Skip to main content
Top
Published in: Acta Neuropathologica 5/2010

01-11-2010 | Original Paper

Soluble hyper-phosphorylated tau causes microtubule breakdown and functionally compromises normal tau in vivo

Authors: Catherine M. Cowan, Torsten Bossing, Anton Page, David Shepherd, Amritpal Mudher

Published in: Acta Neuropathologica | Issue 5/2010

Login to get access

Abstract

It has been hypothesised that tau protein, when hyper-phosphorylated as in Alzheimer’s disease (AD), does not bind effectively to microtubules and is no longer able to stabilise them; thus microtubules break down, and axonal transport can no longer proceed efficiently in affected brain regions in AD and related tauopathies (tau-microtubule hypothesis). We have used Drosophila models of tauopathy to test all components of this hypothesis in vivo. We have previously shown that upon expression of human 0N3R tau in Drosophila motor neurons it becomes highly phosphorylated, resulting in disruptions to both axonal transport and synaptic function which culminate in behavioural phenotypes. We now show that the mechanism by which the human tau mediates these effects is twofold: first, as predicted by the tau-microtubule hypothesis, the highly phosphorylated tau exhibits significantly reduced binding to microtubules; and second, it participates in a pathogenic interaction with the endogenous normal Drosophila tau and sequesters it away from microtubules. This causes disruption of the microtubular cytoskeleton as evidenced by a reduction in the numbers of intact correctly-aligned microtubules and the appearance of microtubules that are not correctly oriented within the axon. These deleterious effects of human tau are phosphorylation dependent because treatment with LiCl to suppress tau phosphorylation increases microtubule binding of both human and Drosophila tau and restores cytoskeletal integrity. Notably, all these phospho-tau-mediated phenotypes occur in the absence of tau filament/neurofibrillary tangle formation or neuronal death, and may thus constitute the mechanism by which hyper-phosphorylated tau disrupts neuronal function and contributes to cognitive impairment prior to neuronal death in the early stages of tauopathies.
Literature
1.
go back to reference Alonso AC, Zaidi T, Grundke-Iqbal I et al (1994) Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA 91:5562–5566CrossRefPubMed Alonso AC, Zaidi T, Grundke-Iqbal I et al (1994) Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA 91:5562–5566CrossRefPubMed
2.
go back to reference Alonso AD, Grundke-Iqbal I, Barra HS et al (1997) Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci USA 94:298–303CrossRefPubMed Alonso AD, Grundke-Iqbal I, Barra HS et al (1997) Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci USA 94:298–303CrossRefPubMed
3.
go back to reference Alonso Adel C, Li B, Grundke-Iqbal I et al (2006) Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proc Natl Acad Sci USA 103:8864–8869CrossRefPubMed Alonso Adel C, Li B, Grundke-Iqbal I et al (2006) Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proc Natl Acad Sci USA 103:8864–8869CrossRefPubMed
4.
go back to reference Alonso Adel C, Mederlyova A, Novak M et al (2004) Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J Biol Chem 279:34873–34881CrossRefPubMed Alonso Adel C, Mederlyova A, Novak M et al (2004) Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J Biol Chem 279:34873–34881CrossRefPubMed
5.
go back to reference Bramblett GT, Goedert M, Jakes R et al (1993) Abnormal tau phosphorylation at Ser396 in Alzheimer’s disease recapitulates development and contributes to reduced microtubule binding. Neuron 10:1089–1099CrossRefPubMed Bramblett GT, Goedert M, Jakes R et al (1993) Abnormal tau phosphorylation at Ser396 in Alzheimer’s disease recapitulates development and contributes to reduced microtubule binding. Neuron 10:1089–1099CrossRefPubMed
6.
