Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2022

Open Access 01-12-2022 | Solid Tumor | Rapid communication

In situ antigen modification-based target-redirected universal chimeric antigen receptor T (TRUE CAR-T) cell therapy in solid tumors

Authors: Zhichen Sun, Rutian Li, Yun Shen, Siyi Tan, Naiqing Ding, Ruihan Xu, Xinyue Wang, Jia Wei, Baorui Liu, Fanyan Meng

Published in: Journal of Hematology & Oncology | Issue 1/2022

Login to get access

Abstract

Background

Chimeric antigen receptor (CAR)-T cell therapy has demonstrated remarkable success in the treatment of hematologic malignancies, while the success has not yet been replicated in solid tumors. To some extent, the disappointing results can be attributed to the paucity and heterogeneity of target antigens in solid tumors since adequate antigens are the cornerstone for CAR-T cells to recognize and attack tumor cells.

Methods

We established a target-redirected universal CAR-T (TRUE CAR-T) cell therapeutic modality, in which exogenous antigens are loaded onto fusogenic nanoparticles to achieve in situ modification of cell membrane in solid tumors, providing targets for subsequent CAR-T cell therapy. The modification effect was evaluated by flow cytometry and confocal microscopic imaging. The in vivo metabolism and biodistribution of fusogenic antigen loaded nanoparticles (F-AgNPs) was explored using near infrared living imaging. Then F-AgNPs mediated in situ antigen modification were cooperated with corresponding CAR-T cell therapy, and its antitumor efficacy was evaluated using immune function experiments and further investigated in different tumor models.

Results

Using F-AgNPs, exogenous antigens were selectively modified onto tumor cell membranes through membrane fusion, spread deeper into tumor tissues through intercellular lipid transfer, further activating corresponding CAR-T cells and mediating antitumor immune responses towards multiple types of tumor cells, despite of their inherent antigen profiles. The cooperative treatment of F-AgNPs and CAR-T cell therapy successfully suppressed tumor proliferation and prolonged survival in both subcutaneous and peritoneally disseminated tumor models.

