Skip to main content
Top
Published in: Acta Neuropathologica 5/2010

01-11-2010 | Original Paper

Mitochondrial abnormalities in the putamen in Parkinson’s disease dyskinesia

Authors: Alipi V. Naydenov, Fair Vassoler, Andrew S. Luksik, Joanna Kaczmarska, Christine Konradi

Published in: Acta Neuropathologica | Issue 5/2010

Login to get access

Abstract

Prolonged treatment of Parkinson’s disease (PD) with levodopa leads to disabling side effects collectively referred to as ‘dyskinesias’. We hypothesized that bioenergetic function in the putamen might play a crucial role in the development of dyskinesias. To test this hypothesis, we used post mortem samples of the human putamen and applied real time–PCR approaches and gene expression microarrays. We found that mitochondrial DNA (mtDNA) levels are decreased in patients who have developed dyskinesias, and mtDNA damage is concomitantly increased. These pathologies were not observed in PD subjects without signs of dyskinesias. The group of nuclear mRNA transcripts coding for the proteins of the mitochondrial electron transfer chain was decreased in patients with dyskinesias to a larger extent than in patients who had not developed dyskinesias. To examine whether dopamine fluctuations affect mtDNA levels in dopaminoceptive neurons, rat striatal neurons in culture were repeatedly exposed to levodopa, dopamine or their metabolites. MtDNA levels were reduced after treatment with dopamine, but not after treatment with dopamine metabolites. Levodopa led to an increase in mtDNA levels. We conclude that mitochondrial susceptibility in the putamen plays a role in the development of dyskinesias.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ahlskog JE, Muenter MD (2001) Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 16:448–458CrossRefPubMed Ahlskog JE, Muenter MD (2001) Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 16:448–458CrossRefPubMed
2.
go back to reference Bender A, Krishnan KJ, Morris CM et al (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517CrossRefPubMed Bender A, Krishnan KJ, Morris CM et al (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517CrossRefPubMed
3.
go back to reference Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57:289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57:289–300
4.
go back to reference Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455CrossRefPubMed Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455CrossRefPubMed
5.
go back to reference Birkmayer W, Hornykiewicz O (1961) Der Dioxyphenylalanin (=DOPA)-Effekt bei der Parkinson-Akinese. Wien Klin Wochenschr 73:787–788PubMed Birkmayer W, Hornykiewicz O (1961) Der Dioxyphenylalanin (=DOPA)-Effekt bei der Parkinson-Akinese. Wien Klin Wochenschr 73:787–788PubMed
6.
go back to reference Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193CrossRefPubMed Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193CrossRefPubMed
7.
go back to reference Budd SL, Nicholls DG (1996) Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurochem 67:2282–2291CrossRefPubMed Budd SL, Nicholls DG (1996) Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurochem 67:2282–2291CrossRefPubMed
8.
go back to reference Bueler H (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 218:235–246CrossRefPubMed Bueler H (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 218:235–246CrossRefPubMed
9.
go back to reference Cenci MA, Lindgren HS (2007) Advances in understanding l-DOPA-induced dyskinesia. Curr Opin Neurobiol 17:665–671CrossRefPubMed Cenci MA, Lindgren HS (2007) Advances in understanding l-DOPA-induced dyskinesia. Curr Opin Neurobiol 17:665–671CrossRefPubMed
10.
go back to reference Clay Montier LL, Deng JJ, Bai Y (2009) Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomics 36:125–131CrossRefPubMed Clay Montier LL, Deng JJ, Bai Y (2009) Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomics 36:125–131CrossRefPubMed
11.
go back to reference Cole RL, Konradi C, Douglass J, Hyman SE (1995) Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14:813–823CrossRefPubMed Cole RL, Konradi C, Douglass J, Hyman SE (1995) Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14:813–823CrossRefPubMed
12.
go back to reference Cookson MR DJ-1, PINK1, and their effects on mitochondrial pathways. Mov Disord 25(Suppl 1):S44–S48 Cookson MR DJ-1, PINK1, and their effects on mitochondrial pathways. Mov Disord 25(Suppl 1):S44–S48
13.
go back to reference Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2:324–329CrossRefPubMed Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2:324–329CrossRefPubMed
