Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2020

01-12-2020 | Stroke | Review

The peri-menopause in a woman’s life: a systemic inflammatory phase that enables later neurodegenerative disease

Authors: Micheline McCarthy, Ami P. Raval

Published in: Journal of Neuroinflammation | Issue 1/2020

Login to get access

Abstract

The peri-menopause or menopausal transition—the time period that surrounds the final years of a woman’s reproductive life—is associated with profound reproductive and hormonal changes in a woman’s body and exponentially increases a woman’s risk of cerebral ischemia and Alzheimer’s disease. Although our understanding of the exact timeline or definition of peri-menopause is limited, it is clear that there are two stages to the peri-menopause. These are the early menopausal transition, where menstrual cycles are mostly regular, with relatively few interruptions, and the late transition, where amenorrhea becomes more prolonged and lasts for at least 60 days, up to the final menstrual period. Emerging evidence is showing that peri-menopause is pro-inflammatory and disrupts estrogen-regulated neurological systems. Estrogen is a master regulator that functions through a network of estrogen receptors subtypes alpha (ER-α) and beta (ER-β). Estrogen receptor-beta has been shown to regulate a key component of the innate immune response known as the inflammasome, and it also is involved in regulation of neuronal mitochondrial function. This review will present an overview of the menopausal transition as an inflammatory event, with associated systemic and central nervous system inflammation, plus regulation of the innate immune response by ER-β-mediated mechanisms.
Literature
3.
go back to reference Stephens S, et al. Neuropsychological characteristics of mild vascular cognitive impairment and dementia after stroke. Int J Geriatr Psychiatry. 2004;19(11):1053–7.PubMedCrossRef Stephens S, et al. Neuropsychological characteristics of mild vascular cognitive impairment and dementia after stroke. Int J Geriatr Psychiatry. 2004;19(11):1053–7.PubMedCrossRef
4.
go back to reference Go AS, et al. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–e292.PubMed Go AS, et al. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–e292.PubMed
6.
go back to reference Barba R, et al. Poststroke dementia : clinical features and risk factors. Stroke. 2000;31(7):1494–501.PubMedCrossRef Barba R, et al. Poststroke dementia : clinical features and risk factors. Stroke. 2000;31(7):1494–501.PubMedCrossRef
7.
go back to reference Tatemichi TK, et al. Clinical determinants of dementia related to stroke. Ann Neurol. 1993;33(6):568–75.PubMedCrossRef Tatemichi TK, et al. Clinical determinants of dementia related to stroke. Ann Neurol. 1993;33(6):568–75.PubMedCrossRef
8.
go back to reference Caldwell CC, Yao J, Brinton RD. Targeting the prodromal stage of Alzheimer’s disease: bioenergetic and mitochondrial opportunities. Neurotherapeutics. 2015;12(1):66–80.PubMedCrossRef Caldwell CC, Yao J, Brinton RD. Targeting the prodromal stage of Alzheimer’s disease: bioenergetic and mitochondrial opportunities. Neurotherapeutics. 2015;12(1):66–80.PubMedCrossRef
9.
go back to reference Yasui T, et al. Changes in serum cytokine concentrations during the menopausal transition. Maturitas. 2007;56(4):396–403.PubMedCrossRef Yasui T, et al. Changes in serum cytokine concentrations during the menopausal transition. Maturitas. 2007;56(4):396–403.PubMedCrossRef
10.
go back to reference Agacayak E, et al. Role of inflammation and oxidative stress in the etiology of primary ovarian insufficiency. Turk J Obstet Gynecol. 2016;13(3):109–15.PubMedPubMedCentralCrossRef Agacayak E, et al. Role of inflammation and oxidative stress in the etiology of primary ovarian insufficiency. Turk J Obstet Gynecol. 2016;13(3):109–15.PubMedPubMedCentralCrossRef
11.
go back to reference Raval AP, et al. Sexual dimorphism in inflammasome-containing extracellular vesicles and the regulation of innate immunity in the brain of reproductive senescent females. Neurochem Int. 2019;127:29–37.PubMedCrossRef Raval AP, et al. Sexual dimorphism in inflammasome-containing extracellular vesicles and the regulation of innate immunity in the brain of reproductive senescent females. Neurochem Int. 2019;127:29–37.PubMedCrossRef
12.
go back to reference Santoro N. Perimenopause: from research to practice. J Women's Health (Larchmt). 2016;25(4):332–9.CrossRef Santoro N. Perimenopause: from research to practice. J Women's Health (Larchmt). 2016;25(4):332–9.CrossRef
13.
go back to reference Koebele SV, Bimonte-Nelson HA. Modeling menopause: the utility of rodents in translational behavioral endocrinology research. Maturitas. 2016;87:5–17.PubMedPubMedCentralCrossRef Koebele SV, Bimonte-Nelson HA. Modeling menopause: the utility of rodents in translational behavioral endocrinology research. Maturitas. 2016;87:5–17.PubMedPubMedCentralCrossRef
14.
go back to reference Rannevik G, et al. A longitudinal study of the perimenopausal transition: altered profiles of steroid and pituitary hormones, SHBG and bone mineral density. Maturitas. 1995;21(2):103–13.PubMedCrossRef Rannevik G, et al. A longitudinal study of the perimenopausal transition: altered profiles of steroid and pituitary hormones, SHBG and bone mineral density. Maturitas. 1995;21(2):103–13.PubMedCrossRef
15.
go back to reference Burger HG, et al. Cycle and hormone changes during perimenopause: the key role of ovarian function. Menopause. 2008;15(4 Pt 1):603–12.PubMedCrossRef Burger HG, et al. Cycle and hormone changes during perimenopause: the key role of ovarian function. Menopause. 2008;15(4 Pt 1):603–12.PubMedCrossRef
17.
go back to reference Matthews KA, et al. Changes in cardiovascular risk factors during the perimenopause and postmenopause and carotid artery atherosclerosis in healthy women. Stroke. 2001;32(5):1104–11.PubMedCrossRef Matthews KA, et al. Changes in cardiovascular risk factors during the perimenopause and postmenopause and carotid artery atherosclerosis in healthy women. Stroke. 2001;32(5):1104–11.PubMedCrossRef
18.
go back to reference Brass LM. Hormone replacement therapy and stroke: clinical trials review. Stroke. 2004;35(11 Suppl 1):2644–7.PubMedCrossRef Brass LM. Hormone replacement therapy and stroke: clinical trials review. Stroke. 2004;35(11 Suppl 1):2644–7.PubMedCrossRef
19.
go back to reference Berent-Spillson A, et al. Postmenopausal hormone treatment alters neural pathways but does not improve verbal cognitive function. Menopause. 2018;25(12):1424–31.PubMedPubMedCentralCrossRef Berent-Spillson A, et al. Postmenopausal hormone treatment alters neural pathways but does not improve verbal cognitive function. Menopause. 2018;25(12):1424–31.PubMedPubMedCentralCrossRef
20.