go back to reference Cash AD, Aliev G, Siedlak SL et al (2003) Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation. Am J Pathol 162:1623–1627PubMed Cash AD, Aliev G, Siedlak SL et al (2003) Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation. Am J Pathol 162:1623–1627PubMed
7.
go back to reference Chatterjee S, Sang TK, Lawless GM et al (2009) Dissociation of tau toxicity and phosphorylation: role of GSK-3beta, MARK and Cdk5 in a Drosophila model. Hum Mol Genet 18:164–177CrossRefPubMed Chatterjee S, Sang TK, Lawless GM et al (2009) Dissociation of tau toxicity and phosphorylation: role of GSK-3beta, MARK and Cdk5 in a Drosophila model. Hum Mol Genet 18:164–177CrossRefPubMed
8.
go back to reference Chee FC, Mudher A, Cuttle MF (2005) Over-expression of tau results in defective synaptic transmission in Drosophila neuromuscular junctions. Neurobiol Dis 20:918–928CrossRefPubMed Chee FC, Mudher A, Cuttle MF (2005) Over-expression of tau results in defective synaptic transmission in Drosophila neuromuscular junctions. Neurobiol Dis 20:918–928CrossRefPubMed
9.
go back to reference Cleveland DW, Hwo SY, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116:227–247CrossRefPubMed Cleveland DW, Hwo SY, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116:227–247CrossRefPubMed
10.
go back to reference Coleman PD, Yao PJ (2003) Synaptic slaughter in Alzheimer’s disease. Neurobiol Aging 24:1023–1027CrossRefPubMed Coleman PD, Yao PJ (2003) Synaptic slaughter in Alzheimer’s disease. Neurobiol Aging 24:1023–1027CrossRefPubMed
11.
go back to reference Dayanandan R, Van Slegtenhorst M, Mack TG et al (1999) Mutations in tau reduce its microtubule binding properties in intact cells and affect its phosphorylation. FEBS Lett 446:228–232CrossRefPubMed Dayanandan R, Van Slegtenhorst M, Mack TG et al (1999) Mutations in tau reduce its microtubule binding properties in intact cells and affect its phosphorylation. FEBS Lett 446:228–232CrossRefPubMed
12.
go back to reference Dixit R, Ross JL, Goldman YE et al (2008) Differential regulation of dynein and kinesin motor proteins by tau. Science 319:1086–1089CrossRefPubMed Dixit R, Ross JL, Goldman YE et al (2008) Differential regulation of dynein and kinesin motor proteins by tau. Science 319:1086–1089CrossRefPubMed
13.
go back to reference Doerflinger H, Benton R, Shulman JM et al (2003) The role of PAR-1 in regulating the polarised microtubule cytoskeleton in the Drosophila follicular epithelium. Development 130:3965–3975CrossRefPubMed Doerflinger H, Benton R, Shulman JM et al (2003) The role of PAR-1 in regulating the polarised microtubule cytoskeleton in the Drosophila follicular epithelium. Development 130:3965–3975CrossRefPubMed
14.
go back to reference Drechsel DN, Hyman AA, Cobb MH et al (1992) Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell 3:1141–1154PubMed Drechsel DN, Hyman AA, Cobb MH et al (1992) Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell 3:1141–1154PubMed
15.
go back to reference Feinstein SC, Wilson L (2005) Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim Biophys Acta 1739:268–279PubMed Feinstein SC, Wilson L (2005) Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim Biophys Acta 1739:268–279PubMed
16.
go back to reference Grundke-Iqbal I, Iqbal K, Tung YC et al (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917CrossRefPubMed Grundke-Iqbal I, Iqbal K, Tung YC et al (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917CrossRefPubMed
17.
go back to reference Gustke N, Trinczek B, Biernat J et al (1994) Domains of tau protein and interactions with microtubules. Biochemistry 33:9511–9522CrossRefPubMed Gustke N, Trinczek B, Biernat J et al (1994) Domains of tau protein and interactions with microtubules. Biochemistry 33:9511–9522CrossRefPubMed
18.
go back to reference Han D, Qureshi HY, Lu Y et al (2009) Familial FTDP-17 missense mutations inhibit microtubule assembly-promoting activity of tau by increasing phosphorylation at Ser202 in vitro. J Biol Chem 284:13422–13433CrossRefPubMed Han D, Qureshi HY, Lu Y et al (2009) Familial FTDP-17 missense mutations inhibit microtubule assembly-promoting activity of tau by increasing phosphorylation at Ser202 in vitro. J Biol Chem 284:13422–13433CrossRefPubMed