Conclusion

The fusogenic nanoparticle-based in situ antigen modification overcome the limitation of target antigens paucity and heterogeneity in solid tumors, improving the efficacy and broadening the applications of CAR-T cells, thus establishing a novel TRUE CAR-T cell therapeutic modality with universal application and translational potential in immunotherapies for solid tumors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48.CrossRef Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48.CrossRef
2.
go back to reference Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59.CrossRef Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59.CrossRef
3.
go back to reference Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak Ö, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545–54.CrossRef Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak Ö, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545–54.CrossRef
4.
go back to reference D’Aloia MM, Zizzari IG, Sacchetti B, Pierelli L, Alimandi M. CAR-T cells: the long and winding road to solid tumors. Cell Death Dis. 2018;9(3):282.CrossRef D’Aloia MM, Zizzari IG, Sacchetti B, Pierelli L, Alimandi M. CAR-T cells: the long and winding road to solid tumors. Cell Death Dis. 2018;9(3):282.CrossRef
5.
go back to reference Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer. 2013;108(3):479–85.CrossRef Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer. 2013;108(3):479–85.CrossRef
6.
go back to reference McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168(4):613–28.CrossRef McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168(4):613–28.CrossRef
7.
go back to reference Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94.CrossRef Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94.CrossRef
8.
go back to reference McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science (New York, NY). 2016;351(6280):1463–9.CrossRef McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science (New York, NY). 2016;351(6280):1463–9.CrossRef
9.
go back to reference Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science (New York, NY). 2011;331(6024):1565–70.CrossRef Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science (New York, NY). 2011;331(6024):1565–70.CrossRef
10.
go back to reference Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med. 2017;68:139–52.CrossRef Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med. 2017;68:139–52.CrossRef
11.
go back to reference Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, et al. Current progress in CAR-T cell therapy for solid tumors. Int J Biol Sci. 2019;15(12):2548–60.CrossRef Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, et al. Current progress in CAR-T cell therapy for solid tumors. Int J Biol Sci. 2019;15(12):2548–60.CrossRef
12.
go back to reference Petrov JC, Wada M, Pinz KG, Yan LE, Chen KH, Shuai X, et al. Compound CAR T-cells as a double-pronged approach for treating acute myeloid leukemia. Leukemia. 2018;32(6):1317–26.CrossRef Petrov JC, Wada M, Pinz KG, Yan LE, Chen KH, Shuai X, et al. Compound CAR T-cells as a double-pronged approach for treating acute myeloid leukemia. Leukemia. 2018;32(6):1317–26.CrossRef
13.
go back to reference Shah NN, Maatman T, Hari P, Johnson B. Multi targeted CAR-T cell therapies for B-cell malignancies. Front Oncol. 2019;9:146.CrossRef Shah NN, Maatman T, Hari P, Johnson B. Multi targeted CAR-T cell therapies for B-cell malignancies. Front Oncol. 2019;9:146.CrossRef
14.
go back to reference Liu D, Zhao J, Song Y. Engineering switchable and programmable universal CARs for CAR T therapy. J Hematol Oncol. 2019;12(1):69.CrossRef Liu D, Zhao J, Song Y. Engineering switchable and programmable universal CARs for CAR T therapy. J Hematol Oncol. 2019;12(1):69.CrossRef
15.
go back to reference Cho JH, Collins JJ, Wong WW. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell. 2018;173(6):1426-38.e11.CrossRef Cho JH, Collins JJ, Wong WW. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell. 2018;173(6):1426-38.e11.CrossRef
16.
go back to reference Lee YG, Marks I, Srinivasarao M, Kanduluru AK, Mahalingam SM, Liu X, et al. Use of a single CAR T cell and several bispecific adapters facilitates eradication of multiple antigenically different solid tumors. Can Res. 2019;79(2):387–96.CrossRef Lee YG, Marks I, Srinivasarao M, Kanduluru AK, Mahalingam SM, Liu X, et al. Use of a single CAR T cell and several bispecific adapters facilitates eradication of multiple antigenically different solid tumors. Can Res. 2019;79(2):387–96.CrossRef
17.
go back to reference Csiszár A, Hersch N, Dieluweit S, Biehl R, Merkel R, Hoffmann B. Novel fusogenic liposomes for fluorescent cell labeling and membrane modification. Bioconjug Chem. 2010;21(3):537–43.CrossRef Csiszár A, Hersch N, Dieluweit S, Biehl R, Merkel R, Hoffmann B. Novel fusogenic liposomes for fluorescent cell labeling and membrane modification. Bioconjug Chem. 2010;21(3):537–43.CrossRef
18.
go back to reference Kim B, Pang HB, Kang J, Park JH, Ruoslahti E, Sailor MJ. Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus. Nat Commun. 2018;9(1):1969.CrossRef Kim B, Pang HB, Kang J, Park JH, Ruoslahti E, Sailor MJ. Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus. Nat Commun. 2018;9(1):1969.CrossRef
19.
go back to reference Lee J, Kim J, Jeong M, Lee H, Goh U, Kim H, et al. Liposome-based engineering of cells to package hydrophobic compounds in membrane vesicles for tumor penetration. Nano Lett. 2015;15(5):2938–44.CrossRef Lee J, Kim J, Jeong M, Lee H, Goh U, Kim H, et al. Liposome-based engineering of cells to package hydrophobic compounds in membrane vesicles for tumor penetration. Nano Lett. 2015;15(5):2938–44.CrossRef