21.
go back to reference Rusa R, et al. 17beta-estradiol reduces stroke injury in estrogen-deficient female animals. Stroke. 1999;30(8):1665–70.PubMedCrossRef Rusa R, et al. 17beta-estradiol reduces stroke injury in estrogen-deficient female animals. Stroke. 1999;30(8):1665–70.PubMedCrossRef
22.
go back to reference Wang Q, et al. Estrogen provides neuroprotection in transient forebrain ischemia through perfusion-independent mechanisms in rats. Stroke. 1999;30(3):630–7.PubMedCrossRef Wang Q, et al. Estrogen provides neuroprotection in transient forebrain ischemia through perfusion-independent mechanisms in rats. Stroke. 1999;30(3):630–7.PubMedCrossRef
23.
go back to reference Dubal DB, et al. Estradiol protects against ischemic injury. J Cereb Blood Flow Metab. 1998;18(11):1253–8.PubMedCrossRef Dubal DB, et al. Estradiol protects against ischemic injury. J Cereb Blood Flow Metab. 1998;18(11):1253–8.PubMedCrossRef
24.
go back to reference Yang SH, et al. Estradiol exerts neuroprotective effects when administered after ischemic insult. Stroke. 2000;31(3):745–9 discussion 749-50.PubMedCrossRef Yang SH, et al. Estradiol exerts neuroprotective effects when administered after ischemic insult. Stroke. 2000;31(3):745–9 discussion 749-50.PubMedCrossRef
25.
go back to reference Cushman M, et al. Effect of postmenopausal hormones on inflammation-sensitive proteins: the Postmenopausal Estrogen/Progestin Interventions (PEPI) Study. Circulation. 1999;100(7):717–22.PubMedCrossRef Cushman M, et al. Effect of postmenopausal hormones on inflammation-sensitive proteins: the Postmenopausal Estrogen/Progestin Interventions (PEPI) Study. Circulation. 1999;100(7):717–22.PubMedCrossRef
26.
go back to reference Edwards BJ, Li J. Endocrinology of menopause. Periodontol. 2013;61(1):177–94.CrossRef Edwards BJ, Li J. Endocrinology of menopause. Periodontol. 2013;61(1):177–94.CrossRef
27.
go back to reference Vegeto E, Benedusi V, Maggi A. Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases. Front Neuroendocrinol. 2008;29(4):507–19.PubMedPubMedCentralCrossRef Vegeto E, Benedusi V, Maggi A. Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases. Front Neuroendocrinol. 2008;29(4):507–19.PubMedPubMedCentralCrossRef
28.
go back to reference Giannoni E, et al. Estradiol and progesterone strongly inhibit the innate immune response of mononuclear cells in newborns. Infect Immun. 2011;79(7):2690–8.PubMedPubMedCentralCrossRef Giannoni E, et al. Estradiol and progesterone strongly inhibit the innate immune response of mononuclear cells in newborns. Infect Immun. 2011;79(7):2690–8.PubMedPubMedCentralCrossRef
29.
go back to reference Tomura S, et al. Effects of therapeutic hypothermia on inflammasome signaling after traumatic brain injury. J Cereb Blood Flow Metab. 2012;32(10):1939–47.PubMedPubMedCentralCrossRef Tomura S, et al. Effects of therapeutic hypothermia on inflammasome signaling after traumatic brain injury. J Cereb Blood Flow Metab. 2012;32(10):1939–47.PubMedPubMedCentralCrossRef
30.
go back to reference de Rivero Vaccari JP, Dietrich WD, Keane RW. Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J Cereb Blood Flow Metab. 2014;34(3):369–75.PubMedPubMedCentralCrossRef de Rivero Vaccari JP, Dietrich WD, Keane RW. Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J Cereb Blood Flow Metab. 2014;34(3):369–75.PubMedPubMedCentralCrossRef
31.
32.
go back to reference Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–20.PubMedCrossRef Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–20.PubMedCrossRef
33.
go back to reference Land WG. The role of damage-associated molecular patterns (DAMPs) in human diseases: Part II: DAMPs as diagnostics, prognostics and therapeutics in clinical medicine. Sultan Qaboos Univ Med J. 2015;15(2):e157–70.PubMedPubMedCentral Land WG. The role of damage-associated molecular patterns (DAMPs) in human diseases: Part II: DAMPs as diagnostics, prognostics and therapeutics in clinical medicine. Sultan Qaboos Univ Med J. 2015;15(2):e157–70.PubMedPubMedCentral
34.
go back to reference Unger MS, et al. Microglia prevent peripheral immune cell invasion and promote an anti-inflammatory environment in the brain of APP-PS1 transgenic mice. J Neuroinflammation. 2018;15(1):274.PubMedPubMedCentralCrossRef Unger MS, et al. Microglia prevent peripheral immune cell invasion and promote an anti-inflammatory environment in the brain of APP-PS1 transgenic mice. J Neuroinflammation. 2018;15(1):274.PubMedPubMedCentralCrossRef
35.
go back to reference d'Adesky ND, et al. Nicotine alters estrogen receptor-beta-regulated inflammasome activity and exacerbates ischemic brain damage in female rats. Int J Mol Sci. 2018;19(5):1330.PubMedCentralCrossRef d'Adesky ND, et al. Nicotine alters estrogen receptor-beta-regulated inflammasome activity and exacerbates ischemic brain damage in female rats. Int J Mol Sci. 2018;19(5):1330.PubMedCentralCrossRef
36.
go back to reference Harlow SD, et al. Executive summary of the stages of reproductive aging workshop + 10: addressing the unfinished agenda of staging reproductive aging. Menopause. 2012;19(4):387–95.PubMedPubMedCentralCrossRef Harlow SD, et al. Executive summary of the stages of reproductive aging workshop + 10: addressing the unfinished agenda of staging reproductive aging. Menopause. 2012;19(4):387–95.PubMedPubMedCentralCrossRef
37.
go back to reference Kung HC, et al. Deaths: final data for 2005. Natl Vital Stat Rep. 2008;56(10):1–120.PubMed Kung HC, et al. Deaths: final data for 2005. Natl Vital Stat Rep. 2008;56(10):1–120.PubMed
38.
go back to reference Burkard T, et al. Utilization pattern of hormone therapy in UK general practice between 1996 and 2015: a descriptive study. Menopause. 2019;26(7):741–9.PubMedCrossRef Burkard T, et al. Utilization pattern of hormone therapy in UK general practice between 1996 and 2015: a descriptive study. Menopause. 2019;26(7):741–9.PubMedCrossRef
40.
go back to reference de Bruin JP, et al. The role of genetic factors in age at natural menopause. Hum Reprod. 2001;16(9):2014–8.PubMedCrossRef de Bruin JP, et al. The role of genetic factors in age at natural menopause. Hum Reprod. 2001;16(9):2014–8.PubMedCrossRef
43.
go back to reference Coulam CB, Adamson SC, Annegers JF. Incidence of premature ovarian failure. Obstet Gynecol. 1986;67(4):604–6.PubMed Coulam CB, Adamson SC, Annegers JF. Incidence of premature ovarian failure. Obstet Gynecol. 1986;67(4):604–6.PubMed
44.
go back to reference Park C, et al. The effects of bisphenol A, benzyl butyl phthalate, and di(2-ethylhexyl) phthalate on estrogen receptor alpha in estrogen receptor-positive cells under hypoxia. Environ Pollut. 2019;248:774–81.PubMedCrossRef Park C, et al. The effects of bisphenol A, benzyl butyl phthalate, and di(2-ethylhexyl) phthalate on estrogen receptor alpha in estrogen receptor-positive cells under hypoxia. Environ Pollut. 2019;248:774–81.PubMedCrossRef
45.