14.
go back to reference Dennis G Jr, Sherman BT, Hosack DA et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3CrossRefPubMed Dennis G Jr, Sherman BT, Hosack DA et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3CrossRefPubMed
15.
go back to reference Dudman JT, Eaton ME, Rajadhyaksha A et al (2003) Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1. J Neurochem 87:922–934CrossRefPubMed Dudman JT, Eaton ME, Rajadhyaksha A et al (2003) Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1. J Neurochem 87:922–934CrossRefPubMed
16.
go back to reference Fahn S, Oakes D, Shoulson I et al (2004) Levodopa and the progression of Parkinson’s disease. N Engl J Med 351:2498–2508CrossRefPubMed Fahn S, Oakes D, Shoulson I et al (2004) Levodopa and the progression of Parkinson’s disease. N Engl J Med 351:2498–2508CrossRefPubMed
17.
go back to reference Garris PA, Ciolkowski EL, Pastore P, Wightman RM (1994) Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 14:6084–6093PubMed Garris PA, Ciolkowski EL, Pastore P, Wightman RM (1994) Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 14:6084–6093PubMed
18.
go back to reference Gerfen CR (2000) Molecular effects of dopamine on striatal-projection pathways. Trends Neurosci 23:S64–S70CrossRefPubMed Gerfen CR (2000) Molecular effects of dopamine on striatal-projection pathways. Trends Neurosci 23:S64–S70CrossRefPubMed
19.
go back to reference Goto Y, Otani S, Grace AA (2007) The Yin and Yang of dopamine release: a new perspective. Neuropharmacology 53:583–587CrossRefPubMed Goto Y, Otani S, Grace AA (2007) The Yin and Yang of dopamine release: a new perspective. Neuropharmacology 53:583–587CrossRefPubMed
20.
go back to reference Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4:2877–2890PubMed Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4:2877–2890PubMed
21.
go back to reference Hattoria N, Wanga M, Taka H et al (2009) Toxic effects of dopamine metabolism in Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 1):S35–S38CrossRefPubMed Hattoria N, Wanga M, Taka H et al (2009) Toxic effects of dopamine metabolism in Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 1):S35–S38CrossRefPubMed
22.
go back to reference Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRef Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRef
23.
go back to reference Jankovic J (2002) Levodopa strengths and weaknesses. Neurology 58:S19–S32PubMed Jankovic J (2002) Levodopa strengths and weaknesses. Neurology 58:S19–S32PubMed
24.
go back to reference Jenner P (1993) Altered mitochondrial function, iron metabolism and glutathione levels in Parkinson’s disease. Acta Neurol Scand Suppl 146:6–13PubMed Jenner P (1993) Altered mitochondrial function, iron metabolism and glutathione levels in Parkinson’s disease. Acta Neurol Scand Suppl 146:6–13PubMed
25.
go back to reference Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S36 (discussion S36–S28)CrossRefPubMed Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S36 (discussion S36–S28)CrossRefPubMed
26.
go back to reference Kastner A, Anglade P, Bounaix C et al (1994) Immunohistochemical study of catechol-O-methyltransferase in the human mesostriatal system. Neuroscience 62:449–457CrossRefPubMed Kastner A, Anglade P, Bounaix C et al (1994) Immunohistochemical study of catechol-O-methyltransferase in the human mesostriatal system. Neuroscience 62:449–457CrossRefPubMed
27.
go back to reference Konradi C (1998) The molecular basis of dopamine and glutamate interactions in the striatum. Adv Pharmacol 42:729–733CrossRefPubMed Konradi C (1998) The molecular basis of dopamine and glutamate interactions in the striatum. Adv Pharmacol 42:729–733CrossRefPubMed
28.
go back to reference Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520CrossRefPubMed Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520CrossRefPubMed
29.
go back to reference Laderman KA, Penny JR, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1996) Aging-dependent functional alterations of mitochondrial DNA (mtDNA) from human fibroblasts transferred into mtDNA-less cells. J Biol Chem 271:15891–15897CrossRefPubMed Laderman KA, Penny JR, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1996) Aging-dependent functional alterations of mitochondrial DNA (mtDNA) from human fibroblasts transferred into mtDNA-less cells. J Biol Chem 271:15891–15897CrossRefPubMed
30.
