145–57.CrossRef Kriz J. Inflammation in ischemic brain injury: timing is important. Crit Rev Neurobiol. 2006;18(1-2):145–57.CrossRef
79.
go back to reference Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R. Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol. 2003;183(1):25–33.PubMedCrossRef Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R. Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol. 2003;183(1):25–33.PubMedCrossRef
80.
go back to reference Tanaka R, Komine-Kobayashi M, Mochizuki H, Yamada M, Furuya T, Migita M, et al. Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience. 2003;117(3):531–9.PubMedCrossRef Tanaka R, Komine-Kobayashi M, Mochizuki H, Yamada M, Furuya T, Migita M, et al. Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience. 2003;117(3):531–9.PubMedCrossRef
81.
go back to reference Price C, Menon D, Peters A, Ballinger J, Barber R, Balan K, et al. Cerebral neutrophil recruitment, histology, and outcome in acute ischemic stroke: an imaging-based study. Stroke. 2004;35(7):1659–64.PubMedCrossRef Price C, Menon D, Peters A, Ballinger J, Barber R, Balan K, et al. Cerebral neutrophil recruitment, histology, and outcome in acute ischemic stroke: an imaging-based study. Stroke. 2004;35(7):1659–64.PubMedCrossRef
82.
go back to reference Buck BH, Liebeskind DS, Saver JL, Bang OY, Yun SW, Starkman S, et al. Early neutrophilia is associated with volume of ischemic tissue in acute stroke. Stroke. 2008;39(2):355–60.PubMedCrossRef Buck BH, Liebeskind DS, Saver JL, Bang OY, Yun SW, Starkman S, et al. Early neutrophilia is associated with volume of ischemic tissue in acute stroke. Stroke. 2008;39(2):355–60.PubMedCrossRef
84.
go back to reference Yang Y, Jalal FY, Thompson JF, Walker EJ, Candelario-Jalil E, Li L, et al. Tissue inhibitor of metalloproteinases-3 mediates the death of immature oligodendrocytes via TNF-α/TACE in focal cerebral ischemia in mice. J Neuroinflammation. 2011;8(1):108.PubMedPubMedCentralCrossRef Yang Y, Jalal FY, Thompson JF, Walker EJ, Candelario-Jalil E, Li L, et al. Tissue inhibitor of metalloproteinases-3 mediates the death of immature oligodendrocytes via TNF-α/TACE in focal cerebral ischemia in mice. J Neuroinflammation. 2011;8(1):108.PubMedPubMedCentralCrossRef
85.
go back to reference Zinnhardt B, Viel T, Wachsmuth L, Vrachimis A, Wagner S, Breyholz HJ, et al. Multimodal imaging reveals temporal and spatial microglia and matrix metalloproteinase activity after experimental stroke. J Cereb Blood Flow Metab. 2015;35(11):1711–21.PubMedPubMedCentralCrossRef Zinnhardt B, Viel T, Wachsmuth L, Vrachimis A, Wagner S, Breyholz HJ, et al. Multimodal imaging reveals temporal and spatial microglia and matrix metalloproteinase activity after experimental stroke. J Cereb Blood Flow Metab. 2015;35(11):1711–21.PubMedPubMedCentralCrossRef
86.
go back to reference Yang Y, Hill JW, Rosenberg GA. Multiple roles of metalloproteinases in neurological disorders. Prog Mol Biol Transl Sci. 2011;99: Elsevier:241–63.PubMedCrossRef Yang Y, Hill JW, Rosenberg GA. Multiple roles of metalloproteinases in neurological disorders. Prog Mol Biol Transl Sci. 2011;99: Elsevier:241–63.PubMedCrossRef
88.
go back to reference Gülke E, Gelderblom M, Magnus T. Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord. 2018;11:1756286418774254.PubMedPubMedCentralCrossRef Gülke E, Gelderblom M, Magnus T. Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord. 2018;11:1756286418774254.PubMedPubMedCentralCrossRef
90.
go back to reference Mracsko E, Javidi E, Na S-Y, Kahn A, Liesz A, Veltkamp R. Leukocyte invasion of the brain after experimental intracerebral hemorrhage in mice. Stroke. 2014;45(7):2107–14.PubMedCrossRef Mracsko E, Javidi E, Na S-Y, Kahn A, Liesz A, Veltkamp R. Leukocyte invasion of the brain after experimental intracerebral hemorrhage in mice. Stroke. 2014;45(7):2107–14.PubMedCrossRef
91.
go back to reference Schilling M, Besselmann M, Müller M, Strecker JK, Ringelstein EB, Kiefer R. Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol. 2005;196(2):290–7.PubMedCrossRef Schilling M, Besselmann M, Müller M, Strecker JK, Ringelstein EB, Kiefer R. Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol. 2005;196(2):290–7.PubMedCrossRef
92.
go back to reference Schilling M, Strecker J-K, Schäbitz W-R, Ringelstein E, Kiefer R. Effects of monocyte chemoattractant protein 1 on blood-borne cell recruitment after transient focal cerebral ischemia in mice. Neuroscience. 2009;161(3):806–12.PubMedCrossRef Schilling M, Strecker J-K, Schäbitz W-R, Ringelstein E, Kiefer R. Effects of monocyte chemoattractant protein 1 on blood-borne cell recruitment after transient focal cerebral ischemia in mice. Neuroscience. 2009;161(3):806–12.PubMedCrossRef
93.
go back to reference Breckwoldt MO, Chen JW, Stangenberg L, Aikawa E, Rodriguez E, Qiu S, et al. Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci. 2008;105(47):18584–9.PubMedCrossRefPubMedCentral Breckwoldt MO, Chen JW, Stangenberg L, Aikawa E, Rodriguez E, Qiu S, et al. Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci. 2008;105(47):18584–9.PubMedCrossRefPubMedCentral
94.
go back to reference Kokovay E, Li L, Cunningham LA. Angiogenic recruitment of pericytes from bone marrow after stroke. J Cereb Blood Flow Metab. 2006;26(4):545–55.PubMedCrossRef Kokovay E, Li L, Cunningham LA. Angiogenic recruitment of pericytes from bone marrow after stroke. J Cereb Blood Flow Metab. 2006;26(4):545–55.PubMedCrossRef
95.
go back to reference Kronenberg G, Uhlemann R, Richter N, Klempin F, Wegner S, Staerck L, et al. Distinguishing features of microglia- and monocyte-derived macrophages after stroke. Acta neuropathologica. 2018;135(4):551–68.PubMedCrossRef Kronenberg G, Uhlemann R, Richter N, Klempin F, Wegner S, Staerck L, et al. Distinguishing features of microglia- and monocyte-derived macrophages after stroke. Acta neuropathologica. 2018;135(4):551–68.PubMedCrossRef
96.
go back to reference Weston RM, Jones NM, Jarrott B, Callaway JK. Inflammatory cell infiltration after endothelin-1-induced cerebral ischemia: histochemical and myeloperoxidase correlation with temporal changes in brain injury. J Cereb Blood Flow Metab. 2007;27(1):100–14.PubMedCrossRef Weston RM, Jones NM, Jarrott B, Callaway JK. Inflammatory cell infiltration after endothelin-1-induced cerebral ischemia: histochemical and myeloperoxidase correlation with temporal changes in brain injury. J Cereb Blood Flow Metab. 2007;27(1):100–14.PubMedCrossRef
97.
go back to reference Watcharotayangul J, Mao L, Xu H, Vetri F, Baughman VL, Paisansathan C, et al. Post-ischemic vascular adhesion protein-1 inhibition provides neuroprotection in a rat temporary middle cerebral artery occlusion model. J Neurochem. 2012;123(Suppl 2):116–24.PubMedPubMedCentralCrossRef Watcharotayangul J, Mao L, Xu H, Vetri F, Baughman VL, Paisansathan C, et al. Post-ischemic vascular adhesion protein-1 inhibition provides neuroprotection in a rat temporary middle cerebral artery occlusion model. J Neurochem. 2012;123(Suppl 2):116–24.PubMedPubMedCentralCrossRef
98.
go back to reference Perez-de-Puig I, Miró-Mur F, Ferrer-Ferrer M, Gelpi E, Pedragosa J, Justicia C, et al. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol. 2015;129(2):239–57.PubMedCrossRef Perez-de-Puig I, Miró-Mur F, Ferrer-Ferrer M, Gelpi E, Pedragosa J, Justicia C, et al. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol. 2015;129(2):239–57.PubMedCrossRef
99.
go back to reference Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe C-U, Siler DA, et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke. 2009;40(5):1849–57.PubMedCrossRef Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe C-U, Siler DA, et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke. 2009;40(5):1849–57.PubMedCrossRef
100.
go back to reference Jin G, Tsuji K, Xing C, Yang Y-G, Wang X, Lo EH. CD47 gene knockout protects against transient focal cerebral ischemia in mice. Exp Neurol. 2009;217(1):165–70.PubMedPubMedCentralCrossRef Jin G, Tsuji K, Xing C, Yang Y-G, Wang X, Lo EH. CD47 gene knockout protects against transient focal cerebral ischemia in mice. Exp Neurol. 2009;217(1):165–70.PubMedPubMedCentralCrossRef
101.
go back to reference Tsai NW, Chang WN, Shaw CF, Jan CR, Lu CH. Leucocyte apoptosis in patients with acute ischaemic stroke. Clin Exp Pharmacol Physiol. 2010;37(9):884–8.PubMedCrossRef Tsai NW, Chang WN, Shaw CF, Jan CR, Lu CH. Leucocyte apoptosis in patients with acute ischaemic stroke. Clin Exp Pharmacol Physiol. 2010;37(9):884–8.PubMedCrossRef
102.
go back to reference Gokhan S, Ozhasenekler A, Mansur Durgun H, Akil E, Ustundag M, Orak M. Neutrophil lymphocyte ratios in stroke subtypes and transient ischemic attack. Eur Rev Med Pharmacol Sci. 2013;17(5):653–7.PubMed Gokhan S, Ozhasenekler A, Mansur Durgun H, Akil E, Ustundag M, Orak M. Neutrophil lymphocyte ratios in stroke subtypes and transient ischemic attack. Eur Rev Med Pharmacol Sci. 2013;17(5):653–7.PubMed
103.
go back to reference Feng Y, Liao S, Wei C, Jia D, Wood K, Liu Q, et al. Infiltration and persistence of lymphocytes during late-stage cerebral ischemia in middle cerebral artery occlusion and photothrombotic stroke models. J Neuroinflammation. 2017;14(1):248.PubMedPubMedCentralCrossRef Feng Y, Liao S, Wei C, Jia D, Wood K, Liu Q, et al. Infiltration and persistence of lymphocytes during late-stage cerebral ischemia in middle cerebral artery occlusion and photothrombotic stroke models. J Neuroinflammation. 2017;14(1):248.PubMedPubMedCentralCrossRef
104.
go back to reference Jander S, Kraemer M, Schroeter M, Witte OW, Stoll G. Lymphocytic infiltration and expression of intercellular adhesion molecule-1 in photochemically induced ischemia of the rat cortex. J Cereb Blood Flow Metab. 1995;15(1):42–51.PubMedCrossRef Jander S, Kraemer M, Schroeter M, Witte OW, Stoll G. Lymphocytic infiltration and expression of intercellular adhesion molecule-1 in photochemically induced ischemia of the rat cortex. J Cereb Blood Flow Metab. 1995;15(1):42–51.PubMedCrossRef
105.
go back to reference Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation. 2006;113(17):2105–12.PubMedCrossRef Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation. 2006;113(17):2105–12.PubMedCrossRef
106.
go back to reference Hum PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, et al. T-and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab. 2007;27(11):1798–805.CrossRef Hum PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, et al. T-and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab. 2007;27(11):1798–805.CrossRef
108.
go back to reference Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15(2):192–9.PubMedCrossRef Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15(2):192–9.PubMedCrossRef
109.