20.
go back to reference Gan HK, Burgess AW, Clayton AH, Scott AM. Targeting of a conformationally exposed, tumor-specific epitope of EGFR as a strategy for cancer therapy. Can Res. 2012;72(12):2924–30.CrossRef Gan HK, Burgess AW, Clayton AH, Scott AM. Targeting of a conformationally exposed, tumor-specific epitope of EGFR as a strategy for cancer therapy. Can Res. 2012;72(12):2924–30.CrossRef
22.
go back to reference Ding N, Zou Z, Sha H, Su S, Qian H, Meng F, et al. iRGD synergizes with PD-1 knockout immunotherapy by enhancing lymphocyte infiltration in gastric cancer. Nat Commun. 2019;10(1):1336.CrossRef Ding N, Zou Z, Sha H, Su S, Qian H, Meng F, et al. iRGD synergizes with PD-1 knockout immunotherapy by enhancing lymphocyte infiltration in gastric cancer. Nat Commun. 2019;10(1):1336.CrossRef
23.
go back to reference Kim J, Santos OA, Park JH. Selective photosensitizer delivery into plasma membrane for effective photodynamic therapy. J Control Release. 2014;191:98–104.CrossRef Kim J, Santos OA, Park JH. Selective photosensitizer delivery into plasma membrane for effective photodynamic therapy. J Control Release. 2014;191:98–104.CrossRef
24.
go back to reference Kim H, Lee J, Oh C, Park JH. Cooperative tumour cell membrane targeted phototherapy. Nat Commun. 2017;8:15880.CrossRef Kim H, Lee J, Oh C, Park JH. Cooperative tumour cell membrane targeted phototherapy. Nat Commun. 2017;8:15880.CrossRef
25.
go back to reference Barker CJ, Bowler K. Lipid composition of the membranes from cells of two rat tumors and its relationship to tumor thermosensitivity. Radiat Res. 1991;125(1):48–55.CrossRef Barker CJ, Bowler K. Lipid composition of the membranes from cells of two rat tumors and its relationship to tumor thermosensitivity. Radiat Res. 1991;125(1):48–55.CrossRef
26.
go back to reference Van Blitterswijk WJ, De Veer G, Krol JH, Emmelot P. Comparative lipid analysis of purified plasma membranes and shed extracellular membrane vesicles from normal murine thymocytes and leukemic GRSL cells. Biochem Biophys Acta. 1982;688(2):495–504.CrossRef Van Blitterswijk WJ, De Veer G, Krol JH, Emmelot P. Comparative lipid analysis of purified plasma membranes and shed extracellular membrane vesicles from normal murine thymocytes and leukemic GRSL cells. Biochem Biophys Acta. 1982;688(2):495–504.CrossRef
27.
go back to reference Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–5.CrossRef Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–5.CrossRef
28.
go back to reference Andaloussi SEL, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–57.CrossRef Andaloussi SEL, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–57.CrossRef
29.
go back to reference Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581–93.CrossRef Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581–93.CrossRef
30.
go back to reference Kirson ED, Dbalý V, Tovarys F, Vymazal J, Soustiel JF, Itzhaki A, et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc Natl Acad Sci USA. 2007;104(24):10152–7.CrossRef Kirson ED, Dbalý V, Tovarys F, Vymazal J, Soustiel JF, Itzhaki A, et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc Natl Acad Sci USA. 2007;104(24):10152–7.CrossRef
31.
go back to reference Liu Q, Li RT, Qian HQ, Yang M, Zhu ZS, Wu W, et al. Gelatinase-stimuli strategy enhances the tumor delivery and therapeutic efficacy of docetaxel-loaded poly(ethylene glycol)–poly(varepsilon-caprolactone) nanoparticles. Int J Nanomed. 2012;7:281–95.CrossRef Liu Q, Li RT, Qian HQ, Yang M, Zhu ZS, Wu W, et al. Gelatinase-stimuli strategy enhances the tumor delivery and therapeutic efficacy of docetaxel-loaded poly(ethylene glycol)–poly(varepsilon-caprolactone) nanoparticles. Int J Nanomed. 2012;7:281–95.CrossRef
32.
go back to reference Liu Q, Li RT, Qian HQ, Wei J, Xie L, Shen J, et al. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles. Biomaterials. 2013;34(29):7191–203.CrossRef Liu Q, Li RT, Qian HQ, Wei J, Xie L, Shen J, et al. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles. Biomaterials. 2013;34(29):7191–203.CrossRef
33.
go back to reference Ji T, Lang J, Ning B, Qi F, Wang H, Zhang Y, et al. Enhanced natural killer cell immunotherapy by rationally assembling Fc fragments of antibodies onto tumor membranes. Adv Mater (Deerfield Beach, Fla). 2019;31(6):e1804395. Ji T, Lang J, Ning B, Qi F, Wang H, Zhang Y, et al. Enhanced natural killer cell immunotherapy by rationally assembling Fc fragments of antibodies onto tumor membranes. Adv Mater (Deerfield Beach, Fla). 2019;31(6):e1804395.
34.
go back to reference Zheng C, Wang Q, Wang Y, Zhao X, Gao K, Liu Q, et al. In situ modification of the tumor cell surface with immunomodulating nanoparticles for effective suppression of tumor growth in mice. Adv Mater (Deerfield Beach, Fla). 2019;31(32):e1902542.CrossRef Zheng C, Wang Q, Wang Y, Zhao X, Gao K, Liu Q, et al. In situ modification of the tumor cell surface with immunomodulating nanoparticles for effective suppression of tumor growth in mice. Adv Mater (Deerfield Beach, Fla). 2019;31(32):e1902542.CrossRef
Metadata
Title
In situ antigen modification-based target-redirected universal chimeric antigen receptor T (TRUE CAR-T) cell therapy in solid tumors
Authors
Zhichen Sun
Rutian Li
Yun Shen
Siyi Tan
Naiqing Ding
Ruihan Xu
Xinyue Wang
Jia Wei
Baorui Liu
Fanyan Meng
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Solid Tumor
Published in
Journal of Hematology & Oncology / Issue 1/2022
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-022-01246-y

Other articles of this Issue 1/2022

Journal of Hematology & Oncology 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine