Skip to main content
Top
Published in: European Radiology 10/2019

01-10-2019 | Solid Tumor | Oncology

Image-based biomarkers for solid tumor quantification

Authors: Peter Savadjiev, Jaron Chong, Anthony Dohan, Vincent Agnus, Reza Forghani, Caroline Reinhold, Benoit Gallix

Published in: European Radiology | Issue 10/2019

Login to get access

Abstract

The last few decades have witnessed tremendous technological developments in image-based biomarkers for tumor quantification and characterization. Initially limited to manual one- and two-dimensional size measurements, image biomarkers have evolved to harness developments not only in image acquisition technology but also in image processing and analysis algorithms. At the same time, clinical validation remains a major challenge for the vast majority of these novel techniques, and there is still a major gap between the latest technological developments and image biomarkers used in everyday clinical practice. Currently, the imaging biomarker field is attracting increasing attention not only because of the tremendous interest in cutting-edge therapeutic developments and personalized medicine but also because of the recent progress in the application of artificial intelligence (AI) algorithms to large-scale datasets. Thus, the goal of the present article is to review the current state of the art for image biomarkers and their use for characterization and predictive quantification of solid tumors. Beginning with an overview of validated imaging biomarkers in current clinical practice, we proceed to a review of AI-based methods for tumor characterization, such as radiomics-based approaches and deep learning.
Key Points
Recent years have seen tremendous technological developments in image-based biomarkers for tumor quantification and characterization.
Image-based biomarkers can be used on an ongoing basis, in a non-invasive (or mildly invasive) way, to monitor the development and progression of the disease or its response to therapy.
We review the current state of the art for image biomarkers, as well as the recent developments in artificial intelligence (AI) algorithms for image processing and analysis.
Literature
2.
go back to reference Aerts HJ (2016) The potential of radiomic-based phenotyping in precision medicine. A review. JAMA Oncol 2(12):1636–1642CrossRefPubMed Aerts HJ (2016) The potential of radiomic-based phenotyping in precision medicine. A review. JAMA Oncol 2(12):1636–1642CrossRefPubMed
4.
go back to reference Harry VN, Semple SI, Parkin DE, Gilbert FJ (2010) Use of new imaging techniques to predict tumour response to therapy. Lancet Oncol 11:92–102CrossRefPubMed Harry VN, Semple SI, Parkin DE, Gilbert FJ (2010) Use of new imaging techniques to predict tumour response to therapy. Lancet Oncol 11:92–102CrossRefPubMed
5.
go back to reference O’Connor JP, Aboagye EO, Adams JE et al (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14(3):169–186 O’Connor JP, Aboagye EO, Adams JE et al (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14(3):169–186
6.
go back to reference Savadjiev P, Chong J, Dohan A, et al (2019) Demystification of AI-driven medical image interpretation: past, present and future. Eur Radiol 29(3):1616–1624 Savadjiev P, Chong J, Dohan A, et al (2019) Demystification of AI-driven medical image interpretation: past, present and future. Eur Radiol 29(3):1616–1624
8.
go back to reference Miller AB, Hoogstraten B, Staquet M, Winkler A (1981) Reporting results of cancer treatment. Cancer 47(1):207–214CrossRefPubMed Miller AB, Hoogstraten B, Staquet M, Winkler A (1981) Reporting results of cancer treatment. Cancer 47(1):207–214CrossRefPubMed
9.
go back to reference Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216 Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216
10.
go back to reference Shah GD, Kesari S, Xu R, et al (2006) Comparison of linear and volumetric criteria in assessing tumor response in adult high-grade gliomas. Neuro Oncol 8(1):38–46 Shah GD, Kesari S, Xu R, et al (2006) Comparison of linear and volumetric criteria in assessing tumor response in adult high-grade gliomas. Neuro Oncol 8(1):38–46
11.
go back to reference Dempsey MF, Condon BR, Hadley DM (2005) Measurement of tumor “size” in recurrent malignant glioma: 1D, 2D, or 3D? AJNR Am J Neuroradiol 26(4):770–776PubMedPubMedCentral Dempsey MF, Condon BR, Hadley DM (2005) Measurement of tumor “size” in recurrent malignant glioma: 1D, 2D, or 3D? AJNR Am J Neuroradiol 26(4):770–776PubMedPubMedCentral
12.
go back to reference Aghighi M, Boe J, Rosenberg J et al (2016) Three-dimensional radiologic assessment of chemotherapy response in Ewing sarcoma can be used to predict clinical outcome. Radiology 280(3):905–915CrossRefPubMed Aghighi M, Boe J, Rosenberg J et al (2016) Three-dimensional radiologic assessment of chemotherapy response in Ewing sarcoma can be used to predict clinical outcome. Radiology 280(3):905–915CrossRefPubMed
13.
go back to reference Lubner MG, Stabo N, Lubner SJ, Del Rio AM, Song C, Pickhardt PJ (2017) Volumetric versus unidimensional measures of metastatic colorectal cancer in assessing disease response. Clin Colorectal Cancer 16(4):324–333CrossRefPubMed Lubner MG, Stabo N, Lubner SJ, Del Rio AM, Song C, Pickhardt PJ (2017) Volumetric versus unidimensional measures of metastatic colorectal cancer in assessing disease response. Clin Colorectal Cancer 16(4):324–333CrossRefPubMed