go back to reference Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H. CD4+FoxP3+ regulatory T-cells in cerebral ischemic stroke. Metab Brain Dis. 2011;26(1):87–90.PubMedCrossRef Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H. CD4+FoxP3+ regulatory T-cells in cerebral ischemic stroke. Metab Brain Dis. 2011;26(1):87–90.PubMedCrossRef
110.
go back to reference Kleinschnitz C, Kraft P, Dreykluft A, Hagedorn I, Gobel K, Schuhmann MK, et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood. 2013;121(4):679–91.PubMedPubMedCentralCrossRef Kleinschnitz C, Kraft P, Dreykluft A, Hagedorn I, Gobel K, Schuhmann MK, et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood. 2013;121(4):679–91.PubMedPubMedCentralCrossRef
111.
go back to reference Sinning C, Westermann D, Clemmensen P. Oxidative stress in ischemia and reperfusion: current concepts, novel ideas and future perspectives. Biomark Med. 2017;11(11):11031–40.PubMedCrossRef Sinning C, Westermann D, Clemmensen P. Oxidative stress in ischemia and reperfusion: current concepts, novel ideas and future perspectives. Biomark Med. 2017;11(11):11031–40.PubMedCrossRef
112.
go back to reference Van Hemelrijck A, Hachimi-Idrissi S, Sarre S, Ebinger G, Michotte Y. Post-ischaemic mild hypothermia inhibits apoptosis in the penumbral region by reducing neuronal nitric oxide synthase activity and thereby preventing endothelin-1-induced hydroxyl radical formation. Eur J Neurosci. 2005;22(6):1327–37.PubMedCrossRef Van Hemelrijck A, Hachimi-Idrissi S, Sarre S, Ebinger G, Michotte Y. Post-ischaemic mild hypothermia inhibits apoptosis in the penumbral region by reducing neuronal nitric oxide synthase activity and thereby preventing endothelin-1-induced hydroxyl radical formation. Eur J Neurosci. 2005;22(6):1327–37.PubMedCrossRef
113.
go back to reference Shirley R, Ord EN, Work LM. Oxidative stress and the use of antioxidants in stroke. Antioxidants (Basel, Switzerland). 2014;3(3):472–501.PubMedCentral Shirley R, Ord EN, Work LM. Oxidative stress and the use of antioxidants in stroke. Antioxidants (Basel, Switzerland). 2014;3(3):472–501.PubMedCentral
115.
go back to reference Liu P, Xu B, Hock CE, Nagele R, Sun FF, Wong PY. NO modulates P-selectin and ICAM-1 mRNA expression and hemodynamic alterations in hepatic I/R. Am J Physiol. 1998;275(6):H2191–H8.PubMed Liu P, Xu B, Hock CE, Nagele R, Sun FF, Wong PY. NO modulates P-selectin and ICAM-1 mRNA expression and hemodynamic alterations in hepatic I/R. Am J Physiol. 1998;275(6):H2191–H8.PubMed
116.
go back to reference Lundblad C, Grände P-O, Bentzer P. Hemodynamic and histological effects of traumatic brain injury in eNOS-deficient mice. J Neurotrauma. 2009;26(11):1953–62.PubMedCrossRef Lundblad C, Grände P-O, Bentzer P. Hemodynamic and histological effects of traumatic brain injury in eNOS-deficient mice. J Neurotrauma. 2009;26(11):1953–62.PubMedCrossRef
117.
go back to reference Garcia-Bonilla L, Moore JM, Racchumi G, Zhou P, Butler JM, Iadecola C, et al. Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice. J Immunol. 2014;193(5):2531–7.PubMedCrossRef Garcia-Bonilla L, Moore JM, Racchumi G, Zhou P, Butler JM, Iadecola C, et al. Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice. J Immunol. 2014;193(5):2531–7.PubMedCrossRef
118.
go back to reference Li W, Yang S. Targeting oxidative stress for the treatment of ischemic stroke: upstream and downstream therapeutic strategies. Brain Circulation. 2016;2(4):153–63.PubMedPubMedCentralCrossRef Li W, Yang S. Targeting oxidative stress for the treatment of ischemic stroke: upstream and downstream therapeutic strategies. Brain Circulation. 2016;2(4):153–63.PubMedPubMedCentralCrossRef
119.
go back to reference van der Worp HB, Bar PR, Kappelle LJ, de Wildt DJ. Dietary vitamin E levels affect outcome of permanent focal cerebral ischemia in rats. Stroke. 1998;29(5):1002–5 discussion 5-6.PubMedCrossRef van der Worp HB, Bar PR, Kappelle LJ, de Wildt DJ. Dietary vitamin E levels affect outcome of permanent focal cerebral ischemia in rats. Stroke. 1998;29(5):1002–5 discussion 5-6.PubMedCrossRef
120.
go back to reference Garcia-Estrada J, Gonzalez-Perez O, Gonzalez-Castaneda RE, Martinez-Contreras A, Luquin S, de la Mora PG, et al. An alpha-lipoic acid-vitamin E mixture reduces post-embolism lipid peroxidation, cerebral infarction, and neurological deficit in rats. Neurosci Res. 2003;47(2):219–24.PubMedCrossRef Garcia-Estrada J, Gonzalez-Perez O, Gonzalez-Castaneda RE, Martinez-Contreras A, Luquin S, de la Mora PG, et al. An alpha-lipoic acid-vitamin E mixture reduces post-embolism lipid peroxidation, cerebral infarction, and neurological deficit in rats. Neurosci Res. 2003;47(2):219–24.PubMedCrossRef
121.
go back to reference van der Worp HB, Thomas CE, Kappelle LJ, Hoffman WP, de Wildt DJ, Bar PR. Inhibition of iron-dependent and ischemia-induced brain damage by the alpha-tocopherol analogue MDL 74,722. Exp Neurol. 1999;155(1):103–8.PubMedCrossRef van der Worp HB, Thomas CE, Kappelle LJ, Hoffman WP, de Wildt DJ, Bar PR. Inhibition of iron-dependent and ischemia-induced brain damage by the alpha-tocopherol analogue MDL 74,722. Exp Neurol. 1999;155(1):103–8.PubMedCrossRef
122.
go back to reference Ascherio A, Rimm EB, Hernan MA, Giovannucci E, Kawachi I, Stampfer MJ, et al. Relation of consumption of vitamin E, vitamin C, and carotenoids to risk for stroke among men in the United States. Annals of internal medicine. 1999;130(12):963–70.PubMedCrossRef Ascherio A, Rimm EB, Hernan MA, Giovannucci E, Kawachi I, Stampfer MJ, et al. Relation of consumption of vitamin E, vitamin C, and carotenoids to risk for stroke among men in the United States. Annals of internal medicine. 1999;130(12):963–70.PubMedCrossRef
123.
go back to reference Rabadi MH, Kristal BS. Effect of vitamin C supplementation on stroke recovery: a case-control study. Clinical interventions in aging. 2007;2(1):147–51.PubMedPubMedCentralCrossRef Rabadi MH, Kristal BS. Effect of vitamin C supplementation on stroke recovery: a case-control study. Clinical interventions in aging. 2007;2(1):147–51.PubMedPubMedCentralCrossRef
124.
go back to reference Schürks M, Glynn RJ, Rist PM, Tzourio C, Kurth T. Effects of vitamin E on stroke subtypes: meta-analysis of randomised controlled trials. BMJ. 2010;341:c5702.PubMedPubMedCentralCrossRef Schürks M, Glynn RJ, Rist PM, Tzourio C, Kurth T. Effects of vitamin E on stroke subtypes: meta-analysis of randomised controlled trials. BMJ. 2010;341:c5702.PubMedPubMedCentralCrossRef
125.
go back to reference Kato N, Yanaka K, Nagase S, Hirayama A, Nose T. The antioxidant EPC-K1 ameliorates brain injury by inhibiting lipid peroxidation in a rat model of transient focal cerebral ischaemia. Acta neurochirurgica. 2003;145(6):489–93 discussion 93.PubMed Kato N, Yanaka K, Nagase S, Hirayama A, Nose T. The antioxidant EPC-K1 ameliorates brain injury by inhibiting lipid peroxidation in a rat model of transient focal cerebral ischaemia. Acta neurochirurgica. 2003;145(6):489–93 discussion 93.PubMed
126.
go back to reference Yamamoto S, Hagiwara S, Hidaka S, Shingu C, Goto K, Kashima K, et al. The antioxidant EPC-K1 attenuates renal ischemia-reperfusion injury in a rat model. American Journal of Nephrology. 2011;33(6):485–90.PubMedCrossRef Yamamoto S, Hagiwara S, Hidaka S, Shingu C, Goto K, Kashima K, et al. The antioxidant EPC-K1 attenuates renal ischemia-reperfusion injury in a rat model. American Journal of Nephrology. 2011;33(6):485–90.PubMedCrossRef
127.
go back to reference Antonic A, Dottori M, Macleod MR, Donnan GA, Howells DW. NXY-059, a failed stroke neuroprotectant, offers no protection to stem cell-derived human neurons. J Stroke Cerebrovasc Dis. 2018;27(8):2158–65.PubMedCrossRef Antonic A, Dottori M, Macleod MR, Donnan GA, Howells DW. NXY-059, a failed stroke neuroprotectant, offers no protection to stem cell-derived human neurons. J Stroke Cerebrovasc Dis. 2018;27(8):2158–65.PubMedCrossRef
128.
go back to reference van der Worp HB, Kappelle LJ, Algra A, Bär PR, Orgogozo JM, Ringelstein EB, et al. The effect of tirilazad mesylate on infarct volume of patients with acute ischemic stroke. Neurology. 2002;58(1):133–5.PubMedCrossRef van der Worp HB, Kappelle LJ, Algra A, Bär PR, Orgogozo JM, Ringelstein EB, et al. The effect of tirilazad mesylate on infarct volume of patients with acute ischemic stroke. Neurology. 2002;58(1):133–5.PubMedCrossRef
129.
go back to reference Watanabe K, Tanaka M, Yuki S, Hirai M, Yamamoto Y. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J Clin Biochem Nutr. 2018;62(1):20–38.PubMedCrossRef Watanabe K, Tanaka M, Yuki S, Hirai M, Yamamoto Y. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J Clin Biochem Nutr. 2018;62(1):20–38.PubMedCrossRef
130.
go back to reference Toyoda K, Fujii K, Kamouchi M, Nakane H, Arihiro S, Okada Y, et al. Free radical scavenger, edaravone, in stroke with internal carotid artery occlusion. J Neurol Sci. 2004;221(1-2):11–7.PubMedCrossRef Toyoda K, Fujii K, Kamouchi M, Nakane H, Arihiro S, Okada Y, et al. Free radical scavenger, edaravone, in stroke with internal carotid artery occlusion. J Neurol Sci. 2004;221(1-2):11–7.PubMedCrossRef
131.
go back to reference Clark WM. Efficacy of citicoline as an acute stroke treatment. Expert opinion on pharmacotherapy. 2009;10(5):839–46.PubMedCrossRef Clark WM. Efficacy of citicoline as an acute stroke treatment. Expert opinion on pharmacotherapy. 2009;10(5):839–46.PubMedCrossRef
133.
go back to reference Rajah GB, Ding Y. Experimental neuroprotection in ischemic stroke: a concise review. Neurosurgical focus. 2017;42(4):E2.PubMedCrossRef Rajah GB, Ding Y. Experimental neuroprotection in ischemic stroke: a concise review. Neurosurgical focus. 2017;42(4):E2.PubMedCrossRef
134.