go back to reference Xu Z, et al. Nonmonotonic responses to low doses of xenoestrogens: a review. Environ Res. 2017;155:199–207.PubMedCrossRef Xu Z, et al. Nonmonotonic responses to low doses of xenoestrogens: a review. Environ Res. 2017;155:199–207.PubMedCrossRef
46.
go back to reference Rosenfeld CS, Cooke PS. Endocrine disruption through membrane estrogen receptors and novel pathways leading to rapid toxicological and epigenetic effects. J Steroid Biochem Mol Biol. 2019;187:106–17.PubMedCrossRef Rosenfeld CS, Cooke PS. Endocrine disruption through membrane estrogen receptors and novel pathways leading to rapid toxicological and epigenetic effects. J Steroid Biochem Mol Biol. 2019;187:106–17.PubMedCrossRef
47.
go back to reference Ge W, et al. Establishment and depletion of the ovarian reserve: physiology and impact of environmental chemicals. Cell Mol Life Sci. 2019;76(9):1729–46.PubMedCrossRef Ge W, et al. Establishment and depletion of the ovarian reserve: physiology and impact of environmental chemicals. Cell Mol Life Sci. 2019;76(9):1729–46.PubMedCrossRef
49.
go back to reference Brown S. Endocrine disrupting chemicals associated with earlier menopause. Post Reprod Health. 2015;21(1):5–6.PubMedCrossRef Brown S. Endocrine disrupting chemicals associated with earlier menopause. Post Reprod Health. 2015;21(1):5–6.PubMedCrossRef
50.
go back to reference Carandang R, et al. Trends in incidence, lifetime risk, severity, and 30-day mortality of stroke over the past 50 years. JAMA. 2006;296(24):2939–46.PubMedCrossRef Carandang R, et al. Trends in incidence, lifetime risk, severity, and 30-day mortality of stroke over the past 50 years. JAMA. 2006;296(24):2939–46.PubMedCrossRef
51.
52.
53.
go back to reference Alonso de Lecinana M, et al. Risk of ischemic stroke and lifetime estrogen exposure. Neurology. 2007;68(1):33–8.PubMedCrossRef Alonso de Lecinana M, et al. Risk of ischemic stroke and lifetime estrogen exposure. Neurology. 2007;68(1):33–8.PubMedCrossRef
54.
55.
go back to reference Mosconi L, et al. Correction: Perimenopause and emergence of an Alzheimer's bioenergetic phenotype in brain and periphery. PLoS One. 2018;13(2):e0193314.PubMedPubMedCentralCrossRef Mosconi L, et al. Correction: Perimenopause and emergence of an Alzheimer's bioenergetic phenotype in brain and periphery. PLoS One. 2018;13(2):e0193314.PubMedPubMedCentralCrossRef
57.
go back to reference Xu H, et al. Estrogen, beta-amyloid metabolism/trafficking, and Alzheimer’s disease. Ann N Y Acad Sci. 2006;1089:324–42.PubMedCrossRef Xu H, et al. Estrogen, beta-amyloid metabolism/trafficking, and Alzheimer’s disease. Ann N Y Acad Sci. 2006;1089:324–42.PubMedCrossRef
58.
go back to reference Rune GM, Frotscher M. Neurosteroid synthesis in the hippocampus: role in synaptic plasticity. Neuroscience. 2005;136(3):833–42.PubMedCrossRef Rune GM, Frotscher M. Neurosteroid synthesis in the hippocampus: role in synaptic plasticity. Neuroscience. 2005;136(3):833–42.PubMedCrossRef
59.
go back to reference Barbieri RL, Gochberg J, Ryan KJ. Nicotine, cotinine, and anabasine inhibit aromatase in human trophoblast in vitro. J Clin Invest. 1986;77(6):1727–33.PubMedPubMedCentralCrossRef Barbieri RL, Gochberg J, Ryan KJ. Nicotine, cotinine, and anabasine inhibit aromatase in human trophoblast in vitro. J Clin Invest. 1986;77(6):1727–33.PubMedPubMedCentralCrossRef
60.
go back to reference Cassidenti DL, et al. Short-term effects of smoking on the pharmacokinetic profiles of micronized estradiol in postmenopausal women. Am J Obstet Gynecol. 1990;163(6 Pt 1):1953–60.PubMedCrossRef Cassidenti DL, et al. Short-term effects of smoking on the pharmacokinetic profiles of micronized estradiol in postmenopausal women. Am J Obstet Gynecol. 1990;163(6 Pt 1):1953–60.PubMedCrossRef
61.
go back to reference Cramer DW, et al. Cross-sectional and case-controlled analyses of the association between smoking and early menopause. Maturitas. 1995;22(2):79–87.PubMedCrossRef Cramer DW, et al. Cross-sectional and case-controlled analyses of the association between smoking and early menopause. Maturitas. 1995;22(2):79–87.PubMedCrossRef
62.
go back to reference Grainge MJ, et al. Cigarette smoking, alcohol and caffeine consumption, and bone mineral density in postmenopausal women. The Nottingham EPIC Study Group. Osteoporos Int. 1998;8(4):355–63.PubMedCrossRef Grainge MJ, et al. Cigarette smoking, alcohol and caffeine consumption, and bone mineral density in postmenopausal women. The Nottingham EPIC Study Group. Osteoporos Int. 1998;8(4):355–63.PubMedCrossRef
63.
go back to reference Greenberg G, Thompson SG, Meade TW. Relation between cigarette smoking and use of hormonal replacement therapy for menopausal symptoms. J Epidemiol Community Health. 1987;41(1):26–9.PubMedPubMedCentralCrossRef Greenberg G, Thompson SG, Meade TW. Relation between cigarette smoking and use of hormonal replacement therapy for menopausal symptoms. J Epidemiol Community Health. 1987;41(1):26–9.PubMedPubMedCentralCrossRef
64.
go back to reference Jensen J, Christiansen C, Rodbro P. Cigarette smoking, serum estrogens, and bone loss during hormone-replacement therapy early after menopause. N Engl J Med. 1985;313(16):973–5.PubMedCrossRef Jensen J, Christiansen C, Rodbro P. Cigarette smoking, serum estrogens, and bone loss during hormone-replacement therapy early after menopause. N Engl J Med. 1985;313(16):973–5.PubMedCrossRef
65.
go back to reference Michnovicz JJ, et al. Increased urinary catechol estrogen excretion in female smokers. Steroids. 1988;52(1-2):69–83.PubMedCrossRef Michnovicz JJ, et al. Increased urinary catechol estrogen excretion in female smokers. Steroids. 1988;52(1-2):69–83.PubMedCrossRef
67.
go back to reference Windham GC, et al. Cigarette smoking and effects on menstrual function. Obstet Gynecol. 1999;93(1):59–65.PubMed Windham GC, et al. Cigarette smoking and effects on menstrual function. Obstet Gynecol. 1999;93(1):59–65.PubMed
68.
go back to reference Raval AP, et al. Nicotine and estrogen synergistically exacerbate cerebral ischemic injury. Neuroscience. 2011;181:216–25.PubMedCrossRef Raval AP, et al. Nicotine and estrogen synergistically exacerbate cerebral ischemic injury. Neuroscience. 2011;181:216–25.PubMedCrossRef
69.
go back to reference Zhang QG, et al. Estrogen attenuates ischemic oxidative damage via an estrogen receptor alpha-mediated inhibition of NADPH oxidase activation. J Neurosci. 2009;29(44):13823–36.PubMedPubMedCentralCrossRef Zhang QG, et al. Estrogen attenuates ischemic oxidative damage via an estrogen receptor alpha-mediated inhibition of NADPH oxidase activation. J Neurosci. 2009;29(44):13823–36.PubMedPubMedCentralCrossRef
70.