14.
go back to reference Galanis E, Buckner JC, Maurer MJ et al (2006) Validation of neuroradiologic response assessment in gliomas: measurement by RECIST, two-dimensional, computerassisted tumor area, and computer-assisted tumor volume methods. Neuro Oncol 8(2):156–165 Galanis E, Buckner JC, Maurer MJ et al (2006) Validation of neuroradiologic response assessment in gliomas: measurement by RECIST, two-dimensional, computerassisted tumor area, and computer-assisted tumor volume methods. Neuro Oncol 8(2):156–165
15.
go back to reference Jaffe CC (2006) Measures of response: RECIST, WHO, and new alternatives. J Clin Oncol 24(20):3245–3251CrossRefPubMed Jaffe CC (2006) Measures of response: RECIST, WHO, and new alternatives. J Clin Oncol 24(20):3245–3251CrossRefPubMed
16.
go back to reference Atri M (2006) New technologies and directed agents for applications of cancer imaging. J Clin Oncol 24(20):3299–3308CrossRefPubMed Atri M (2006) New technologies and directed agents for applications of cancer imaging. J Clin Oncol 24(20):3299–3308CrossRefPubMed
17.
go back to reference Bruix J, Sherman M, Llovet JM et al (2001) Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol 35(3):421–430CrossRefPubMed Bruix J, Sherman M, Llovet JM et al (2001) Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol 35(3):421–430CrossRefPubMed
18.
go back to reference Lencioni R, Llovet JM (2010) Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 30:52–60CrossRefPubMed Lencioni R, Llovet JM (2010) Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 30:52–60CrossRefPubMed
19.
go back to reference Choi H, Charnsangavej C, Faria SC et al (2007) Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol 25:1753–1759CrossRefPubMed Choi H, Charnsangavej C, Faria SC et al (2007) Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol 25:1753–1759CrossRefPubMed
20.
go back to reference Maier-Hein L, Eisenmann M, Reinke A et al (2018) Why rankings of biomedical image analysis competitions should be interpreted with care. Nat Commun 9(1):5217 Maier-Hein L, Eisenmann M, Reinke A et al (2018) Why rankings of biomedical image analysis competitions should be interpreted with care. Nat Commun 9(1):5217
21.
go back to reference Kelloff GJ, Hoffman JM, Johnson B et al (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11(8):2785–2808CrossRefPubMed Kelloff GJ, Hoffman JM, Johnson B et al (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11(8):2785–2808CrossRefPubMed
22.
go back to reference Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150SCrossRefPubMed Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150SCrossRefPubMed
23.
go back to reference Segal E, Sirlin CB, Ooi C et al (2007) Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol 25:675–680CrossRefPubMed Segal E, Sirlin CB, Ooi C et al (2007) Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol 25:675–680CrossRefPubMed
24.
go back to reference Chun YS, Vauthey JN, Boonsirikamchai P et al (2009) Association of computed tomography morphologic criteria with pathologic response and survival in patients treated with bevacizumab for colorectal liver metastases. JAMA 302(21):2338–2344CrossRefPubMedPubMedCentral Chun YS, Vauthey JN, Boonsirikamchai P et al (2009) Association of computed tomography morphologic criteria with pathologic response and survival in patients treated with bevacizumab for colorectal liver metastases. JAMA 302(21):2338–2344CrossRefPubMedPubMedCentral
25.
go back to reference Jansen RW, van Amstel P, Martens RM, Kooi IE, Wesseling P, de Langen AJ (2018) Non-invasive tumor genotyping using radiogenomic biomarkers, a systematic review and oncology-wide pathway analysis. Oncotarget 9(28):20134–20155CrossRefPubMedPubMedCentral Jansen RW, van Amstel P, Martens RM, Kooi IE, Wesseling P, de Langen AJ (2018) Non-invasive tumor genotyping using radiogenomic biomarkers, a systematic review and oncology-wide pathway analysis. Oncotarget 9(28):20134–20155CrossRefPubMedPubMedCentral
26.
go back to reference Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRefPubMed Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRefPubMed
27.
go back to reference Larue RT, Defraene G, De Ruysscher D, Lambin P, van Elmpt W (2017) Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol 90(1070):20160665CrossRefPubMedPubMedCentral Larue RT, Defraene G, De Ruysscher D, Lambin P, van Elmpt W (2017) Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol 90(1070):20160665CrossRefPubMedPubMedCentral
28.
go back to reference O’Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A (2015) Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 21(2):249–257CrossRefPubMed O’Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A (2015) Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 21(2):249–257CrossRefPubMed
29.
go back to reference Vallières M, Freeman CR, Skamene SR, El Naq I (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471–5496CrossRefPubMed Vallières M, Freeman CR, Skamene SR, El Naq I (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471–5496CrossRefPubMed
30.