135.
go back to reference Davalos A, Alvarez-Sabin J, Castillo J, Diez-Tejedor E, Ferro J, Martinez-Vila E, et al. Citicoline in the treatment of acute ischaemic stroke: an international, randomised, multicentre, placebo-controlled study (ICTUS trial). Lancet (London, England). 2012;380(9839):349–57.CrossRef Davalos A, Alvarez-Sabin J, Castillo J, Diez-Tejedor E, Ferro J, Martinez-Vila E, et al. Citicoline in the treatment of acute ischaemic stroke: an international, randomised, multicentre, placebo-controlled study (ICTUS trial). Lancet (London, England). 2012;380(9839):349–57.CrossRef
136.
go back to reference Secades JJ, Alvarez-Sabin J, Castillo J, Diez-Tejedor E, Martinez-Vila E, Rios J, et al. Citicoline for acute ischemic stroke: a systematic review and formal meta-analysis of randomized, double-blind, and placebo-controlled trials. J Stroke Cerebrovasc Dis. 2016;25(8):1984–96.PubMedCrossRef Secades JJ, Alvarez-Sabin J, Castillo J, Diez-Tejedor E, Martinez-Vila E, Rios J, et al. Citicoline for acute ischemic stroke: a systematic review and formal meta-analysis of randomized, double-blind, and placebo-controlled trials. J Stroke Cerebrovasc Dis. 2016;25(8):1984–96.PubMedCrossRef
137.
go back to reference Shi PY, Zhou XC, Yin XX, Xu LL, Zhang XM, Bai HY. Early application of citicoline in the treatment of acute stroke: a meta-analysis of randomized controlled trials. J Huazhong Univ Sci Technolog Med Sci. 2016;36(2):270–7.PubMedCrossRef Shi PY, Zhou XC, Yin XX, Xu LL, Zhang XM, Bai HY. Early application of citicoline in the treatment of acute stroke: a meta-analysis of randomized controlled trials. J Huazhong Univ Sci Technolog Med Sci. 2016;36(2):270–7.PubMedCrossRef
138.
go back to reference Overgaard K. The effects of citicoline on acute ischemic stroke: a review. J Stroke Cerebrovasc Dis. 2014;23(7):1764–9.PubMedCrossRef Overgaard K. The effects of citicoline on acute ischemic stroke: a review. J Stroke Cerebrovasc Dis. 2014;23(7):1764–9.PubMedCrossRef
139.
go back to reference Stolp HB. Neuropoietic cytokines in normal brain development and neurodevelopmental disorders. Molecular and cellular neurosciences. 2013;53:63–8.PubMedCrossRef Stolp HB. Neuropoietic cytokines in normal brain development and neurodevelopmental disorders. Molecular and cellular neurosciences. 2013;53:63–8.PubMedCrossRef
140.
go back to reference Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Translational Med. 2009;7(1):97.CrossRef Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Translational Med. 2009;7(1):97.CrossRef
142.
go back to reference Sairanen T, Carpén O, Karjalainen-Lindsberg M-L, Paetau A, Turpeinen U, Kaste M, et al. Evolution of cerebral tumor necrosis factor-α production during human ischemic stroke. Stroke. 2001;32(8):1750–8.PubMedCrossRef Sairanen T, Carpén O, Karjalainen-Lindsberg M-L, Paetau A, Turpeinen U, Kaste M, et al. Evolution of cerebral tumor necrosis factor-α production during human ischemic stroke. Stroke. 2001;32(8):1750–8.PubMedCrossRef
143.
go back to reference He H-Y, Ren L, Guo T, Deng Y-H. Neuronal autophagy aggravates microglial inflammatory injury by downregulating CX3CL1/fractalkine after ischemic stroke. Neural Regeneration Research. 2019;14(2):280–8.PubMedPubMedCentralCrossRef He H-Y, Ren L, Guo T, Deng Y-H. Neuronal autophagy aggravates microglial inflammatory injury by downregulating CX3CL1/fractalkine after ischemic stroke. Neural Regeneration Research. 2019;14(2):280–8.PubMedPubMedCentralCrossRef
144.
go back to reference Lai AY, Todd KG. Microglia in cerebral ischemia: molecular actions and interactions. Canadian journal of physiology and pharmacology. 2006;84(1):49–59.PubMedCrossRef Lai AY, Todd KG. Microglia in cerebral ischemia: molecular actions and interactions. Canadian journal of physiology and pharmacology. 2006;84(1):49–59.PubMedCrossRef
146.
go back to reference Yang C, Hawkins KE, Doré S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. American Journal of Physiology-Cell Physiology. 2019;316(2):C135–C53.PubMedCrossRef Yang C, Hawkins KE, Doré S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. American Journal of Physiology-Cell Physiology. 2019;316(2):C135–C53.PubMedCrossRef
147.
go back to reference Ramiro L, Simats A, García-Berrocoso T, Montaner J. Inflammatory molecules might become both biomarkers and therapeutic targets for stroke management. Therapeutic advances in neurological disorders. 2018;11:1756286418789340.PubMedPubMedCentralCrossRef Ramiro L, Simats A, García-Berrocoso T, Montaner J. Inflammatory molecules might become both biomarkers and therapeutic targets for stroke management. Therapeutic advances in neurological disorders. 2018;11:1756286418789340.PubMedPubMedCentralCrossRef
148.
go back to reference Dziewulska D, Mossakowski MJ. Cellular expression of tumor necrosis factor a and its receptors in human ischemic stroke. Clinical neuropathology. 2003;22(1):35–40.PubMed Dziewulska D, Mossakowski MJ. Cellular expression of tumor necrosis factor a and its receptors in human ischemic stroke. Clinical neuropathology. 2003;22(1):35–40.PubMed
149.
go back to reference Zaremba J, Losy J. Early TNF-alpha levels correlate with ischaemic stroke severity. Acta Neurol Scand. 2001;104(5):288–95.PubMedCrossRef Zaremba J, Losy J. Early TNF-alpha levels correlate with ischaemic stroke severity. Acta Neurol Scand. 2001;104(5):288–95.PubMedCrossRef
150.
go back to reference Sobowale OA, Parry-Jones AR, Smith CJ, Tyrrell PJ, Rothwell NJ, Allan SM. Interleukin-1 in stroke. Stroke. 2016;47(8):2160–7.PubMedCrossRef Sobowale OA, Parry-Jones AR, Smith CJ, Tyrrell PJ, Rothwell NJ, Allan SM. Interleukin-1 in stroke. Stroke. 2016;47(8):2160–7.PubMedCrossRef
151.
152.
go back to reference Ormstad H, Aass HCD, Lund-Sørensen N, Amthor K-F, Sandvik L. Erratum to: Serum levels of cytokines and C-reactive protein in acute ischemic stroke patients, and their relationship to stroke lateralization, type, and infarct volume. Journal of Neurology. 2012;259(2):400.CrossRef Ormstad H, Aass HCD, Lund-Sørensen N, Amthor K-F, Sandvik L. Erratum to: Serum levels of cytokines and C-reactive protein in acute ischemic stroke patients, and their relationship to stroke lateralization, type, and infarct volume. Journal of Neurology. 2012;259(2):400.CrossRef
153.
go back to reference Tarkowski E, Rosengren L, Blomstrand C, Wikkelso C, Jensen C, Ekholm S, et al. Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke. Stroke. 1995;26(8):1393–8.PubMedCrossRef Tarkowski E, Rosengren L, Blomstrand C, Wikkelso C, Jensen C, Ekholm S, et al. Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke. Stroke. 1995;26(8):1393–8.PubMedCrossRef
154.
go back to reference Waje-Andreassen U, Krakenes J, Ulvestad E, Thomassen L, Myhr KM, Aarseth J, et al. IL-6: an early marker for outcome in acute ischemic stroke. Acta Neurol Scand. 2005;111(6):360–5.PubMedCrossRef Waje-Andreassen U, Krakenes J, Ulvestad E, Thomassen L, Myhr KM, Aarseth J, et al. IL-6: an early marker for outcome in acute ischemic stroke. Acta Neurol Scand. 2005;111(6):360–5.PubMedCrossRef
155.
go back to reference Gredal H, Thomsen BB, Boza-Serrano A, Garosi L, Rusbridge C, Anthony D, et al. Interleukin-6 is increased in plasma and cerebrospinal fluid of community-dwelling domestic dogs with acute ischaemic stroke. Neuroreport. 2017;28(3):134–40.PubMedPubMedCentralCrossRef Gredal H, Thomsen BB, Boza-Serrano A, Garosi L, Rusbridge C, Anthony D, et al. Interleukin-6 is increased in plasma and cerebrospinal fluid of community-dwelling domestic dogs with acute ischaemic stroke. Neuroreport. 2017;28(3):134–40.PubMedPubMedCentralCrossRef
157.
go back to reference Cekanaviciute E, Fathali N, Doyle KP, Williams AM, Han J, Buckwalter MS. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia. 2014;62(8):1227–40.PubMedPubMedCentralCrossRef Cekanaviciute E, Fathali N, Doyle KP, Williams AM, Han J, Buckwalter MS. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia. 2014;62(8):1227–40.PubMedPubMedCentralCrossRef
158.
go back to reference Doll DN, Barr TL, Simpkins JW. Cytokines: their role in stroke and potential use as biomarkers and therapeutic targets. Aging and disease. 2014;5(5):294–306.PubMedPubMedCentral Doll DN, Barr TL, Simpkins JW. Cytokines: their role in stroke and potential use as biomarkers and therapeutic targets. Aging and disease. 2014;5(5):294–306.PubMedPubMedCentral
161.
go back to reference Murphy PM. Chemokines and chemokine receptors. Clinical Immunology: Elsevier. 2019;e1:157–70. Murphy PM. Chemokines and chemokine receptors. Clinical Immunology: Elsevier. 2019;e1:157–70.
163.
go back to reference Mennicken F, Maki R, de Souza EB, Quirion R. Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trends in pharmacological sciences. 1999;20(2):73–8.PubMedCrossRef Mennicken F, Maki R, de Souza EB, Quirion R. Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trends in pharmacological sciences. 1999;20(2):73–8.PubMedCrossRef
164.
go back to reference Bacon KB, Harrison JK. Chemokines and their receptors in neurobiology: perspectives in physiology and homeostasis. Journal of neuroimmunology. 2000;104(1):92–7.PubMedCrossRef Bacon KB, Harrison JK. Chemokines and their receptors in neurobiology: perspectives in physiology and homeostasis. Journal of neuroimmunology. 2000;104(1):92–7.PubMedCrossRef
165.
go back to reference Vidale S, Consoli A, Arnaboldi M, Consoli D. Postischemic Inflammation in Acute Stroke. Journal of clinical neurology (Seoul, Korea). 2017;13(1):1–9.CrossRef Vidale S, Consoli A, Arnaboldi M, Consoli D. Postischemic Inflammation in Acute Stroke. Journal of clinical neurology (Seoul, Korea). 2017;13(1):1–9.CrossRef
166.
go back to reference Brait VH, Rivera J, Broughton BR, Lee S, Drummond GR, Sobey CG. Chemokine-related gene expression in the brain following ischemic stroke: no role for CXCR2 in outcome. Brain research. 2011;1372:169–79.PubMedCrossRef Brait VH, Rivera J, Broughton BR, Lee S, Drummond GR, Sobey CG. Chemokine-related gene expression in the brain following ischemic stroke: no role for CXCR2 in outcome. Brain research. 2011;1372:169–79.PubMedCrossRef
167.
go back to reference Hughes PM, Allegrini PR, Rudin M, Perry VH, Mir AK, Wiessner C. Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb Blood Flow Metab. 2002;22(3):308–17.PubMedCrossRef Hughes PM, Allegrini PR, Rudin M, Perry VH, Mir AK, Wiessner C. Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb Blood Flow Metab. 2002;22(3):308–17.PubMedCrossRef
168.
go back to reference Fang W, Zhai X, Han D, Xiong X, Wang T, Zeng X, et al. CCR2-dependent monocytes/macrophages exacerbate acute brain injury but promote functional recovery after ischemic stroke in mice. Theranostics. 2018;8(13):3530–43.PubMedPubMedCentralCrossRef Fang W, Zhai X, Han D, Xiong X, Wang T, Zeng X, et al. CCR2-dependent monocytes/macrophages exacerbate acute brain injury but promote functional recovery after ischemic stroke in mice. Theranostics. 2018;8(13):3530–43.PubMedPubMedCentralCrossRef
169.
go back to reference Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV. Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke. 2007;38(4):1345–53.PubMedCrossRef Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV. Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke. 2007;38(4):1345–53.PubMedCrossRef
170.
go back to reference Guo YQ, Zheng LN, Wei JF, Hou XL, Yu SZ, Zhang WW, et al. Expression of CCL2 and CCR2 in the hippocampus and the interventional roles of propofol in rat cerebral ischemia/reperfusion. Experimental and therapeutic medicine. 2014;8(2):657–61.PubMedPubMedCentralCrossRef Guo YQ, Zheng LN, Wei JF, Hou XL, Yu SZ, Zhang WW, et al. Expression of CCL2 and CCR2 in the hippocampus and the interventional roles of propofol in rat cerebral ischemia/reperfusion. Experimental and therapeutic medicine. 2014;8(2):657–61.PubMedPubMedCentralCrossRef
171.
go back to reference García-Berrocoso T, Giralt D, Llombart V, Bustamante A, Penalba A, Flores A, et al. Chemokines after human ischemic stroke: From neurovascular unit to blood using protein arrays. Translational Proteomics. 2014;3:1–9.CrossRef García-Berrocoso T, Giralt D, Llombart V, Bustamante A, Penalba A, Flores A, et al. Chemokines after human ischemic stroke: From neurovascular unit to blood using protein arrays. Translational Proteomics. 2014;3:1–9.CrossRef
172.
go back to reference Hammond MD, Taylor RA, Mullen MT, Ai Y, Aguila HL, Mack M, et al. CCR2+ Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J Neurosci. 2014;34(11):3901–9.PubMedPubMedCentralCrossRef Hammond MD, Taylor RA, Mullen MT, Ai Y, Aguila HL, Mack M, et al. CCR2+ Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J Neurosci. 2014;34(11):3901–9.PubMedPubMedCentralCrossRef
173.
go back to reference Wattananit S, Tornero D, Graubardt N, Memanishvili T, Monni E, Tatarishvili J, et al. Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice. J Neurosci. 2016;36(15):4182–95.PubMedCrossRefPubMedCentral Wattananit S, Tornero D, Graubardt N, Memanishvili T, Monni E, Tatarishvili J, et al. Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice. J Neurosci. 2016;36(15):4182–95.PubMedCrossRefPubMedCentral
174.
go back to reference Greenhalgh AD, Zarruk JG, Healy LM, Baskar Jesudasan SJ, Jhelum P, Salmon CK, et al. Peripherally derived macrophages modulate microglial function to reduce inflammation after CNS injury. PLoS biology. 2018;16(10):e2005264.PubMedPubMedCentralCrossRef Greenhalgh AD, Zarruk JG, Healy LM, Baskar Jesudasan SJ, Jhelum P, Salmon CK, et al. Peripherally derived macrophages modulate microglial function to reduce inflammation after CNS injury. PLoS biology. 2018;16(10):e2005264.PubMedPubMedCentralCrossRef
175.
go back to reference Gliem M, Mausberg AK, Lee JI, Simiantonakis I, van Rooijen N, Hartung HP, et al. Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Annals of neurology. 2012;71(6):743–52.PubMedCrossRef Gliem M, Mausberg AK, Lee JI, Simiantonakis I, van Rooijen N, Hartung HP, et al. Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Annals of neurology. 2012;71(6):743–52.PubMedCrossRef
176.
go back to reference Terao Y, Ohta H, Oda A, Nakagaito Y, Kiyota Y, Shintani Y. Macrophage inflammatory protein-3alpha plays a key role in the inflammatory cascade in rat focal cerebral ischemia. Neuroscience research. 2009;64(1):75–82.PubMedCrossRef Terao Y, Ohta H, Oda A, Nakagaito Y, Kiyota Y, Shintani Y. Macrophage inflammatory protein-3alpha plays a key role in the inflammatory cascade in rat focal cerebral ischemia. Neuroscience research. 2009;64(1):75–82.PubMedCrossRef
177.
go back to reference Liu X, Liu J, Zhao S, Zhang H, Cai W, Cai M, et al. Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke. 2016;47(2):498–504.PubMedPubMedCentralCrossRef Liu X, Liu J, Zhao S, Zhang H, Cai W, Cai M, et al. Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke. 2016;47(2):498–504.PubMedPubMedCentralCrossRef
178.
go back to reference Bajetto A, Bonavia R, Barbero S, Florio T, Schettini G. Chemokines and their receptors in the central nervous system. Frontiers in neuroendocrinology. 2001;22(3):147–84.PubMedCrossRef Bajetto A, Bonavia R, Barbero S, Florio T, Schettini G. Chemokines and their receptors in the central nervous system. Frontiers in neuroendocrinology. 2001;22(3):147–84.PubMedCrossRef
179.
180.
go back to reference Leick M, Azcutia V, Newton G, Luscinskas FW. Leukocyte recruitment in inflammation: basic concepts and new mechanistic insights based on new models and microscopic imaging technologies. Cell and tissue research. 2014;355(3):647–56.PubMedPubMedCentralCrossRef Leick M, Azcutia V, Newton G, Luscinskas FW. Leukocyte recruitment in inflammation: basic concepts and new mechanistic insights based on new models and microscopic imaging technologies. Cell and tissue research. 2014;355(3):647–56.PubMedPubMedCentralCrossRef
181.
go back to reference Chen Y, Hallenbeck JM, Ruetzler C, Bol D, Thomas K, Berman NE, et al. Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. J Cereb Blood Flow Metab. 2003;23(6):748–55.CrossRefPubMed Chen Y, Hallenbeck JM, Ruetzler C, Bol D, Thomas K, Berman NE, et al. Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. J Cereb Blood Flow Metab. 2003;23(6):748–55.CrossRefPubMed
182.
go back to reference Kim JS, Gautam SC, Chopp M, Zaloga C, Jones ML, Ward PA, et al. Expression of monocyte chemoattractant protein-1 and macrophage inflammatory protein-1 after focal cerebral ischemia in the rat. Journal of neuroimmunology. 1995;56(2):127–34.PubMedCrossRef Kim JS, Gautam SC, Chopp M, Zaloga C, Jones ML, Ward PA, et al. Expression of monocyte chemoattractant protein-1 and macrophage inflammatory protein-1 after focal cerebral ischemia in the rat. Journal of neuroimmunology. 1995;56(2):127–34.PubMedCrossRef
183.
go back to reference Chu HX, Arumugam TV, Gelderblom M, Magnus T, Drummond GR, Sobey CG. Role of CCR2 in inflammatory conditions of the central nervous system. J Cereb Blood Flow Metab. 2014;34(9):1425–9.PubMedPubMedCentralCrossRef Chu HX, Arumugam TV, Gelderblom M, Magnus T, Drummond GR, Sobey CG. Role of CCR2 in inflammatory conditions of the central nervous system. J Cereb Blood Flow Metab. 2014;34(9):1425–9.PubMedPubMedCentralCrossRef
184.
go back to reference Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, Van Rooijen N, et al. Monocyte chemoattractant protein-1 regulation of blood–brain barrier permeability. J Cereb Blood Flow Metab. 2005;25(5):593–606.PubMedCrossRef Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, Van Rooijen N, et al. Monocyte chemoattractant protein-1 regulation of blood–brain barrier permeability. J Cereb Blood Flow Metab. 2005;25(5):593–606.PubMedCrossRef
185.
go back to reference Barone FC, Feuerstein GZ. Inflammatory mediators and stroke: new opportunities for novel therapeutics. Journal of Cerebral Blood Flow & Metabolism. 1999;19(8):819–34.CrossRef Barone FC, Feuerstein GZ. Inflammatory mediators and stroke: new opportunities for novel therapeutics. Journal of Cerebral Blood Flow & Metabolism. 1999;19(8):819–34.CrossRef
187.
go back to reference Mázala DA, Grange RW, Chin ER. The role of proteases in excitation-contraction coupling failure in muscular dystrophy. Am J Physiol Cell Physiol. 2015;308(1):C33–40.PubMedCrossRef Mázala DA, Grange RW, Chin ER. The role of proteases in excitation-contraction coupling failure in muscular dystrophy. Am J Physiol Cell Physiol. 2015;308(1):C33–40.PubMedCrossRef
189.
go back to reference Tymianski M, Charlton MP, Carlen PL, Tator CH. Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci. 1993;13(5):2085–104.PubMedCrossRefPubMedCentral Tymianski M, Charlton MP, Carlen PL, Tator CH. Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci. 1993;13(5):2085–104.PubMedCrossRefPubMedCentral
190.
go back to reference Sattler R, Tymianski M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Molecular neurobiology. 2001;24(1-3):107–29.PubMedCrossRef Sattler R, Tymianski M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Molecular neurobiology. 2001;24(1-3):107–29.PubMedCrossRef
191.
go back to reference Xu J, Kurup P, Zhang Y, Goebel-Goody SM, Wu PH, Hawasli AH, et al. Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci. 2009;29(29):9330–43.PubMedPubMedCentralCrossRef Xu J, Kurup P, Zhang Y, Goebel-Goody SM, Wu PH, Hawasli AH, et al. Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci. 2009;29(29):9330–43.PubMedPubMedCentralCrossRef
192.
go back to reference Casas AI, Kleikers PWM, Geuss E, Langhauser F, Egea J, Lopez MG, et al. Calcium-dependent reactive oxygen formation and blood-brain barrier breakdown by NOX5 limits post-reperfusion outcome in stroke. bioRxiv. 2018:359893. https://doi.org/10.1101/359893 Casas AI, Kleikers PWM, Geuss E, Langhauser F, Egea J, Lopez MG, et al. Calcium-dependent reactive oxygen formation and blood-brain barrier breakdown by NOX5 limits post-reperfusion outcome in stroke. bioRxiv. 2018:359893. https://​doi.​org/​10.​1101/​359893
193.
194.
go back to reference Zhu J, Xu S, Li S, Yang X, Yu X, Zhang X. Up-regulation of GluN2A-containing NMDA receptor protects cultured cortical neuron cells from oxidative stress. Heliyon. 2018;4(11):e00976-e.CrossRef Zhu J, Xu S, Li S, Yang X, Yu X, Zhang X. Up-regulation of GluN2A-containing NMDA receptor protects cultured cortical neuron cells from oxidative stress. Heliyon. 2018;4(11):e00976-e.CrossRef
196.
go back to reference Zhou L, Li F, Xu HB, Luo CX, Wu HY, Zhu MM, et al. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med. 2010;16(12):1439–43.PubMedCrossRef Zhou L, Li F, Xu HB, Luo CX, Wu HY, Zhu MM, et al. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med. 2010;16(12):1439–43.PubMedCrossRef
197.
198.
go back to reference Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, Tymianski M. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science (New York, NY). 1999;284(5421):1845–8.CrossRef Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, Tymianski M. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science (New York, NY). 1999;284(5421):1845–8.CrossRef
199.
go back to reference Cook DJ, Teves L, Tymianski M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature. 2012;483(7388):213–7.PubMedCrossRef Cook DJ, Teves L, Tymianski M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature. 2012;483(7388):213–7.PubMedCrossRef
200.
go back to reference Chen Y, Brennan-Minnella AM, Sheth S, El-Benna J, Swanson RA. Tat-NR2B9c prevents excitotoxic neuronal superoxide production. J Cereb Blood Flow Metab. 2015;35(5):739–42.PubMedPubMedCentralCrossRef Chen Y, Brennan-Minnella AM, Sheth S, El-Benna J, Swanson RA. Tat-NR2B9c prevents excitotoxic neuronal superoxide production. J Cereb Blood Flow Metab. 2015;35(5):739–42.PubMedPubMedCentralCrossRef
201.
go back to reference Teves LM, Cui H, Tymianski M. Efficacy of the PSD95 inhibitor Tat-NR2B9c in mice requires dose translation between species. J Cereb Blood Flow Metab. 2016;36(3):555–61.PubMedCrossRef Teves LM, Cui H, Tymianski M. Efficacy of the PSD95 inhibitor Tat-NR2B9c in mice requires dose translation between species. J Cereb Blood Flow Metab. 2016;36(3):555–61.PubMedCrossRef
202.
go back to reference Hill MD, Martin RH, Mikulis D, Wong JH, Silver FL, Terbrugge KG, et al. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): a phase 2, randomised, double-blind, placebo-controlled trial. The Lancet Neurology. 2012;11(11):942–50.PubMedCrossRef Hill MD, Martin RH, Mikulis D, Wong JH, Silver FL, Terbrugge KG, et al. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): a phase 2, randomised, double-blind, placebo-controlled trial. The Lancet Neurology. 2012;11(11):942–50.PubMedCrossRef
203.
go back to reference Luo C-X, Lin Y-H, Qian X-D, Tang Y, Zhou H-H, Jin X, et al. Interaction of nNOS with PSD-95 negatively controls regenerative repair after stroke. The Journal of Neuroscience. 2014;34(40):13535–48.PubMedCrossRefPubMedCentral Luo C-X, Lin Y-H, Qian X-D, Tang Y, Zhou H-H, Jin X, et al. Interaction of nNOS with PSD-95 negatively controls regenerative repair after stroke. The Journal of Neuroscience. 2014;34(40):13535–48.PubMedCrossRefPubMedCentral
204.
go back to reference Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Progress in Neurobiology. 2014;115:157–88.PubMedCrossRef Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Progress in Neurobiology. 2014;115:157–88.PubMedCrossRef
205.
go back to reference Bach A, Pedersen SW, Dorr LA, Vallon G, Ripoche I, Ducki S, et al. Biochemical investigations of the mechanism of action of small molecules ZL006 and IC87201 as potential inhibitors of the nNOS-PDZ/PSD-95-PDZ interactions. Scientific Reports. 2015;5:12157.PubMedPubMedCentralCrossRef Bach A, Pedersen SW, Dorr LA, Vallon G, Ripoche I, Ducki S, et al. Biochemical investigations of the mechanism of action of small molecules ZL006 and IC87201 as potential inhibitors of the nNOS-PDZ/PSD-95-PDZ interactions. Scientific Reports. 2015;5:12157.PubMedPubMedCentralCrossRef
206.
go back to reference Hong JM, Choi MH, Sohn S-I, Hwang Y-H, Ahn SH, Lee Y-B, et al. Safety and optimal neuroprotection of neu2000 in acute ischemic stroke with reCanalization: study protocol for a randomized, double-blinded, placebo-controlled, phase-II trial. Trials. 2018;19(1):375.PubMedPubMedCentralCrossRef Hong JM, Choi MH, Sohn S-I, Hwang Y-H, Ahn SH, Lee Y-B, et al. Safety and optimal neuroprotection of neu2000 in acute ischemic stroke with reCanalization: study protocol for a randomized, double-blinded, placebo-controlled, phase-II trial. Trials. 2018;19(1):375.PubMedPubMedCentralCrossRef
207.
go back to reference Cho SI, Park UJ, Chung JM, Gwag BJ. Neu2000, an NR2B-selective, moderate NMDA receptor antagonist and potent spin trapping molecule for stroke. Drug news & perspectives. 2010;23(9):549–56.CrossRef Cho SI, Park UJ, Chung JM, Gwag BJ. Neu2000, an NR2B-selective, moderate NMDA receptor antagonist and potent spin trapping molecule for stroke. Drug news & perspectives. 2010;23(9):549–56.CrossRef
208.
209.
go back to reference Taylor DL, Jones F, Kubota ESCS, Pocock JM. Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor α-induced neurotoxicity in concert with microglial-derived Fas ligand. Journal of Neuroscience. 2005;25(11):2952–64.PubMedCrossRef Taylor DL, Jones F, Kubota ESCS, Pocock JM. Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor α-induced neurotoxicity in concert with microglial-derived Fas ligand. Journal of Neuroscience. 2005;25(11):2952–64.PubMedCrossRef
210.
go back to reference Tan HK, Heywood D, Ralph GS, Bienemann A, Baker AH, Uney JB. Tissue inhibitor of metalloproteinase 1 inhibits excitotoxic cell death in neurons. Molecular and Cellular Neuroscience. 2003;22(1):98–106.PubMedCrossRef Tan HK, Heywood D, Ralph GS, Bienemann A, Baker AH, Uney JB. Tissue inhibitor of metalloproteinase 1 inhibits excitotoxic cell death in neurons. Molecular and Cellular Neuroscience. 2003;22(1):98–106.PubMedCrossRef
211.
go back to reference Vandooren J, Van Damme J, Opdenakker G. On the structure and functions of gelatinase B/matrix metalloproteinase-9 in neuroinflammation. Progress in brain research. 2014;214: Elsevier:193–206.PubMedCrossRef Vandooren J, Van Damme J, Opdenakker G. On the structure and functions of gelatinase B/matrix metalloproteinase-9 in neuroinflammation. Progress in brain research. 2014;214: Elsevier:193–206.PubMedCrossRef
212.
go back to reference Morancho A, Rosell A, García-Bonilla L, Montaner J. Metalloproteinase and stroke infarct size: role for anti-inflammatory treatment? Annals of the New York Academy of Sciences. 2010;1207(1):123–33.PubMedCrossRef Morancho A, Rosell A, García-Bonilla L, Montaner J. Metalloproteinase and stroke infarct size: role for anti-inflammatory treatment? Annals of the New York Academy of Sciences. 2010;1207(1):123–33.PubMedCrossRef
213.
go back to reference Park KP, Rosell A, Foerch C, Xing C, Kim WJ, Lee S, et al. Plasma and brain matrix metalloproteinase-9 after acute focal cerebral ischemia in rats. Stroke. 2009;40(8):2836–42.PubMedPubMedCentralCrossRef Park KP, Rosell A, Foerch C, Xing C, Kim WJ, Lee S, et al. Plasma and brain matrix metalloproteinase-9 after acute focal cerebral ischemia in rats. Stroke. 2009;40(8):2836–42.PubMedPubMedCentralCrossRef
214.
215.
go back to reference Gasche Y, Soccal PM, Kanemitsu M, Copin J-C. Matrix metalloproteinases and diseases of the central nervous system with a special emphasis on ischemic brain. Front Biosci. 2006;11(5):1289–301.PubMedCrossRef Gasche Y, Soccal PM, Kanemitsu M, Copin J-C. Matrix metalloproteinases and diseases of the central nervous system with a special emphasis on ischemic brain. Front Biosci. 2006;11(5):1289–301.PubMedCrossRef
216.
go back to reference Golab P, Kielbus M, Bielewicz J, Kurzepa J. The effect of recombinant tissue plasminogen activator on MMP-2 and MMP-9 activities in vitro. Neurological research. 2015;37(1):9–13.PubMedCrossRef Golab P, Kielbus M, Bielewicz J, Kurzepa J. The effect of recombinant tissue plasminogen activator on MMP-2 and MMP-9 activities in vitro. Neurological research. 2015;37(1):9–13.PubMedCrossRef
217.
go back to reference Rosenberg G, Estrada E, Dencoff J. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke. 1998;29(10):2189–95.PubMedCrossRef Rosenberg G, Estrada E, Dencoff J. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke. 1998;29(10):2189–95.PubMedCrossRef
218.
go back to reference Kurzepa J, Kurzepa J, Golab P, Czerska S, Bielewicz J. The significance of matrix metalloproteinase (MMP)-2 and MMP-9 in the ischemic stroke. Int J Neurosci. 2014;124(10):707–16.PubMedCrossRef Kurzepa J, Kurzepa J, Golab P, Czerska S, Bielewicz J. The significance of matrix metalloproteinase (MMP)-2 and MMP-9 in the ischemic stroke. Int J Neurosci. 2014;124(10):707–16.PubMedCrossRef
219.
go back to reference Lenglet S, Montecucco F, Mach F, Schaller K, Gasche Y, Copin J-C. Analysis of the expression of nine secreted matrix metalloproteinases and their endogenous inhibitors in the brain of mice subjected to ischaemic stroke. Thrombosis and haemostasis. 2014;112(02):363–78.PubMedCrossRef Lenglet S, Montecucco F, Mach F, Schaller K, Gasche Y, Copin J-C. Analysis of the expression of nine secreted matrix metalloproteinases and their endogenous inhibitors in the brain of mice subjected to ischaemic stroke. Thrombosis and haemostasis. 2014;112(02):363–78.PubMedCrossRef
220.
go back to reference Cuadrado E, Rosell A, Borrell-Pagès M, García-Bonilla L, Hernández-Guillamon M, Ortega-Aznar A, et al. Matrix metalloproteinase-13 is activated and is found in the nucleus of neural cells after cerebral ischemia. Journal of Cerebral Blood Flow & Metabolism. 2009;29(2):398–410.CrossRef Cuadrado E, Rosell A, Borrell-Pagès M, García-Bonilla L, Hernández-Guillamon M, Ortega-Aznar A, et al. Matrix metalloproteinase-13 is activated and is found in the nucleus of neural cells after cerebral ischemia. Journal of Cerebral Blood Flow & Metabolism. 2009;29(2):398–410.CrossRef
221.
go back to reference Amantea D, Certo M, Russo R, Bagetta G, Corasaniti MT, Tassorelli C. Early reperfusion injury is associated to MMP2 and IL-1β elevation in cortical neurons of rats subjected to middle cerebral artery occlusion. Neuroscience. 2014;277:755–63.PubMedCrossRef Amantea D, Certo M, Russo R, Bagetta G, Corasaniti MT, Tassorelli C. Early reperfusion injury is associated to MMP2 and IL-1β elevation in cortical neurons of rats subjected to middle cerebral artery occlusion. Neuroscience. 2014;277:755–63.PubMedCrossRef
222.
go back to reference Orbe J, Barrenetxe J, Rodriguez JA, Vivien D, Orset C, Parks W, et al. Matrix metalloproteinase-10 effectively reduces infarct size in experimental stroke by enhancing fibrinolysis via a thrombin-activatable fibrinolysis inhibitor–mediated mechanism. Circulation. 2011:CIRCULATIONAHA. 111.047100. Orbe J, Barrenetxe J, Rodriguez JA, Vivien D, Orset C, Parks W, et al. Matrix metalloproteinase-10 effectively reduces infarct size in experimental stroke by enhancing fibrinolysis via a thrombin-activatable fibrinolysis inhibitor–mediated mechanism. Circulation. 2011:CIRCULATIONAHA. 111.047100.
223.
go back to reference Dang B, Duan X, Wang Z, He W, Chen G. A therapeutic target of cerebral hemorrhagic stroke: matrix metalloproteinase- 9. Current drug targets. 2017;18(12):1358–66.PubMedCrossRef Dang B, Duan X, Wang Z, He W, Chen G. A therapeutic target of cerebral hemorrhagic stroke: matrix metalloproteinase- 9. Current drug targets. 2017;18(12):1358–66.PubMedCrossRef
224.
go back to reference Montaner J, Alvarez-Sabín J, Molina C, Anglés A, Abilleira S, Arenillas J, et al. Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke. 2001;32(8):1759–66.PubMedCrossRef Montaner J, Alvarez-Sabín J, Molina C, Anglés A, Abilleira S, Arenillas J, et al. Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke. 2001;32(8):1759–66.PubMedCrossRef
225.
go back to reference Ma F, Rodriguez S, Buxo X, Morancho A, Riba-Llena I, Carrera A, et al. Plasma matrix metalloproteinases in patients with stroke during intensive rehabilitation therapy. Archives of physical medicine and rehabilitation. 2016;97(11):1832–40.PubMedCrossRef Ma F, Rodriguez S, Buxo X, Morancho A, Riba-Llena I, Carrera A, et al. Plasma matrix metalloproteinases in patients with stroke during intensive rehabilitation therapy. Archives of physical medicine and rehabilitation. 2016;97(11):1832–40.PubMedCrossRef
226.
go back to reference Abdelnaseer MM, Elfauomy NM, Esmail EH, Kamal MM, Elsawy EH. Matrix metalloproteinase-9 and recovery of acute ischemic stroke. Journal of Stroke and Cerebrovascular Diseases. 2017;26(4):733–40.PubMedCrossRef Abdelnaseer MM, Elfauomy NM, Esmail EH, Kamal MM, Elsawy EH. Matrix metalloproteinase-9 and recovery of acute ischemic stroke. Journal of Stroke and Cerebrovascular Diseases. 2017;26(4):733–40.PubMedCrossRef
227.
go back to reference Steenport M, Khan KM, Du B, Barnhard SE, Dannenberg AJ, Falcone DJ. Matrix metalloproteinase (MMP)-1 and MMP-3 induce macrophage MMP-9: evidence for the role of TNF-alpha and cyclooxygenase-2. Journal of immunology (Baltimore, Md : 1950). 2009;183(12):8119–27.CrossRef Steenport M, Khan KM, Du B, Barnhard SE, Dannenberg AJ, Falcone DJ. Matrix metalloproteinase (MMP)-1 and MMP-3 induce macrophage MMP-9: evidence for the role of TNF-alpha and cyclooxygenase-2. Journal of immunology (Baltimore, Md : 1950). 2009;183(12):8119–27.CrossRef
228.
go back to reference Stanimirovic D, Satoh K. Inflammatory mediators of cerebral endothelium: a role in ischemic brain inflammation. Brain Pathology. 2000;10(1):113–26.PubMedCrossRef Stanimirovic D, Satoh K. Inflammatory mediators of cerebral endothelium: a role in ischemic brain inflammation. Brain Pathology. 2000;10(1):113–26.PubMedCrossRef
229.
go back to reference Tabuchi S, Uozumi N, Ishii S, Shimizu Y, Watanabe T, Shimizu T. Mice deficient in cytosolic phospholipase A2 are less susceptible to cerebral ischemia/reperfusion injury. Vienna: Springer Vienna; 2003.CrossRef Tabuchi S, Uozumi N, Ishii S, Shimizu Y, Watanabe T, Shimizu T. Mice deficient in cytosolic phospholipase A2 are less susceptible to cerebral ischemia/reperfusion injury. Vienna: Springer Vienna; 2003.CrossRef
231.
go back to reference Iadecola C, Sugimoto K, Niwa K, Kazama K, Ross ME. Increased susceptibility to ischemic brain injury in cyclooxygenase-1–deficient mice. J Cereb Blood Flow Metab. 2001;21(12):1436–41.PubMedCrossRef Iadecola C, Sugimoto K, Niwa K, Kazama K, Ross ME. Increased susceptibility to ischemic brain injury in cyclooxygenase-1–deficient mice. J Cereb Blood Flow Metab. 2001;21(12):1436–41.PubMedCrossRef
232.
go back to reference Candelario-Jalil E, González-Falcón A, García-Cabrera M, Álvarez D, Al-Dalain S, Martínez G, et al. Assessment of the relative contribution of COX-1 and COX-2 isoforms to ischemia-induced oxidative damage and neurodegeneration following transient global cerebral ischemia. Journal of neurochemistry. 2003;86(3):545–55.PubMedPubMedCentralCrossRef Candelario-Jalil E, González-Falcón A, García-Cabrera M, Álvarez D, Al-Dalain S, Martínez G, et al. Assessment of the relative contribution of COX-1 and COX-2 isoforms to ischemia-induced oxidative damage and neurodegeneration following transient global cerebral ischemia. Journal of neurochemistry. 2003;86(3):545–55.PubMedPubMedCentralCrossRef
233.
go back to reference Chen C, Bazan NG. Lipid signaling: sleep, synaptic plasticity, and neuroprotection. Prostaglandins & other lipid mediators. 2005;77(1-4):65–76.CrossRef Chen C, Bazan NG. Lipid signaling: sleep, synaptic plasticity, and neuroprotection. Prostaglandins & other lipid mediators. 2005;77(1-4):65–76.CrossRef
234.
go back to reference Niwa K, Araki E, Morham SG, Ross ME, Iadecola C. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. Journal of Neuroscience. 2000;20(2):763–70.PubMedCrossRef Niwa K, Araki E, Morham SG, Ross ME, Iadecola C. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. Journal of Neuroscience. 2000;20(2):763–70.PubMedCrossRef
235.
go back to reference Minghetti L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. Journal of Neuropathology & Experimental Neurology. 2004;63(9):901–10.CrossRef Minghetti L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. Journal of Neuropathology & Experimental Neurology. 2004;63(9):901–10.CrossRef
236.
go back to reference Nogawa S, Zhang F, Ross ME, Iadecola C. Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. Journal of Neuroscience. 1997;17(8):2746–55.PubMedCrossRef Nogawa S, Zhang F, Ross ME, Iadecola C. Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. Journal of Neuroscience. 1997;17(8):2746–55.PubMedCrossRef
237.
go back to reference Iadecola C, Forster C, Nogawa S, Clark HB, Ross ME. Cyclooxygenase-2 immunoreactivity in the human brain following cerebral ischemia. Acta neuropathologica. 1999;98(1):9–14.PubMedCrossRef Iadecola C, Forster C, Nogawa S, Clark HB, Ross ME. Cyclooxygenase-2 immunoreactivity in the human brain following cerebral ischemia. Acta neuropathologica. 1999;98(1):9–14.PubMedCrossRef
238.
go back to reference Sairanen T, Ristimäki A, Karjalainen-Lindsberg ML, Paetau A, Kaste M, Lindsberg PJ. Cyclooxygenase-2 is induced globally in infarcted human brain. Annals of neurology. 1998;43(6):738–47.PubMedCrossRef Sairanen T, Ristimäki A, Karjalainen-Lindsberg ML, Paetau A, Kaste M, Lindsberg PJ. Cyclooxygenase-2 is induced globally in infarcted human brain. Annals of neurology. 1998;43(6):738–47.PubMedCrossRef
239.
go back to reference Topol EJ. Failing the public health—rofecoxib, Merck, and the FDA. New England Journal of Medicine. 2004;351(17):1707–9.CrossRef Topol EJ. Failing the public health—rofecoxib, Merck, and the FDA. New England Journal of Medicine. 2004;351(17):1707–9.CrossRef
240.
go back to reference Kawano T, Anrather J, Zhou P, Park L, Wang G, Frys KA, et al. Prostaglandin E 2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nature medicine. 2006;12(2):225.PubMedCrossRef Kawano T, Anrather J, Zhou P, Park L, Wang G, Frys KA, et al. Prostaglandin E 2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nature medicine. 2006;12(2):225.PubMedCrossRef
241.
go back to reference Hata AN, Breyer RM. Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacology & therapeutics. 2004;103(2):147–66.CrossRef Hata AN, Breyer RM. Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacology & therapeutics. 2004;103(2):147–66.CrossRef
242.
go back to reference Ahmad AS, Saleem S, Ahmad M, Doré S. Prostaglandin EP1 receptor contributes to excitotoxicity and focal ischemic brain damage. Toxicological Sciences. 2005;89(1):265–70.PubMedCrossRef Ahmad AS, Saleem S, Ahmad M, Doré S. Prostaglandin EP1 receptor contributes to excitotoxicity and focal ischemic brain damage. Toxicological Sciences. 2005;89(1):265–70.PubMedCrossRef
243.
go back to reference Zhou P, Qian L, Chou T, Iadecola C. Neuroprotection by PGE2 receptor EP1 inhibition involves the PTEN/AKT pathway. Neurobiology of disease. 2008;29(3):543–51.PubMedCrossRef Zhou P, Qian L, Chou T, Iadecola C. Neuroprotection by PGE2 receptor EP1 inhibition involves the PTEN/AKT pathway. Neurobiology of disease. 2008;29(3):543–51.PubMedCrossRef
244.
go back to reference Baeuerle PA, Henkel T. Function and activation of NF-kappaB in the immune system. Annual review of immunology. 1994;12(1):141–79.PubMedCrossRef Baeuerle PA, Henkel T. Function and activation of NF-kappaB in the immune system. Annual review of immunology. 1994;12(1):141–79.PubMedCrossRef
245.
go back to reference Khan M, Jatana M, Elango C, Paintlia AS, Singh AK, Singh I. Cerebrovascular protection by various nitric oxide donors in rats after experimental stroke. Nitric oxide. 2006;15(2):114–24.PubMedCrossRef Khan M, Jatana M, Elango C, Paintlia AS, Singh AK, Singh I. Cerebrovascular protection by various nitric oxide donors in rats after experimental stroke. Nitric oxide. 2006;15(2):114–24.PubMedCrossRef
247.
go back to reference Herrmann O, Baumann B, de Lorenzi R, Muhammad S, Zhang W, Kleesiek J, et al. IKK mediates ischemia-induced neuronal death. Nat Med. 2005;11(12):1322–9.PubMedCrossRef Herrmann O, Baumann B, de Lorenzi R, Muhammad S, Zhang W, Kleesiek J, et al. IKK mediates ischemia-induced neuronal death. Nat Med. 2005;11(12):1322–9.PubMedCrossRef
249.
go back to reference Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update. Archives of toxicology. 2015;89(6):867–82.PubMedCrossRef Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update. Archives of toxicology. 2015;89(6):867–82.PubMedCrossRef
250.
go back to reference Sun J, Nan G. The mitogen-activated protein kinase (MAPK) signaling pathway as a discovery target in stroke. Journal of Molecular Neuroscience. 2016;59(1):90–8.PubMedCrossRef Sun J, Nan G. The mitogen-activated protein kinase (MAPK) signaling pathway as a discovery target in stroke. Journal of Molecular Neuroscience. 2016;59(1):90–8.PubMedCrossRef
251.
go back to reference Roy Choudhury G, Ryou M-G, Poteet E, Wen Y, He R, Sun F, et al. Involvement of p38 MAPK in reactive astrogliosis induced by ischemic stroke. Brain research. 2014;1551:45–58.PubMedCrossRef Roy Choudhury G, Ryou M-G, Poteet E, Wen Y, He R, Sun F, et al. Involvement of p38 MAPK in reactive astrogliosis induced by ischemic stroke. Brain research. 2014;1551:45–58.PubMedCrossRef
252.
go back to reference Sims NR, Yew WP. Reactive astrogliosis in stroke: Contributions of astrocytes to recovery of neurological function. Neurochemistry international. 2017;107:88–103.PubMedCrossRef Sims NR, Yew WP. Reactive astrogliosis in stroke: Contributions of astrocytes to recovery of neurological function. Neurochemistry international. 2017;107:88–103.PubMedCrossRef
253.
go back to reference Walton KM, DiRocco R, Bartlett BA, Koury E, Marcy VR, Jarvis B, et al. Activation of p38MAPK in microglia after ischemia. Journal of neurochemistry. 1998;70(4):1764–7.PubMedCrossRef Walton KM, DiRocco R, Bartlett BA, Koury E, Marcy VR, Jarvis B, et al. Activation of p38MAPK in microglia after ischemia. Journal of neurochemistry. 1998;70(4):1764–7.PubMedCrossRef
254.
go back to reference Sugino T, Nozaki K, Takagi Y, Hattori I, Hashimoto N, Moriguchi T, et al. Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus. Journal of Neuroscience. 2000;20(12):4506–14.PubMedCrossRef Sugino T, Nozaki K, Takagi Y, Hattori I, Hashimoto N, Moriguchi T, et al. Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus. Journal of Neuroscience. 2000;20(12):4506–14.PubMedCrossRef
255.