19.
go back to reference Hasegawa M, Smith MJ, Goedert M (1998) Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly. FEBS Lett 437:207–210CrossRefPubMed Hasegawa M, Smith MJ, Goedert M (1998) Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly. FEBS Lett 437:207–210CrossRefPubMed
20.
go back to reference Iqbal K, Alonso Adel C, Grundke-Iqbal I (2008) Cytosolic abnormally hyperphosphorylated tau but not paired helical filaments sequester normal MAPs and inhibit microtubule assembly. J Alzheimers Dis 14:365–370PubMed Iqbal K, Alonso Adel C, Grundke-Iqbal I (2008) Cytosolic abnormally hyperphosphorylated tau but not paired helical filaments sequester normal MAPs and inhibit microtubule assembly. J Alzheimers Dis 14:365–370PubMed
21.
go back to reference Iqbal K, Grundke-Iqbal I, Zaidi T et al (1986) Defective brain microtubule assembly in Alzheimer’s disease. Lancet 2:421–426CrossRefPubMed Iqbal K, Grundke-Iqbal I, Zaidi T et al (1986) Defective brain microtubule assembly in Alzheimer’s disease. Lancet 2:421–426CrossRefPubMed
22.
go back to reference Iqbal K, Liu F, Gong CX et al (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118:53–69CrossRefPubMed Iqbal K, Liu F, Gong CX et al (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118:53–69CrossRefPubMed
23.
go back to reference Ishihara T, Hong M, Zhang B et al (1999) Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24:751–762CrossRefPubMed Ishihara T, Hong M, Zhang B et al (1999) Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24:751–762CrossRefPubMed
24.
go back to reference Ishihara T, Zhang B, Higuchi M et al (2001) Age-dependent induction of congophilic neurofibrillary tau inclusions in tau transgenic mice. Am J Pathol 158:555–562PubMed Ishihara T, Zhang B, Higuchi M et al (2001) Age-dependent induction of congophilic neurofibrillary tau inclusions in tau transgenic mice. Am J Pathol 158:555–562PubMed
25.
go back to reference Li B, Chohan MO, Grundke-Iqbal I et al (2007) Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol 113:501–511CrossRefPubMed Li B, Chohan MO, Grundke-Iqbal I et al (2007) Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol 113:501–511CrossRefPubMed
26.
go back to reference Liu SJ, Zhang JY, Li HL et al (2004) Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. J Biol Chem 279:50078–50088CrossRefPubMed Liu SJ, Zhang JY, Li HL et al (2004) Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. J Biol Chem 279:50078–50088CrossRefPubMed
27.
go back to reference Lovestone S, Davis DR, Webster MT et al (1999) Lithium reduces tau phosphorylation: effects in living cells and in neurons at therapeutic concentrations. Biol Psychiatry 45:995–1003CrossRefPubMed Lovestone S, Davis DR, Webster MT et al (1999) Lithium reduces tau phosphorylation: effects in living cells and in neurons at therapeutic concentrations. Biol Psychiatry 45:995–1003CrossRefPubMed
28.
go back to reference Lovestone S, Hartley CL, Pearce J et al (1996) Phosphorylation of tau by glycogen synthase kinase-3 beta in intact mammalian cells: the effects on the organization and stability of microtubules. Neuroscience 73:1145–1157CrossRefPubMed Lovestone S, Hartley CL, Pearce J et al (1996) Phosphorylation of tau by glycogen synthase kinase-3 beta in intact mammalian cells: the effects on the organization and stability of microtubules. Neuroscience 73:1145–1157CrossRefPubMed
29.
go back to reference Lovestone S, Reynolds CH, Latimer D et al (1994) Alzheimer’s disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr Biol 4:1077–1086CrossRefPubMed Lovestone S, Reynolds CH, Latimer D et al (1994) Alzheimer’s disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr Biol 4:1077–1086CrossRefPubMed
30.