go back to reference van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107CrossRefPubMedPubMedCentral van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107CrossRefPubMedPubMedCentral
32.
go back to reference Ueno Y, Forghani B, Forghani R et al (2017) Endometrial carcinoma: MR imaging-based texture model for preoperative risk stratification—a preliminary analysis. Radiology 284(3):748–757CrossRefPubMed Ueno Y, Forghani B, Forghani R et al (2017) Endometrial carcinoma: MR imaging-based texture model for preoperative risk stratification—a preliminary analysis. Radiology 284(3):748–757CrossRefPubMed
33.
go back to reference Parmar C, Leijenaar RTH, Grossmann P et al (2015) Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci Rep 5:11044CrossRefPubMedPubMedCentral Parmar C, Leijenaar RTH, Grossmann P et al (2015) Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci Rep 5:11044CrossRefPubMedPubMedCentral
34.
35.
go back to reference Schad L, Lundervold A (2006) Influence of resolution and signal to noise ratio on MR image texture. In: Hajek M, Dezortova M, Materka A, Lerski R (eds) Texture analysis for magnetic resonance imaging. HRaNa, Prague, pp 129–149 Schad L, Lundervold A (2006) Influence of resolution and signal to noise ratio on MR image texture. In: Hajek M, Dezortova M, Materka A, Lerski R (eds) Texture analysis for magnetic resonance imaging. HRaNa, Prague, pp 129–149
36.
go back to reference Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182 Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182
37.
go back to reference Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New YorkCrossRef Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New YorkCrossRef
38.
40.
go back to reference Chartrand G, Cheng PM, Vorontsov E et al (2017) Deep learning: a primer for radiologists. Radiographics 37(7):2113–2131CrossRefPubMed Chartrand G, Cheng PM, Vorontsov E et al (2017) Deep learning: a primer for radiologists. Radiographics 37(7):2113–2131CrossRefPubMed
41.
go back to reference Litjens G, Kooi T, Bejnordi BE et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefPubMed Litjens G, Kooi T, Bejnordi BE et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefPubMed
43.
go back to reference Ypsilantis PP, Siddique M, Sohn HM et al (2015) Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks. PLoS One 10(9):e0137036CrossRefPubMedPubMedCentral Ypsilantis PP, Siddique M, Sohn HM et al (2015) Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks. PLoS One 10(9):e0137036CrossRefPubMedPubMedCentral
44.
go back to reference Li Z, Wang Y, Yu J, Guo Y, Cao W (2017) Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep 7(1):5467CrossRefPubMedPubMedCentral Li Z, Wang Y, Yu J, Guo Y, Cao W (2017) Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep 7(1):5467CrossRefPubMedPubMedCentral
47.
go back to reference Tajbakhsh N, Shin JY, Gurudu SR et al (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312CrossRefPubMed Tajbakhsh N, Shin JY, Gurudu SR et al (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312CrossRefPubMed
48.
go back to reference Shin HC, Roth HR, Gao M et al (2016) Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298CrossRefPubMed Shin HC, Roth HR, Gao M et al (2016) Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298CrossRefPubMed
49.
go back to reference Hinton G (2018) Deep learning—a technology with the potential to transform health care. JAMA 320(11):1101–1102CrossRefPubMed Hinton G (2018) Deep learning—a technology with the potential to transform health care. JAMA 320(11):1101–1102CrossRefPubMed
50.
go back to reference Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35:1207–1216CrossRefPubMed Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35:1207–1216CrossRefPubMed
51.
go back to reference Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284(2):574–582CrossRefPubMed Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284(2):574–582CrossRefPubMed
52.
go back to reference Chang P, Grinband J, Weinberg BD et al (2018) Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am J Neuroradiol 39(7):1201–1207 Chang P, Grinband J, Weinberg BD et al (2018) Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am J Neuroradiol 39(7):1201–1207
53.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proceedings of the medical image computing and computer-assisted intervention. In: Lecture notes in computer science, vol 9351, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proceedings of the medical image computing and computer-assisted intervention. In: Lecture notes in computer science, vol 9351, pp 234–241
54.
go back to reference Setio AAA, Ciompi F, Litjens G et al (2016) Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 35:1160–1169CrossRefPubMed Setio AAA, Ciompi F, Litjens G et al (2016) Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 35:1160–1169CrossRefPubMed
55.
Metadata
Title
Image-based biomarkers for solid tumor quantification
Authors
Peter Savadjiev
Jaron Chong
Anthony Dohan
Vincent Agnus
Reza Forghani
Caroline Reinhold
Benoit Gallix
Publication date
01-10-2019
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 10/2019
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-019-06169-w

Other articles of this Issue 10/2019

European Radiology 10/2019 Go to the issue