go back to reference Maddahi A, Kruse LS, Chen QW, Edvinsson L. The role of tumor necrosis factor-alpha and TNF-alpha receptors in cerebral arteries following cerebral ischemia in rat. Journal of neuroinflammation. 2011;8:107.PubMedPubMedCentralCrossRef Maddahi A, Kruse LS, Chen QW, Edvinsson L. The role of tumor necrosis factor-alpha and TNF-alpha receptors in cerebral arteries following cerebral ischemia in rat. Journal of neuroinflammation. 2011;8:107.PubMedPubMedCentralCrossRef
256.
go back to reference Maddahi A, Edvinsson L. Cerebral ischemia induces microvascular pro-inflammatory cytokine expression via the MEK/ERK pathway. Journal of neuroinflammation. 2010;7:14.PubMedPubMedCentralCrossRef Maddahi A, Edvinsson L. Cerebral ischemia induces microvascular pro-inflammatory cytokine expression via the MEK/ERK pathway. Journal of neuroinflammation. 2010;7:14.PubMedPubMedCentralCrossRef
257.
go back to reference Tao X, Sun X, Yin L, Han X, Xu L, Qi Y, et al. Dioscin ameliorates cerebral ischemia/reperfusion injury through the downregulation of TLR4 signaling via HMGB-1 inhibition. Free Radic Biol Med. 2015;84:103–15.PubMedCrossRef Tao X, Sun X, Yin L, Han X, Xu L, Qi Y, et al. Dioscin ameliorates cerebral ischemia/reperfusion injury through the downregulation of TLR4 signaling via HMGB-1 inhibition. Free Radic Biol Med. 2015;84:103–15.PubMedCrossRef
258.
go back to reference Hayakawa K, Arai K, Lo EH. Role of ERK map kinase and CRM1 in IL-1beta-stimulated release of HMGB1 from cortical astrocytes. Glia. 2010;58(8):1007–15.PubMed Hayakawa K, Arai K, Lo EH. Role of ERK map kinase and CRM1 in IL-1beta-stimulated release of HMGB1 from cortical astrocytes. Glia. 2010;58(8):1007–15.PubMed
259.
go back to reference Singh V, Roth S, Veltkamp R, Liesz A. HMGB1 as a key mediator of immune mechanisms in ischemic stroke. Antioxidants & redox signaling. 2016;24(12):635–51.CrossRef Singh V, Roth S, Veltkamp R, Liesz A. HMGB1 as a key mediator of immune mechanisms in ischemic stroke. Antioxidants & redox signaling. 2016;24(12):635–51.CrossRef
260.
go back to reference Štros M. HMGB proteins: interactions with DNA and chromatin. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2010;1799(1):101–13.CrossRef Štros M. HMGB proteins: interactions with DNA and chromatin. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2010;1799(1):101–13.CrossRef
261.
go back to reference Ueda T, Yoshida M. HMGB proteins and transcriptional regulation. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2010;1799(1):114–8.CrossRef Ueda T, Yoshida M. HMGB proteins and transcriptional regulation. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2010;1799(1):114–8.CrossRef
262.
go back to reference Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, et al. HMGB1 in health and disease. Molecular aspects of medicine. 2014;40:1–116.PubMedCrossRef Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, et al. HMGB1 in health and disease. Molecular aspects of medicine. 2014;40:1–116.PubMedCrossRef
263.
go back to reference Martinotti S, Patrone M, Ranzato E. Emerging roles for HMGB1 protein in immunity, inflammation, and cancer. ImmunoTargets and therapy. 2015;4:101–9.PubMedPubMedCentral Martinotti S, Patrone M, Ranzato E. Emerging roles for HMGB1 protein in immunity, inflammation, and cancer. ImmunoTargets and therapy. 2015;4:101–9.PubMedPubMedCentral
264.
go back to reference Magna M, Pisetsky DS. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Molecular medicine (Cambridge, Mass). 2014;20(1):138–46.PubMedCentralCrossRef Magna M, Pisetsky DS. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Molecular medicine (Cambridge, Mass). 2014;20(1):138–46.PubMedCentralCrossRef
265.
go back to reference Yang H, Tracey KJ. Targeting HMGB1 in inflammation. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2010;1799(1):149–56.CrossRef Yang H, Tracey KJ. Targeting HMGB1 in inflammation. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2010;1799(1):149–56.CrossRef
266.
go back to reference Yang H, Wang H, Czura CJ, Tracey KJ. The cytokine activity of HMGB1. Journal of leukocyte biology. 2005;78(1):1–8.PubMedCrossRef Yang H, Wang H, Czura CJ, Tracey KJ. The cytokine activity of HMGB1. Journal of leukocyte biology. 2005;78(1):1–8.PubMedCrossRef
267.
go back to reference Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI, et al. Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab. 2008;28(5):927–38.PubMedCrossRef Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI, et al. Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab. 2008;28(5):927–38.PubMedCrossRef
268.
go back to reference Choi JY, Cui Y, Chowdhury ST, Kim BG. High-mobility group box-1 as an autocrine trophic factor in white matter stroke. Proc Natl Acad Sci U S A. 2017;114(25):E4987–e95.PubMedPubMedCentralCrossRef Choi JY, Cui Y, Chowdhury ST, Kim BG. High-mobility group box-1 as an autocrine trophic factor in white matter stroke. Proc Natl Acad Sci U S A. 2017;114(25):E4987–e95.PubMedPubMedCentralCrossRef
269.
go back to reference Choi JY, Kim BG. Toll-like Receptor 2: A novel therapeutic target for ischemic white matter injury and oligodendrocyte death. Experimental neurobiology. 2017;26(4):186–94.PubMedPubMedCentralCrossRef Choi JY, Kim BG. Toll-like Receptor 2: A novel therapeutic target for ischemic white matter injury and oligodendrocyte death. Experimental neurobiology. 2017;26(4):186–94.PubMedPubMedCentralCrossRef
270.
go back to reference Tsukagawa T, Katsumata R, Fujita M, Yasui K, Akhoon C, Ono K, et al. Elevated serum high-mobility group box-1 protein level is associated with poor functional outcome in ischemic stroke. J Stroke Cerebrovasc Dis. 2017;26(10):2404–11.PubMedCrossRef Tsukagawa T, Katsumata R, Fujita M, Yasui K, Akhoon C, Ono K, et al. Elevated serum high-mobility group box-1 protein level is associated with poor functional outcome in ischemic stroke. J Stroke Cerebrovasc Dis. 2017;26(10):2404–11.PubMedCrossRef
271.
go back to reference Sadat-Hatamnezhad L, Tanomand A, Mahmoudi J, Sandoghchian Shotorbani S. Activation of toll-like receptors 2 by high-mobility group box 1 in monocytes from patients with ischemic stroke. Iranian Biomedical J. 2016;20(4):223–8. Sadat-Hatamnezhad L, Tanomand A, Mahmoudi J, Sandoghchian Shotorbani S. Activation of toll-like receptors 2 by high-mobility group box 1 in monocytes from patients with ischemic stroke. Iranian Biomedical J. 2016;20(4):223–8.
272.
go back to reference Faraco G, Fossati S, Bianchi M, Patrone M, Pedrazzi M, Sparatore B, et al. High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. Journal of neurochemistry. 2007;103(2):590–603.PubMedCrossRef Faraco G, Fossati S, Bianchi M, Patrone M, Pedrazzi M, Sparatore B, et al. High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. Journal of neurochemistry. 2007;103(2):590–603.PubMedCrossRef
273.
go back to reference Sapojnikova N, Kartvelishvili T, Asatiani N, Zinkevich V, Kalandadze I, Gugutsidze D, et al. Correlation between MMP-9 and extracellular cytokine HMGB1 in prediction of human ischemic stroke outcome. Biochimica et biophysica acta. 2014;1842(9):1379–84.PubMedCrossRef Sapojnikova N, Kartvelishvili T, Asatiani N, Zinkevich V, Kalandadze I, Gugutsidze D, et al. Correlation between MMP-9 and extracellular cytokine HMGB1 in prediction of human ischemic stroke outcome. Biochimica et biophysica acta. 2014;1842(9):1379–84.PubMedCrossRef
274.
go back to reference Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, et al. Understanding RAGE, the receptor for advanced glycation end products. Journal of molecular medicine. 2005;83(11):876–86.PubMedCrossRef Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, et al. Understanding RAGE, the receptor for advanced glycation end products. Journal of molecular medicine. 2005;83(11):876–86.PubMedCrossRef
275.
go back to reference Palumbo R, Galvez BG, Pusterla T, De Marchis F, Cossu G, Marcu KB, et al. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-κB activation. J Cell Biol. 2007;179(1):33–40.PubMedPubMedCentralCrossRef Palumbo R, Galvez BG, Pusterla T, De Marchis F, Cossu G, Marcu KB, et al. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-κB activation. J Cell Biol. 2007;179(1):33–40.PubMedPubMedCentralCrossRef
276.
go back to reference Miranda HV, Outeiro TF. The sour side of neurodegenerative disorders: the effects of protein glycation. The Journal of pathology. 2010;221(1):13–25.CrossRef Miranda HV, Outeiro TF. The sour side of neurodegenerative disorders: the effects of protein glycation. The Journal of pathology. 2010;221(1):13–25.CrossRef
277.
go back to reference Downes CE, Wong CH, Henley KJ, Guio-Aguilar PL, Zhang M, Ates R, et al. MyD88 is a critical regulator of hematopoietic cell-mediated neuroprotection seen after stroke. PloS one. 2013;8(3):e57948.PubMedPubMedCentralCrossRef Downes CE, Wong CH, Henley KJ, Guio-Aguilar PL, Zhang M, Ates R, et al. MyD88 is a critical regulator of hematopoietic cell-mediated neuroprotection seen after stroke. PloS one. 2013;8(3):e57948.PubMedPubMedCentralCrossRef
278.
go back to reference Kim J-B, Choi JS, Yu Y-M, Nam K, Piao C-S, Kim S-W, et al. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. Journal of Neuroscience. 2006;26(24):6413–21.PubMedCrossRef Kim J-B, Choi JS, Yu Y-M, Nam K, Piao C-S, Kim S-W, et al. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. Journal of Neuroscience. 2006;26(24):6413–21.PubMedCrossRef
279.
go back to reference Muhammad S, Barakat W, Stoyanov S, Murikinati S, Yang H, Tracey KJ, et al. The HMGB1 receptor RAGE mediates ischemic brain damage. Journal of Neuroscience. 2008;28(46):12023–31.PubMedCrossRef Muhammad S, Barakat W, Stoyanov S, Murikinati S, Yang H, Tracey KJ, et al. The HMGB1 receptor RAGE mediates ischemic brain damage. Journal of Neuroscience. 2008;28(46):12023–31.PubMedCrossRef
280.
go back to reference de Souza AW, Westra J, Limburg PC, Bijl M, Kallenberg CG. HMGB1 in vascular diseases: Its role in vascular inflammation and atherosclerosis. Autoimmunity reviews. 2012;11(12):909–17.PubMedCrossRef de Souza AW, Westra J, Limburg PC, Bijl M, Kallenberg CG. HMGB1 in vascular diseases: Its role in vascular inflammation and atherosclerosis. Autoimmunity reviews. 2012;11(12):909–17.PubMedCrossRef
281.
go back to reference Kim JB, Sig Choi J, Yu YM, Nam K, Piao CS, Kim SW, et al. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci. 2006;26(24):6413–21.PubMedCrossRefPubMedCentral Kim JB, Sig Choi J, Yu YM, Nam K, Piao CS, Kim SW, et al. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci. 2006;26(24):6413–21.PubMedCrossRefPubMedCentral
282.
go back to reference Yang J, Huang C, Yang J, Jiang H, Ding J. Statins attenuate high mobility group box-1 protein induced vascular endothelial activation: a key role for TLR4/NF-kappaB signaling pathway. Molecular and cellular biochemistry. 2010;345(1-2):189–95.PubMedCrossRef Yang J, Huang C, Yang J, Jiang H, Ding J. Statins attenuate high mobility group box-1 protein induced vascular endothelial activation: a key role for TLR4/NF-kappaB signaling pathway. Molecular and cellular biochemistry. 2010;345(1-2):189–95.PubMedCrossRef
284.