go back to reference Mandelkow EM, Biernat J, Drewes G et al (1995) Tau domains, phosphorylation, and interactions with microtubules. Neurobiol Aging 16:355–362 discussion 362–363CrossRefPubMed Mandelkow EM, Biernat J, Drewes G et al (1995) Tau domains, phosphorylation, and interactions with microtubules. Neurobiol Aging 16:355–362 discussion 362–363CrossRefPubMed
31.
go back to reference Mandelkow EM, Thies E, Trinczek B et al (2004) MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. J Cell Biol 167:99–110CrossRefPubMed Mandelkow EM, Thies E, Trinczek B et al (2004) MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. J Cell Biol 167:99–110CrossRefPubMed
32.
go back to reference Mocanu MM, Nissen A, Eckermann K et al (2008) The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. J Neurosci 28:737–748CrossRefPubMed Mocanu MM, Nissen A, Eckermann K et al (2008) The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. J Neurosci 28:737–748CrossRefPubMed
33.
go back to reference Mudher A, Shepherd D, Newman TA et al (2004) GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila. Mol Psychiatry 9:522–530CrossRefPubMed Mudher A, Shepherd D, Newman TA et al (2004) GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila. Mol Psychiatry 9:522–530CrossRefPubMed
34.
go back to reference Murrell JR, Spillantini MG, Zolo P et al (1999) Tau gene mutation G389R causes a tauopathy with abundant pick body-like inclusions and axonal deposits. J Neuropathol Exp Neurol 58:1207–1226CrossRefPubMed Murrell JR, Spillantini MG, Zolo P et al (1999) Tau gene mutation G389R causes a tauopathy with abundant pick body-like inclusions and axonal deposits. J Neuropathol Exp Neurol 58:1207–1226CrossRefPubMed
35.
go back to reference Nagiec EW, Sampson KE, Abraham I (2001) Mutated tau binds less avidly to microtubules than wildtype tau in living cells. J Neurosci Res 63:268–275CrossRefPubMed Nagiec EW, Sampson KE, Abraham I (2001) Mutated tau binds less avidly to microtubules than wildtype tau in living cells. J Neurosci Res 63:268–275CrossRefPubMed
36.
go back to reference Oddo S, Vasilevko V, Caccamo A et al (2006) Reduction of soluble Abeta and tau, but not soluble Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. J Biol Chem 281:39413–39423CrossRefPubMed Oddo S, Vasilevko V, Caccamo A et al (2006) Reduction of soluble Abeta and tau, but not soluble Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. J Biol Chem 281:39413–39423CrossRefPubMed
37.
go back to reference Planel E, Krishnamurthy P, Miyasaka T et al (2008) Anesthesia-induced hyperphosphorylation detaches 3-repeat tau from microtubules without affecting their stability in vivo. J Neurosci 28:12798–12807CrossRefPubMed Planel E, Krishnamurthy P, Miyasaka T et al (2008) Anesthesia-induced hyperphosphorylation detaches 3-repeat tau from microtubules without affecting their stability in vivo. J Neurosci 28:12798–12807CrossRefPubMed
38.
go back to reference Praprotnik D, Smith MA, Richey PL et al (1996) Filament heterogeneity within the dystrophic neurites of senile plaques suggests blockage of fast axonal transport in Alzheimer’s disease. Acta Neuropathol 91:226–235CrossRefPubMed Praprotnik D, Smith MA, Richey PL et al (1996) Filament heterogeneity within the dystrophic neurites of senile plaques suggests blockage of fast axonal transport in Alzheimer’s disease. Acta Neuropathol 91:226–235CrossRefPubMed
39.
go back to reference Preuss U, Biernat J, Mandelkow EM et al (1997) The ‘jaws’ model of tau-microtubule interaction examined in CHO cells. J Cell Sci 110(Pt 6):789–800PubMed Preuss U, Biernat J, Mandelkow EM et al (1997) The ‘jaws’ model of tau-microtubule interaction examined in CHO cells. J Cell Sci 110(Pt 6):789–800PubMed
40.
go back to reference Santarella RA, Skiniotis G, Goldie KN et al (2004) Surface-decoration of microtubules by human tau. J Mol Biol 339:539–553CrossRefPubMed Santarella RA, Skiniotis G, Goldie KN et al (2004) Surface-decoration of microtubules by human tau. J Mol Biol 339:539–553CrossRefPubMed
41.