go back to reference Dubal DB, et al. Differential modulation of estrogen receptors (ERs) in ischemic brain injury: a role for ERalpha in estradiol-mediated protection against delayed cell death. Endocrinology. 2006;147(6):3076–84.PubMedCrossRef Dubal DB, et al. Differential modulation of estrogen receptors (ERs) in ischemic brain injury: a role for ERalpha in estradiol-mediated protection against delayed cell death. Endocrinology. 2006;147(6):3076–84.PubMedCrossRef
71.
go back to reference Lebesgue D, et al. Estradiol rescues neurons from global ischemia-induced cell death: multiple cellular pathways of neuroprotection. Steroids. 2009;74(7):555–61.PubMedPubMedCentralCrossRef Lebesgue D, et al. Estradiol rescues neurons from global ischemia-induced cell death: multiple cellular pathways of neuroprotection. Steroids. 2009;74(7):555–61.PubMedPubMedCentralCrossRef
73.
go back to reference Raval AP, et al. Synergistic inhibitory effect of nicotine plus oral contraceptive on mitochondrial complex-IV is mediated by estrogen receptor-beta in female rats. J Neurochem. 2012;121(1):157–67.PubMedCrossRef Raval AP, et al. Synergistic inhibitory effect of nicotine plus oral contraceptive on mitochondrial complex-IV is mediated by estrogen receptor-beta in female rats. J Neurochem. 2012;121(1):157–67.PubMedCrossRef
74.
go back to reference Shi FD, et al. Nicotinic attenuation of central nervous system inflammation and autoimmunity. J Immunol. 2009;182(3):1730–9.PubMedCrossRef Shi FD, et al. Nicotinic attenuation of central nervous system inflammation and autoimmunity. J Immunol. 2009;182(3):1730–9.PubMedCrossRef
76.
go back to reference Marino M, Ascenzi P. Steroid hormone rapid signaling: the pivotal role of S-palmitoylation. IUBMB Life. 2006;58(12):716–9.PubMedCrossRef Marino M, Ascenzi P. Steroid hormone rapid signaling: the pivotal role of S-palmitoylation. IUBMB Life. 2006;58(12):716–9.PubMedCrossRef
77.
go back to reference Acconcia F, et al. Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol. Mol Biol Cell. 2005;16(1):231–7.PubMedPubMedCentralCrossRef Acconcia F, et al. Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol. Mol Biol Cell. 2005;16(1):231–7.PubMedPubMedCentralCrossRef
78.
go back to reference Acconcia F, et al. S-palmitoylation modulates human estrogen receptor-alpha functions. Biochem Biophys Res Commun. 2004;316(3):878–83.PubMedCrossRef Acconcia F, et al. S-palmitoylation modulates human estrogen receptor-alpha functions. Biochem Biophys Res Commun. 2004;316(3):878–83.PubMedCrossRef
81.
go back to reference Iwanaga T, et al. Dynamic protein palmitoylation in cellular signaling. Prog Lipid Res. 2009;48(3-4):117–27.PubMedCrossRef Iwanaga T, et al. Dynamic protein palmitoylation in cellular signaling. Prog Lipid Res. 2009;48(3-4):117–27.PubMedCrossRef
82.
go back to reference Linder ME, Deschenes RJ. Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol. 2007;8(1):74–84.PubMedCrossRef Linder ME, Deschenes RJ. Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol. 2007;8(1):74–84.PubMedCrossRef
83.
go back to reference Zeng J, et al. Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-kappaB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway. J Neuroinflammation. 2017;14(1):119.PubMedPubMedCentralCrossRef Zeng J, et al. Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-kappaB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway. J Neuroinflammation. 2017;14(1):119.PubMedPubMedCentralCrossRef
84.
go back to reference Gomes PX, et al. Differences in vulnerability to nicotine-induced kindling between female and male periadolescent rats. Psychopharmacology. 2013;225(1):115–26.PubMedCrossRef Gomes PX, et al. Differences in vulnerability to nicotine-induced kindling between female and male periadolescent rats. Psychopharmacology. 2013;225(1):115–26.PubMedCrossRef
85.
go back to reference Liu Q, et al. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol. 2018;103:115–24.PubMedCrossRef Liu Q, et al. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol. 2018;103:115–24.PubMedCrossRef
86.
87.
go back to reference Sternberg EM. Neuroendocrine regulation of autoimmune/inflammatory disease. J Endocrinol. 2001;169(3):429–35.PubMedCrossRef Sternberg EM. Neuroendocrine regulation of autoimmune/inflammatory disease. J Endocrinol. 2001;169(3):429–35.PubMedCrossRef
88.
go back to reference Doran MF, et al. Trends in incidence and mortality in rheumatoid arthritis in Rochester, Minnesota, over a forty-year period. Arthritis Rheum. 2002;46(3):625–31.PubMedCrossRef Doran MF, et al. Trends in incidence and mortality in rheumatoid arthritis in Rochester, Minnesota, over a forty-year period. Arthritis Rheum. 2002;46(3):625–31.PubMedCrossRef
89.
go back to reference Tutuncu M, et al. Onset of progressive phase is an age-dependent clinical milestone in multiple sclerosis. Mult Scler. 2013;19(2):188–98.PubMedCrossRef Tutuncu M, et al. Onset of progressive phase is an age-dependent clinical milestone in multiple sclerosis. Mult Scler. 2013;19(2):188–98.PubMedCrossRef
90.
go back to reference Sharma N, et al. Association of periodontal inflammation, systemic inflammation, and duration of menopausal years in postmenopausal women. Quintessence Int. 2018;49(2):123–31.PubMed Sharma N, et al. Association of periodontal inflammation, systemic inflammation, and duration of menopausal years in postmenopausal women. Quintessence Int. 2018;49(2):123–31.PubMed
91.
go back to reference Girasole G, et al. Oestrogens prevent the increase of human serum soluble interleukin-6 receptor induced by ovariectomy in vivo and decrease its release in human osteoblastic cells in vitro. Clin Endocrinol. 1999;51(6):801–7.CrossRef Girasole G, et al. Oestrogens prevent the increase of human serum soluble interleukin-6 receptor induced by ovariectomy in vivo and decrease its release in human osteoblastic cells in vitro. Clin Endocrinol. 1999;51(6):801–7.CrossRef
92.
go back to reference Woodward M, et al. Associations of blood rheology and interleukin-6 with cardiovascular risk factors and prevalent cardiovascular disease. Br J Haematol. 1999;104(2):246–57.PubMedCrossRef Woodward M, et al. Associations of blood rheology and interleukin-6 with cardiovascular risk factors and prevalent cardiovascular disease. Br J Haematol. 1999;104(2):246–57.PubMedCrossRef
93.
go back to reference Deswal A, et al. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation. 2001;103(16):2055–9.PubMedCrossRef Deswal A, et al. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation. 2001;103(16):2055–9.PubMedCrossRef
94.
go back to reference Pfeilschifter J, et al. Changes in proinflammatory cytokine activity after menopause. Endocr Rev. 2002;23(1):90–119.PubMedCrossRef Pfeilschifter J, et al. Changes in proinflammatory cytokine activity after menopause. Endocr Rev. 2002;23(1):90–119.PubMedCrossRef
96.