go back to reference Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98:31–36CrossRefPubMed Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98:31–36CrossRefPubMed
31.
go back to reference Maguire-Zeiss KA, Short DW, Federoff HJ (2005) Synuclein, dopamine and oxidative stress: co-conspirators in Parkinson’s disease? Brain Res Mol Brain Res 134:18–23CrossRefPubMed Maguire-Zeiss KA, Short DW, Federoff HJ (2005) Synuclein, dopamine and oxidative stress: co-conspirators in Parkinson’s disease? Brain Res Mol Brain Res 134:18–23CrossRefPubMed
32.
go back to reference McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P (2001) Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat Rev Neurosci 2:589–594CrossRefPubMed McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P (2001) Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat Rev Neurosci 2:589–594CrossRefPubMed
33.
go back to reference Nicklas WJ, Saporito M, Basma A, Geller HM, Heikkila RE (1992) Mitochondrial mechanisms of neurotoxicity. Ann N Y Acad Sci 648:28–36CrossRefPubMed Nicklas WJ, Saporito M, Basma A, Geller HM, Heikkila RE (1992) Mitochondrial mechanisms of neurotoxicity. Ann N Y Acad Sci 648:28–36CrossRefPubMed
35.
go back to reference Prithivirajsingh S, Story MD, Bergh SA et al (2004) Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett 571:227–232CrossRefPubMed Prithivirajsingh S, Story MD, Bergh SA et al (2004) Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett 571:227–232CrossRefPubMed
36.
go back to reference Rajadhyaksha A, Barczak A, Macias W, Leveque JC, Lewis SE, Konradi C (1999) l-Type Ca(2+) channels are essential for glutamate-mediated CREB phosphorylation and c-fos gene expression in striatal neurons. J Neurosci 19:6348–6359PubMed Rajadhyaksha A, Barczak A, Macias W, Leveque JC, Lewis SE, Konradi C (1999) l-Type Ca(2+) channels are essential for glutamate-mediated CREB phosphorylation and c-fos gene expression in striatal neurons. J Neurosci 19:6348–6359PubMed
37.
go back to reference Rice ME, Cragg SJ (2008) Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway. Brain Res Rev 58:303–313CrossRefPubMed Rice ME, Cragg SJ (2008) Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway. Brain Res Rev 58:303–313CrossRefPubMed
38.
go back to reference Richfield EK, Penney JB, Young AB (1989) Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 30:767–777CrossRefPubMed Richfield EK, Penney JB, Young AB (1989) Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 30:767–777CrossRefPubMed
39.
go back to reference Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMed Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMed
40.
go back to reference Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109CrossRefPubMed Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109CrossRefPubMed
41.
go back to reference Schapira AH, Hartley A, Cleeter MW, Cooper JM (1993) Free radicals and mitochondrial dysfunction in Parkinson’s disease. Biochem Soc Trans 21:367–370PubMed Schapira AH, Hartley A, Cleeter MW, Cooper JM (1993) Free radicals and mitochondrial dysfunction in Parkinson’s disease. Biochem Soc Trans 21:367–370PubMed
42.
go back to reference Schapira AH, Olanow CW (2008) Drug selection and timing of initiation of treatment in early Parkinson’s disease. Ann Neurol 64(Suppl 2):S47–S55PubMed Schapira AH, Olanow CW (2008) Drug selection and timing of initiation of treatment in early Parkinson’s disease. Ann Neurol 64(Suppl 2):S47–S55PubMed
43.
go back to reference Yang JL, Weissman L, Bohr VA, Mattson MP (2008) Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair (Amst) 7:1110–1120CrossRef Yang JL, Weissman L, Bohr VA, Mattson MP (2008) Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair (Amst) 7:1110–1120CrossRef
44.
go back to reference Zeevalk GD, Bernard LP, Song C, Gluck M, Ehrhart J (2005) Mitochondrial inhibition and oxidative stress: reciprocating players in neurodegeneration. Antioxid Redox Signal 7:1117–1139CrossRefPubMed Zeevalk GD, Bernard LP, Song C, Gluck M, Ehrhart J (2005) Mitochondrial inhibition and oxidative stress: reciprocating players in neurodegeneration. Antioxid Redox Signal 7:1117–1139CrossRefPubMed
Metadata
Title
Mitochondrial abnormalities in the putamen in Parkinson’s disease dyskinesia
Authors
Alipi V. Naydenov
Fair Vassoler
Andrew S. Luksik
Joanna Kaczmarska
Christine Konradi
Publication date
01-11-2010
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 5/2010
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-010-0740-8

Other articles of this Issue 5/2010

Acta Neuropathologica 5/2010 Go to the issue