go back to reference Stambolic V, Ruel L, Woodgett JR (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 6:1664–1668CrossRefPubMed Stambolic V, Ruel L, Woodgett JR (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 6:1664–1668CrossRefPubMed
42.
go back to reference Suzuki K, Terry RD (1967) Fine structural localization of acid phosphatase in senile plaques in Alzheimer’s presenile dementia. Acta Neuropathol 8:276–284CrossRefPubMed Suzuki K, Terry RD (1967) Fine structural localization of acid phosphatase in senile plaques in Alzheimer’s presenile dementia. Acta Neuropathol 8:276–284CrossRefPubMed
43.
go back to reference Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580CrossRefPubMed Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580CrossRefPubMed
44.
go back to reference Trinczek B, Biernat J, Baumann K et al (1995) Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules. Mol Biol Cell 6:1887–1902PubMed Trinczek B, Biernat J, Baumann K et al (1995) Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules. Mol Biol Cell 6:1887–1902PubMed
45.
go back to reference Trinczek B, Ebneth A, Mandelkow EM et al (1999) Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J Cell Sci 112(14):2355–2367PubMed Trinczek B, Ebneth A, Mandelkow EM et al (1999) Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J Cell Sci 112(14):2355–2367PubMed
46.
go back to reference Ubhi KK, Shaibah H, Newman TA et al (2007) A comparison of the neuronal dysfunction caused by Drosophila tau and human tau in a Drosophila model of tauopathies. Invert Neurosci 7:165–171CrossRefPubMed Ubhi KK, Shaibah H, Newman TA et al (2007) A comparison of the neuronal dysfunction caused by Drosophila tau and human tau in a Drosophila model of tauopathies. Invert Neurosci 7:165–171CrossRefPubMed
47.
go back to reference Wang JZ, Gong CX, Zaidi T et al (1995) Dephosphorylation of Alzheimer paired helical filaments by protein phosphatase-2A and -2B. J Biol Chem 270:4854–4860CrossRefPubMed Wang JZ, Gong CX, Zaidi T et al (1995) Dephosphorylation of Alzheimer paired helical filaments by protein phosphatase-2A and -2B. J Biol Chem 270:4854–4860CrossRefPubMed
48.
go back to reference Wang JZ, Grundke-Iqbal I, Iqbal K (1996) Restoration of biological activity of Alzheimer abnormally phosphorylated tau by dephosphorylation with protein phosphatase-2A, -2B and -1. Brain Res Mol Brain Res 38:200–208CrossRefPubMed Wang JZ, Grundke-Iqbal I, Iqbal K (1996) Restoration of biological activity of Alzheimer abnormally phosphorylated tau by dephosphorylation with protein phosphatase-2A, -2B and -1. Brain Res Mol Brain Res 38:200–208CrossRefPubMed
49.
go back to reference Williams DW, Tyrer M, Shepherd D (2000) Tau and tau reporters disrupt central projections of sensory neurons in Drosophila. J Comp Neurol 428:630–640CrossRefPubMed Williams DW, Tyrer M, Shepherd D (2000) Tau and tau reporters disrupt central projections of sensory neurons in Drosophila. J Comp Neurol 428:630–640CrossRefPubMed
50.
go back to reference Wittmann CW, Wszolek MF, Shulman JM et al (2001) Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293:711–714CrossRefPubMed Wittmann CW, Wszolek MF, Shulman JM et al (2001) Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293:711–714CrossRefPubMed
51.
go back to reference Wood JG, Mirra SS, Pollock NJ et al (1986) Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc Natl Acad Sci USA 83:4040–4043CrossRefPubMed Wood JG, Mirra SS, Pollock NJ et al (1986) Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc Natl Acad Sci USA 83:4040–4043CrossRefPubMed
Metadata
Title
Soluble hyper-phosphorylated tau causes microtubule breakdown and functionally compromises normal tau in vivo
Authors
Catherine M. Cowan
Torsten Bossing
Anton Page
David Shepherd
Amritpal Mudher
Publication date
01-11-2010
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 5/2010
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-010-0716-8

Other articles of this Issue 5/2010

Acta Neuropathologica 5/2010 Go to the issue