go back to reference Bokhari FA, Shakoori TA, Butt A, Ghafoor F. TNF-alpha: a risk factor for ischemic stroke. JAMC. 2014;26(2):111–4.PubMed Bokhari FA, Shakoori TA, Butt A, Ghafoor F. TNF-alpha: a risk factor for ischemic stroke. JAMC. 2014;26(2):111–4.PubMed
285.
go back to reference Gertz K, Kronenberg G, Kälin RE, Baldinger T, Werner C, Balkaya M, et al. Essential role of interleukin-6 in post-stroke angiogenesis. Brain. 2012;135(Pt 6):1964–80.PubMedPubMedCentralCrossRef Gertz K, Kronenberg G, Kälin RE, Baldinger T, Werner C, Balkaya M, et al. Essential role of interleukin-6 in post-stroke angiogenesis. Brain. 2012;135(Pt 6):1964–80.PubMedPubMedCentralCrossRef
286.
go back to reference Roth J, Rummel C, Harré E-M, Voss T, Mütze J, Gerstberger R, et al. Is interleukin-6 the necessary pyrogenic cytokine? Journal of Thermal Biology. 2004;29(7):383–9.CrossRef Roth J, Rummel C, Harré E-M, Voss T, Mütze J, Gerstberger R, et al. Is interleukin-6 the necessary pyrogenic cytokine? Journal of Thermal Biology. 2004;29(7):383–9.CrossRef
287.
go back to reference Fahmi RM, Elsaid AF. Infarction size, interleukin-6, and their interaction are predictors of short-term stroke outcome in young Egyptian adults. J Stroke Cerebrovasc Dis. 2016;25(10):2475–81.PubMedCrossRef Fahmi RM, Elsaid AF. Infarction size, interleukin-6, and their interaction are predictors of short-term stroke outcome in young Egyptian adults. J Stroke Cerebrovasc Dis. 2016;25(10):2475–81.PubMedCrossRef
288.
go back to reference Becker KJ, Dankwa D, Lee R, Schulze J, Zierath D, Tanzi P, et al. Stroke, IL-1ra, IL1RN, infection and outcome. Neurocritical care. 2014;21(1):140–6.PubMedPubMedCentralCrossRef Becker KJ, Dankwa D, Lee R, Schulze J, Zierath D, Tanzi P, et al. Stroke, IL-1ra, IL1RN, infection and outcome. Neurocritical care. 2014;21(1):140–6.PubMedPubMedCentralCrossRef
290.
go back to reference Zaremba J, Losy J. Interleukin-12 in acute ischemic stroke patients. Folia Neuropathologica. 2006;44(1):59–66.PubMed Zaremba J, Losy J. Interleukin-12 in acute ischemic stroke patients. Folia Neuropathologica. 2006;44(1):59–66.PubMed
291.
go back to reference Nakamura K, Shichita T. Cellular and molecular mechanisms of sterile inflammation in ischaemic stroke. Journal of biochemistry. 2019;165(6):459–64.PubMedCrossRef Nakamura K, Shichita T. Cellular and molecular mechanisms of sterile inflammation in ischaemic stroke. Journal of biochemistry. 2019;165(6):459–64.PubMedCrossRef
292.
go back to reference Clarkson BDS, Ling C, Shi Y, Harris MG, Rayasam A, Sun D, et al. T cell–derived interleukin (IL)-21 promotes brain injury following stroke in mice. The Journal of Experimental Medicine. 2014;211(4):595–604.PubMedPubMedCentralCrossRef Clarkson BDS, Ling C, Shi Y, Harris MG, Rayasam A, Sun D, et al. T cell–derived interleukin (IL)-21 promotes brain injury following stroke in mice. The Journal of Experimental Medicine. 2014;211(4):595–604.PubMedPubMedCentralCrossRef
293.
go back to reference Nayak AR, Kashyap RS, Kabra D, Purohit HJ, Taori GM, Daginawala HF. Time course of inflammatory cytokines in acute ischemic stroke patients and their relation to inter-alfa trypsin inhibitor heavy chain 4 and outcome. Annals of Indian Academy of Neurology. 2012;15(3):181–5.PubMedPubMedCentralCrossRef Nayak AR, Kashyap RS, Kabra D, Purohit HJ, Taori GM, Daginawala HF. Time course of inflammatory cytokines in acute ischemic stroke patients and their relation to inter-alfa trypsin inhibitor heavy chain 4 and outcome. Annals of Indian Academy of Neurology. 2012;15(3):181–5.PubMedPubMedCentralCrossRef
294.
go back to reference Lakhan SE, Kirchgessner A, Tepper D, Leonard A. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Frontiers in neurology. 2013;4:32.PubMedPubMedCentral Lakhan SE, Kirchgessner A, Tepper D, Leonard A. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Frontiers in neurology. 2013;4:32.PubMedPubMedCentral
296.
go back to reference Terpolilli NA, Moskowitz MA, Plesnila N. Nitric oxide: considerations for the treatment of ischemic stroke. J Cereb Blood Flow Metab. 2012;32(7):1332–46.PubMedPubMedCentralCrossRef Terpolilli NA, Moskowitz MA, Plesnila N. Nitric oxide: considerations for the treatment of ischemic stroke. J Cereb Blood Flow Metab. 2012;32(7):1332–46.PubMedPubMedCentralCrossRef
298.
go back to reference Seifert HA, Collier LA, Chapman CB, Benkovic SA, Willing AE, Pennypacker KR. Pro-inflammatory interferon gamma signaling is directly associated with stroke induced neurodegeneration. J Neuroimmune Pharmacol. 2014;9(5):679–89.PubMedPubMedCentralCrossRef Seifert HA, Collier LA, Chapman CB, Benkovic SA, Willing AE, Pennypacker KR. Pro-inflammatory interferon gamma signaling is directly associated with stroke induced neurodegeneration. J Neuroimmune Pharmacol. 2014;9(5):679–89.PubMedPubMedCentralCrossRef
299.
300.
go back to reference Dobolyi A, Vincze C, Pál G, Lovas G. The neuroprotective functions of transforming growth factor beta proteins. International journal of molecular sciences. 2012;13(7):8219–58.PubMedPubMedCentralCrossRef Dobolyi A, Vincze C, Pál G, Lovas G. The neuroprotective functions of transforming growth factor beta proteins. International journal of molecular sciences. 2012;13(7):8219–58.PubMedPubMedCentralCrossRef
301.
go back to reference Garcia JM, Stillings SA, Leclerc JL, Phillips H, Edwards NJ, Robicsek SA, et al. Role of interleukin-10 in acute brain injuries. Frontiers in neurology. 2017;8:244.PubMedPubMedCentralCrossRef Garcia JM, Stillings SA, Leclerc JL, Phillips H, Edwards NJ, Robicsek SA, et al. Role of interleukin-10 in acute brain injuries. Frontiers in neurology. 2017;8:244.PubMedPubMedCentralCrossRef
302.
go back to reference Lambertsen KL, Finsen B, Clausen BH. Post-stroke inflammation—target or tool for therapy? Acta Neuropathologica. 2019;137(5):693–714.PubMedCrossRef Lambertsen KL, Finsen B, Clausen BH. Post-stroke inflammation—target or tool for therapy? Acta Neuropathologica. 2019;137(5):693–714.PubMedCrossRef
303.
go back to reference Richard Seidu A, Sackey M, Su Z, Xu H. Pivotal neuroinflammatory and therapeutic role of high mobility group box 1 in ischemic stroke. Bioscience Reports. 2017;37(6):BSR20171104.PubMedPubMedCentralCrossRef Richard Seidu A, Sackey M, Su Z, Xu H. Pivotal neuroinflammatory and therapeutic role of high mobility group box 1 in ischemic stroke. Bioscience Reports. 2017;37(6):BSR20171104.PubMedPubMedCentralCrossRef
304.
go back to reference Tian X, Liu C, Shu Z, Chen G. Review: therapeutic targeting of HMGB1 in stroke. Current drug delivery. 2017;14(6):785–90.PubMedCrossRef Tian X, Liu C, Shu Z, Chen G. Review: therapeutic targeting of HMGB1 in stroke. Current drug delivery. 2017;14(6):785–90.PubMedCrossRef
305.
go back to reference Chen C, Chu SF, Liu DD, Zhang Z, Kong LL, Zhou X, et al. Chemokines play complex roles in cerebral ischemia. Neurochemistry international. 2018;112:146–58.PubMedCrossRef Chen C, Chu SF, Liu DD, Zhang Z, Kong LL, Zhou X, et al. Chemokines play complex roles in cerebral ischemia. Neurochemistry international. 2018;112:146–58.PubMedCrossRef
306.
go back to reference Amin M, Vakilian A, Mahmoodi MH, Hassanshahi G, Falahati-Pour SK, Dolatabadi MR, et al. Circulatory levels of C-X-C motif chemokine ligands 1, 9, and 10 are elevated in patients with ischemic stroke. The Eurasian journal of medicine. 2017;49(2):92–6.PubMedPubMedCentralCrossRef Amin M, Vakilian A, Mahmoodi MH, Hassanshahi G, Falahati-Pour SK, Dolatabadi MR, et al. Circulatory levels of C-X-C motif chemokine ligands 1, 9, and 10 are elevated in patients with ischemic stroke. The Eurasian journal of medicine. 2017;49(2):92–6.PubMedPubMedCentralCrossRef
307.
go back to reference Wang J, Gan Y, Han P, Yin J, Liu Q, Ghanian S, et al. Ischemia-induced neuronal cell death is mediated by chemokine receptor CX3CR1. Scientific Reports. 2018;8(1):556.PubMedPubMedCentralCrossRef Wang J, Gan Y, Han P, Yin J, Liu Q, Ghanian S, et al. Ischemia-induced neuronal cell death is mediated by chemokine receptor CX3CR1. Scientific Reports. 2018;8(1):556.PubMedPubMedCentralCrossRef
308.
go back to reference Rodrigo R, Fernandez-Gajardo R, Gutierrez R, Matamala JM, Carrasco R, Miranda-Merchak A, et al. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS & neurological disorders drug targets. 2013;12(5):698–714.CrossRef Rodrigo R, Fernandez-Gajardo R, Gutierrez R, Matamala JM, Carrasco R, Miranda-Merchak A, et al. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS & neurological disorders drug targets. 2013;12(5):698–714.CrossRef
310.
go back to reference Sun M-S, Jin H, Sun X, Huang S, Zhang F-L, Guo Z-N, et al. Free radical damage in ischemia-reperfusion injury: an obstacle in acute ischemic stroke after revascularization therapy. Oxidative medicine and cellular longevity. 2018;2018:17. Sun M-S, Jin H, Sun X, Huang S, Zhang F-L, Guo Z-N, et al. Free radical damage in ischemia-reperfusion injury: an obstacle in acute ischemic stroke after revascularization therapy. Oxidative medicine and cellular longevity. 2018;2018:17.
311.
go back to reference Narne P, Pandey V, Phanithi PB. Role of nitric oxide and hydrogen sulfide in ischemic stroke and the emergent epigenetic underpinnings. Molecular neurobiology. 2019;56(3):1749–69.PubMedCrossRef Narne P, Pandey V, Phanithi PB. Role of nitric oxide and hydrogen sulfide in ischemic stroke and the emergent epigenetic underpinnings. Molecular neurobiology. 2019;56(3):1749–69.PubMedCrossRef
Metadata
Title
Neuroinflammation: friend and foe for ischemic stroke
Authors
Richard L. Jayaraj
Sheikh Azimullah
Rami Beiram
Fakhreya Y. Jalal
Gary A. Rosenberg
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Stroke
Published in
Journal of Neuroinflammation / Issue 1/2019
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-019-1516-2

Other articles of this Issue 1/2019

Journal of Neuroinflammation 1/2019 Go to the issue