go back to reference Kireev RA, et al. Melatonin and oestrogen treatments were able to improve neuroinflammation and apoptotic processes in dentate gyrus of old ovariectomized female rats. Age (Dordr). 2014;36(5):9707.CrossRef Kireev RA, et al. Melatonin and oestrogen treatments were able to improve neuroinflammation and apoptotic processes in dentate gyrus of old ovariectomized female rats. Age (Dordr). 2014;36(5):9707.CrossRef
97.
go back to reference Giuliani N, et al. Serum interleukin-6, soluble interleukin-6 receptor and soluble gp130 exhibit different patterns of age- and menopause-related changes. Exp Gerontol. 2001;36(3):547–57.PubMedCrossRef Giuliani N, et al. Serum interleukin-6, soluble interleukin-6 receptor and soluble gp130 exhibit different patterns of age- and menopause-related changes. Exp Gerontol. 2001;36(3):547–57.PubMedCrossRef
98.
go back to reference Yao J, et al. Decline in mitochondrial bioenergetics and shift to ketogenic profile in brain during reproductive senescence. Biochim Biophys Acta. 2010;1800(10):1121–6.PubMedPubMedCentralCrossRef Yao J, et al. Decline in mitochondrial bioenergetics and shift to ketogenic profile in brain during reproductive senescence. Biochim Biophys Acta. 2010;1800(10):1121–6.PubMedPubMedCentralCrossRef
99.
go back to reference Ding F, et al. Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and Alzheimer’s mouse brain: implication for bioenergetic intervention. PLoS One. 2013;8(11):e79977.PubMedPubMedCentralCrossRef Ding F, et al. Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and Alzheimer’s mouse brain: implication for bioenergetic intervention. PLoS One. 2013;8(11):e79977.PubMedPubMedCentralCrossRef
100.
101.
go back to reference Klosinski LP, et al. White matter lipids as a ketogenic fuel supply in aging female brain: implications for Alzheimer’s disease. EBioMedicine. 2015;2(12):1888–904.PubMedPubMedCentralCrossRef Klosinski LP, et al. White matter lipids as a ketogenic fuel supply in aging female brain: implications for Alzheimer’s disease. EBioMedicine. 2015;2(12):1888–904.PubMedPubMedCentralCrossRef
102.
go back to reference Brinton RD, et al. Perimenopause as a neurological transition state. Nat Rev Endocrinol. 2015;11(7):393–405.PubMedCrossRef Brinton RD, et al. Perimenopause as a neurological transition state. Nat Rev Endocrinol. 2015;11(7):393–405.PubMedCrossRef
103.
go back to reference Larbi A, et al. Aging of the immune system as a prognostic factor for human longevity. Physiology. 2008;23:64–74.PubMedCrossRef Larbi A, et al. Aging of the immune system as a prognostic factor for human longevity. Physiology. 2008;23:64–74.PubMedCrossRef
104.
go back to reference Gameiro CM, Romao F, Castelo-Branco C. Menopause and aging: changes in the immune system--a review. Maturitas. 2010;67(4):316–20.PubMedCrossRef Gameiro CM, Romao F, Castelo-Branco C. Menopause and aging: changes in the immune system--a review. Maturitas. 2010;67(4):316–20.PubMedCrossRef
105.
go back to reference Muller GC, et al. The inverted CD4:CD8 ratio is associated with gender-related changes in oxidative stress during aging. Cell Immunol. 2015;296(2):149–54.PubMedCrossRef Muller GC, et al. The inverted CD4:CD8 ratio is associated with gender-related changes in oxidative stress during aging. Cell Immunol. 2015;296(2):149–54.PubMedCrossRef
106.
go back to reference Kamada M, et al. B cell subsets in postmenopausal women and the effect of hormone replacement therapy. Maturitas. 2001;37(3):173–9.PubMedCrossRef Kamada M, et al. B cell subsets in postmenopausal women and the effect of hormone replacement therapy. Maturitas. 2001;37(3):173–9.PubMedCrossRef
107.
go back to reference Hotchkiss J, Knobil E. The physiology of reproduction, vol. 2. 2nd ed. New York: Ravan Press; 1994. p. 711–49. Hotchkiss J, Knobil E. The physiology of reproduction, vol. 2. 2nd ed. New York: Ravan Press; 1994. p. 711–49.
108.
go back to reference Knobil E. The neuroendocrine control of the menstrual cycle. Recent Prog Horm Res. 1980;36:53–88.PubMed Knobil E. The neuroendocrine control of the menstrual cycle. Recent Prog Horm Res. 1980;36:53–88.PubMed
109.
go back to reference Knobil E, Neill JD. The physiology of reproduction, vol. 2. 2nd ed. New York: Ravaen Press; 1994. Knobil E, Neill JD. The physiology of reproduction, vol. 2. 2nd ed. New York: Ravaen Press; 1994.
110.
go back to reference Lu KH, et al. Chronological changes in sex steroid, gonadotropin and prolactin secretions in aging female rats displaying different reproductive states. Biol Reprod. 1979;21(1):193–203.PubMedCrossRef Lu KH, et al. Chronological changes in sex steroid, gonadotropin and prolactin secretions in aging female rats displaying different reproductive states. Biol Reprod. 1979;21(1):193–203.PubMedCrossRef
111.
go back to reference Clemens JA, Meites J. Neuroendocrine status of old constant-estrous rats. Neuroendocrinology. 1971;7(4):249–56.PubMedCrossRef Clemens JA, Meites J. Neuroendocrine status of old constant-estrous rats. Neuroendocrinology. 1971;7(4):249–56.PubMedCrossRef
112.
go back to reference Huang HH, et al. Patterns of sex steroid and gonadotropin secretion in aging female rats. Endocrinology. 1978;103(5):1855–9.PubMedCrossRef Huang HH, et al. Patterns of sex steroid and gonadotropin secretion in aging female rats. Endocrinology. 1978;103(5):1855–9.PubMedCrossRef
113.
go back to reference Pawluski JL, et al. Effects of steroid hormones on neurogenesis in the hippocampus of the adult female rodent during the estrous cycle, pregnancy, lactation and aging. Front Neuroendocrinol. 2009;30(3):343–57.PubMedCrossRef Pawluski JL, et al. Effects of steroid hormones on neurogenesis in the hippocampus of the adult female rodent during the estrous cycle, pregnancy, lactation and aging. Front Neuroendocrinol. 2009;30(3):343–57.PubMedCrossRef
114.
go back to reference Woolley CS, McEwen BS. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci. 1992;12(7):2549–54.PubMedPubMedCentralCrossRef Woolley CS, McEwen BS. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci. 1992;12(7):2549–54.PubMedPubMedCentralCrossRef
115.
go back to reference Chen JR, et al. Gonadal hormones modulate the dendritic spine densities of primary cortical pyramidal neurons in adult female rat. Cereb Cortex. 2009;19(11):2719–27.PubMedCrossRef Chen JR, et al. Gonadal hormones modulate the dendritic spine densities of primary cortical pyramidal neurons in adult female rat. Cereb Cortex. 2009;19(11):2719–27.PubMedCrossRef
116.
go back to reference DiCarlo LM, Vied C, Nowakowski RS. The stability of the transcriptome during the estrous cycle in four regions of the mouse brain. J Comp Neurol. 2017;525(15):3360–87.PubMedCrossRef DiCarlo LM, Vied C, Nowakowski RS. The stability of the transcriptome during the estrous cycle in four regions of the mouse brain. J Comp Neurol. 2017;525(15):3360–87.PubMedCrossRef
117.
go back to reference Gewirtz JC, McNish KA, Davis M. Is the hippocampus necessary for contextual fear conditioning? Behav Brain Res. 2000;110(1-2):83–95.PubMedCrossRef Gewirtz JC, McNish KA, Davis M. Is the hippocampus necessary for contextual fear conditioning? Behav Brain Res. 2000;110(1-2):83–95.PubMedCrossRef
118.
go back to reference Cossio R, et al. Sex differences and estrous cycle effects on foreground contextual fear conditioning. Physiol Behav. 2016;163:305–11.PubMedCrossRef Cossio R, et al. Sex differences and estrous cycle effects on foreground contextual fear conditioning. Physiol Behav. 2016;163:305–11.PubMedCrossRef
119.
go back to reference Milad MR, et al. Estrous cycle phase and gonadal hormones influence conditioned fear extinction. Neuroscience. 2009;164(3):887–95.PubMedCrossRef Milad MR, et al. Estrous cycle phase and gonadal hormones influence conditioned fear extinction. Neuroscience. 2009;164(3):887–95.PubMedCrossRef
120.
go back to reference Arakawa K, et al. Effects of the estrous cycle and ovarian hormones on central expression of interleukin-1 evoked by stress in female rats. Neuroendocrinology. 2014;100(2-3):162–77.PubMedCrossRef Arakawa K, et al. Effects of the estrous cycle and ovarian hormones on central expression of interleukin-1 evoked by stress in female rats. Neuroendocrinology. 2014;100(2-3):162–77.PubMedCrossRef
122.
go back to reference Carswell HV, et al. Investigation of estrogen status and increased stroke sensitivity on cerebral blood flow after a focal ischemic insult. J Cereb Blood Flow Metab. 2000;20(6):931–6.PubMedCrossRef Carswell HV, et al. Investigation of estrogen status and increased stroke sensitivity on cerebral blood flow after a focal ischemic insult. J Cereb Blood Flow Metab. 2000;20(6):931–6.PubMedCrossRef
123.
go back to reference Raval AP, et al. Pretreatment with a single estradiol-17beta bolus activates cyclic-AMP response element binding protein and protects CA1 neurons against global cerebral ischemia. Neuroscience. 2009;160(2):307–18.PubMedCrossRef Raval AP, et al. Pretreatment with a single estradiol-17beta bolus activates cyclic-AMP response element binding protein and protects CA1 neurons against global cerebral ischemia. Neuroscience. 2009;160(2):307–18.PubMedCrossRef
124.
go back to reference Raval AP, et al. Periodic 17beta-estradiol pretreatment protects rat brain from cerebral ischemic damage via estrogen receptor-beta. PLoS One. 2013;8(4):e60716.PubMedPubMedCentralCrossRef Raval AP, et al. Periodic 17beta-estradiol pretreatment protects rat brain from cerebral ischemic damage via estrogen receptor-beta. PLoS One. 2013;8(4):e60716.PubMedPubMedCentralCrossRef
125.
go back to reference de Rivero Vaccari JP, et al. Estrogen receptor beta signaling alters cellular inflammasomes activity after global cerebral ischemia in reproductively senescence female rats. J Neurochem. 2016;136(3):492–6.PubMedCrossRef de Rivero Vaccari JP, et al. Estrogen receptor beta signaling alters cellular inflammasomes activity after global cerebral ischemia in reproductively senescence female rats. J Neurochem. 2016;136(3):492–6.PubMedCrossRef
126.
127.
go back to reference Simpkins JW, et al. Estrogens may reduce mortality and ischemic damage caused by middle cerebral artery occlusion in the female rat. J Neurosurg. 1997;87(5):724–30.PubMedCrossRef Simpkins JW, et al. Estrogens may reduce mortality and ischemic damage caused by middle cerebral artery occlusion in the female rat. J Neurosurg. 1997;87(5):724–30.PubMedCrossRef
128.
go back to reference Simpkins JW, et al. Neuroprotection and estrogen receptors. Neuroendocrinology. 2012;96(2):119–30.PubMedCrossRef Simpkins JW, et al. Neuroprotection and estrogen receptors. Neuroendocrinology. 2012;96(2):119–30.PubMedCrossRef
129.
go back to reference Selvamani A, Sohrabji F. The neurotoxic effects of estrogen on ischemic stroke in older female rats is associated with age-dependent loss of insulin-like growth factor-1. J Neurosci. 2010;30(20):6852–61.PubMedPubMedCentralCrossRef Selvamani A, Sohrabji F. The neurotoxic effects of estrogen on ischemic stroke in older female rats is associated with age-dependent loss of insulin-like growth factor-1. J Neurosci. 2010;30(20):6852–61.PubMedPubMedCentralCrossRef
130.
go back to reference Sarvari M, et al. Ovariectomy and subsequent treatment with estrogen receptor agonists tune the innate immune system of the hippocampus in middle-aged female rats. PLoS One. 2014;9(2):e88540.PubMedPubMedCentralCrossRef Sarvari M, et al. Ovariectomy and subsequent treatment with estrogen receptor agonists tune the innate immune system of the hippocampus in middle-aged female rats. PLoS One. 2014;9(2):e88540.PubMedPubMedCentralCrossRef
131.
132.
go back to reference de Rivero Vaccari JP, et al. Exosome-mediated inflammasome signaling after central nervous system injury. J Neurochem. 2016;136(Suppl 1):39–48.PubMedCrossRef de Rivero Vaccari JP, et al. Exosome-mediated inflammasome signaling after central nervous system injury. J Neurochem. 2016;136(Suppl 1):39–48.PubMedCrossRef
133.
134.
go back to reference Lu D, et al. Activation of G protein-coupled estrogen receptor 1 (GPER-1) ameliorates blood-brain barrier permeability after global cerebral ischemia in ovariectomized rats. Biochem Biophys Res Commun. 2016;477(2):209–14.PubMedCrossRef Lu D, et al. Activation of G protein-coupled estrogen receptor 1 (GPER-1) ameliorates blood-brain barrier permeability after global cerebral ischemia in ovariectomized rats. Biochem Biophys Res Commun. 2016;477(2):209–14.PubMedCrossRef
135.
go back to reference Murata T, et al. G protein-coupled estrogen receptor agonist improves cerebral microvascular function after hypoxia/reoxygenation injury in male and female rats. Stroke. 2013;44(3):779–85.PubMedPubMedCentralCrossRef Murata T, et al. G protein-coupled estrogen receptor agonist improves cerebral microvascular function after hypoxia/reoxygenation injury in male and female rats. Stroke. 2013;44(3):779–85.PubMedPubMedCentralCrossRef
136.
go back to reference Noppens RR, et al. Estradiol after cardiac arrest and cardiopulmonary resuscitation is neuroprotective and mediated through estrogen receptor-beta. J Cereb Blood Flow Metab. 2009;29(2):277–86.PubMedCrossRef Noppens RR, et al. Estradiol after cardiac arrest and cardiopulmonary resuscitation is neuroprotective and mediated through estrogen receptor-beta. J Cereb Blood Flow Metab. 2009;29(2):277–86.PubMedCrossRef
138.
go back to reference Alexander A, Irving AJ, Harvey J. Emerging roles for the novel estrogen-sensing receptor GPER1 in the CNS. Neuropharmacology. 2017;113(Pt B):652–60.PubMedCrossRef Alexander A, Irving AJ, Harvey J. Emerging roles for the novel estrogen-sensing receptor GPER1 in the CNS. Neuropharmacology. 2017;113(Pt B):652–60.PubMedCrossRef
140.
go back to reference Prossnitz ER, Barton M. Signaling, physiological functions and clinical relevance of the G protein-coupled estrogen receptor GPER. Prostaglandins Other Lipid Mediat. 2009;89(3-4):89–97.PubMedPubMedCentralCrossRef Prossnitz ER, Barton M. Signaling, physiological functions and clinical relevance of the G protein-coupled estrogen receptor GPER. Prostaglandins Other Lipid Mediat. 2009;89(3-4):89–97.PubMedPubMedCentralCrossRef
141.
go back to reference Thomas P, et al. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. 2005;146(2):624–32.PubMedCrossRef Thomas P, et al. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. 2005;146(2):624–32.PubMedCrossRef
142.
go back to reference Lebesgue D, et al. Acute administration of non-classical estrogen receptor agonists attenuates ischemia-induced hippocampal neuron loss in middle-aged female rats. PLoS One. 2010;5(1):e8642.PubMedPubMedCentralCrossRef Lebesgue D, et al. Acute administration of non-classical estrogen receptor agonists attenuates ischemia-induced hippocampal neuron loss in middle-aged female rats. PLoS One. 2010;5(1):e8642.PubMedPubMedCentralCrossRef
143.
go back to reference Bai N, et al. G-protein-coupled estrogen receptor activation upregulates interleukin-1 receptor antagonist in the hippocampus after global cerebral ischemia: implications for neuronal self-defense. J Neuroinflammation. 2020;17(1):45.PubMedPubMedCentralCrossRef Bai N, et al. G-protein-coupled estrogen receptor activation upregulates interleukin-1 receptor antagonist in the hippocampus after global cerebral ischemia: implications for neuronal self-defense. J Neuroinflammation. 2020;17(1):45.PubMedPubMedCentralCrossRef
144.
go back to reference Weiser MJ, Foradori CD, Handa RJ. Estrogen receptor beta in the brain: from form to function. Brain Res Rev. 2008;57(2):309–20.PubMedCrossRef Weiser MJ, Foradori CD, Handa RJ. Estrogen receptor beta in the brain: from form to function. Brain Res Rev. 2008;57(2):309–20.PubMedCrossRef
145.
go back to reference Kuiper GG, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1998;139(10):4252–63.PubMedCrossRef Kuiper GG, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1998;139(10):4252–63.PubMedCrossRef
146.
go back to reference Stauffer SR, et al. Pyrazole ligands: structure-affinity/activity relationships and estrogen receptor-alpha-selective agonists. J Med Chem. 2000;43(26):4934–47.PubMedCrossRef Stauffer SR, et al. Pyrazole ligands: structure-affinity/activity relationships and estrogen receptor-alpha-selective agonists. J Med Chem. 2000;43(26):4934–47.PubMedCrossRef
147.
go back to reference Meyers MJ, et al. Estrogen receptor-beta potency-selective ligands: structure-activity relationship studies of diarylpropionitriles and their acetylene and polar analogues. J Med Chem. 2001;44(24):4230–51.PubMedCrossRef Meyers MJ, et al. Estrogen receptor-beta potency-selective ligands: structure-activity relationship studies of diarylpropionitriles and their acetylene and polar analogues. J Med Chem. 2001;44(24):4230–51.PubMedCrossRef
148.
go back to reference Sun J, et al. Molecular basis for the subtype discrimination of the estrogen receptor-beta-selective ligand, diarylpropionitrile. Mol Endocrinol. 2003;17(2):247–58.PubMedCrossRef Sun J, et al. Molecular basis for the subtype discrimination of the estrogen receptor-beta-selective ligand, diarylpropionitrile. Mol Endocrinol. 2003;17(2):247–58.PubMedCrossRef
149.
go back to reference Nilsson S, Koehler KF, Gustafsson JA. Development of subtype-selective oestrogen receptor-based therapeutics. Nat Rev Drug Discov. 2011;10(10):778–92.PubMedCrossRef Nilsson S, Koehler KF, Gustafsson JA. Development of subtype-selective oestrogen receptor-based therapeutics. Nat Rev Drug Discov. 2011;10(10):778–92.PubMedCrossRef
150.
go back to reference Waters EM, et al. Estrogen and aging affect the synaptic distribution of estrogen receptor beta-immunoreactivity in the CA1 region of female rat hippocampus. Brain Res. 2011;1379:86–97.PubMedCrossRef Waters EM, et al. Estrogen and aging affect the synaptic distribution of estrogen receptor beta-immunoreactivity in the CA1 region of female rat hippocampus. Brain Res. 2011;1379:86–97.PubMedCrossRef
151.
go back to reference Mirebeau-Prunier D, et al. Estrogen-related receptor alpha and PGC-1-related coactivator constitute a novel complex mediating the biogenesis of functional mitochondria. FEBS J. 2010;227:713–25.CrossRef Mirebeau-Prunier D, et al. Estrogen-related receptor alpha and PGC-1-related coactivator constitute a novel complex mediating the biogenesis of functional mitochondria. FEBS J. 2010;227:713–25.CrossRef
152.
go back to reference Simpkins JW, et al. Mitochondrial mechanisms of estrogen neuroprotection. Biochim Biophys Acta. 2010;1800(10):1113–20.PubMedCrossRef Simpkins JW, et al. Mitochondrial mechanisms of estrogen neuroprotection. Biochim Biophys Acta. 2010;1800(10):1113–20.PubMedCrossRef
153.
go back to reference Jayachandran M, et al. Loss of estrogen receptor beta decreases mitochondrial energetic potential and increases thrombogenicity of platelets in aged female mice. Age. 2009;32(1):109–21.PubMedPubMedCentralCrossRef Jayachandran M, et al. Loss of estrogen receptor beta decreases mitochondrial energetic potential and increases thrombogenicity of platelets in aged female mice. Age. 2009;32(1):109–21.PubMedPubMedCentralCrossRef
155.
go back to reference Chen JQ, Yager JD. Estrogen’s effects on mitochondrial gene expression: mechanisms and potential contributions to estrogen carcinogenesis. Ann N Y Acad Sci. 2004;1028:258–72.PubMedCrossRef Chen JQ, Yager JD. Estrogen’s effects on mitochondrial gene expression: mechanisms and potential contributions to estrogen carcinogenesis. Ann N Y Acad Sci. 2004;1028:258–72.PubMedCrossRef
156.
go back to reference Bettini E, Maggi A. Estrogen induction of cytochrome c oxidase subunit III in rat hippocampus. J Neurochem. 1992;58(5):1923–9.PubMedCrossRef Bettini E, Maggi A. Estrogen induction of cytochrome c oxidase subunit III in rat hippocampus. J Neurochem. 1992;58(5):1923–9.PubMedCrossRef
158.
160.
go back to reference Chen JQ, Brown TR, Yager JD. Mechanisms of hormone carcinogenesis: evolution of views, role of mitochondria. Adv Exp Med Biol. 2008;630:1–18.PubMedCrossRef Chen JQ, Brown TR, Yager JD. Mechanisms of hormone carcinogenesis: evolution of views, role of mitochondria. Adv Exp Med Biol. 2008;630:1–18.PubMedCrossRef
161.
go back to reference Cannino G, Di Liegro CM, Rinaldi AM. Nuclear-mitochondrial interaction. Mitochondrion. 2007;7(6):359–66.PubMedCrossRef Cannino G, Di Liegro CM, Rinaldi AM. Nuclear-mitochondrial interaction. Mitochondrion. 2007;7(6):359–66.PubMedCrossRef
162.
163.
go back to reference Mattingly KA, et al. Estradiol stimulates transcription of nuclear respiratory factor-1 and increases mitochondrial biogenesis. Mol Endocrinol. 2008;22(3):609–22.PubMedCrossRef Mattingly KA, et al. Estradiol stimulates transcription of nuclear respiratory factor-1 and increases mitochondrial biogenesis. Mol Endocrinol. 2008;22(3):609–22.PubMedCrossRef
164.
go back to reference De Rasmo D, et al. cAMP/Ca2+ response element-binding protein plays a central role in the biogenesis of respiratory chain proteins in mammalian cells. IUBMB Life. 2010;62(6):447–52.PubMed De Rasmo D, et al. cAMP/Ca2+ response element-binding protein plays a central role in the biogenesis of respiratory chain proteins in mammalian cells. IUBMB Life. 2010;62(6):447–52.PubMed
165.
go back to reference Lee J, et al. Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J Biol Chem. 2005;280(49):40398–401.PubMedCrossRef Lee J, et al. Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J Biol Chem. 2005;280(49):40398–401.PubMedCrossRef
166.
go back to reference Ryu H, et al. Antioxidants modulate mitochondrial PKA and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons. Proc Natl Acad Sci U S A. 2005;102(39):13915–20.PubMedPubMedCentralCrossRef Ryu H, et al. Antioxidants modulate mitochondrial PKA and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons. Proc Natl Acad Sci U S A. 2005;102(39):13915–20.PubMedPubMedCentralCrossRef
167.
go back to reference Acin-Perez R, et al. Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation. Cell Metab. 2011;13(6):712–9.PubMedPubMedCentralCrossRef Acin-Perez R, et al. Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation. Cell Metab. 2011;13(6):712–9.PubMedPubMedCentralCrossRef
168.
go back to reference Lazarou M, et al. Assembly of nuclear DNA-encoded subunits into mitochondrial complex IV, and their preferential integration into supercomplex forms in patient mitochondria. FEBS J. 2009;276(22):6701–13.PubMedCrossRef Lazarou M, et al. Assembly of nuclear DNA-encoded subunits into mitochondrial complex IV, and their preferential integration into supercomplex forms in patient mitochondria. FEBS J. 2009;276(22):6701–13.PubMedCrossRef
169.
go back to reference Dave KR, et al. Ischemic preconditioning targets the respiration of synaptic mitochondria via protein kinase C epsilon. J Neurosci. 2008;28(16):4172–82.PubMedPubMedCentralCrossRef Dave KR, et al. Ischemic preconditioning targets the respiration of synaptic mitochondria via protein kinase C epsilon. J Neurosci. 2008;28(16):4172–82.PubMedPubMedCentralCrossRef
170.
go back to reference Ogbi M, et al. Cytochrome c oxidase subunit IV as a marker of protein kinase Cepsilon function in neonatal cardiac myocytes: implications for cytochrome c oxidase activity. Biochem J. 2004;382(Pt 3):923–32.PubMedPubMedCentralCrossRef Ogbi M, et al. Cytochrome c oxidase subunit IV as a marker of protein kinase Cepsilon function in neonatal cardiac myocytes: implications for cytochrome c oxidase activity. Biochem J. 2004;382(Pt 3):923–32.PubMedPubMedCentralCrossRef
171.
go back to reference Guo D, et al. Protein kinase C-epsilon coimmunoprecipitates with cytochrome oxidase subunit IV and is associated with improved cytochrome-c oxidase activity and cardioprotection. Am J Physiol Heart Circ Physiol. 2007;293(4):H2219–30.PubMedCrossRef Guo D, et al. Protein kinase C-epsilon coimmunoprecipitates with cytochrome oxidase subunit IV and is associated with improved cytochrome-c oxidase activity and cardioprotection. Am J Physiol Heart Circ Physiol. 2007;293(4):H2219–30.PubMedCrossRef
172.
go back to reference Brinton RD. Estrogen regulation of glucose metabolism and mitochondrial function: therapeutic implications for prevention of Alzheimer’s disease. Adv Drug Deliv Rev. 2008;60(13-14):1504–11.PubMedPubMedCentralCrossRef Brinton RD. Estrogen regulation of glucose metabolism and mitochondrial function: therapeutic implications for prevention of Alzheimer’s disease. Adv Drug Deliv Rev. 2008;60(13-14):1504–11.PubMedPubMedCentralCrossRef
173.
go back to reference Gross CJ, et al. K(+) Efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity. 2016;45(4):761–73.PubMedCrossRef Gross CJ, et al. K(+) Efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity. 2016;45(4):761–73.PubMedCrossRef
176.
go back to reference Vanaja SK, Rathinam VA, Fitzgerald KA. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol. 2015;25(5):308–15.PubMedPubMedCentralCrossRef Vanaja SK, Rathinam VA, Fitzgerald KA. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol. 2015;25(5):308–15.PubMedPubMedCentralCrossRef
178.
go back to reference Zhou R, et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5.PubMedCrossRef Zhou R, et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5.PubMedCrossRef
179.
go back to reference Minutoli L, et al. ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxidative Med Cell Longev. 2016;2016:2183026.CrossRef Minutoli L, et al. ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxidative Med Cell Longev. 2016;2016:2183026.CrossRef
180.
go back to reference Yabal M, et al. Stressing out the mitochondria: mechanistic insights into NLRP3 inflammasome activation. J Leukoc Biol. 2019;105(2):377–99.PubMedCrossRef Yabal M, et al. Stressing out the mitochondria: mechanistic insights into NLRP3 inflammasome activation. J Leukoc Biol. 2019;105(2):377–99.PubMedCrossRef
181.
182.
go back to reference Slowik A, Beyer C. Inflammasomes are neuroprotective targets for sex steroids. J Steroid Biochem Mol Biol. 2015;153:135–43.PubMedCrossRef Slowik A, Beyer C. Inflammasomes are neuroprotective targets for sex steroids. J Steroid Biochem Mol Biol. 2015;153:135–43.PubMedCrossRef
183.
go back to reference Xu Y, et al. NLRP3 inflammasome activation mediates estrogen deficiency-induced depression- and anxiety-like behavior and hippocampal inflammation in mice. Brain Behav Immun. 2016;56:175–86.PubMedCrossRef Xu Y, et al. NLRP3 inflammasome activation mediates estrogen deficiency-induced depression- and anxiety-like behavior and hippocampal inflammation in mice. Brain Behav Immun. 2016;56:175–86.PubMedCrossRef
Metadata
Title
The peri-menopause in a woman’s life: a systemic inflammatory phase that enables later neurodegenerative disease
Authors
Micheline McCarthy
Ami P. Raval
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2020
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-020-01998-9

Other articles of this Issue 1/2020

Journal of Neuroinflammation 1/2020 Go to the issue