Skip to main content
Top
Published in: Cancer Cell International 1/2020

Open Access 01-12-2020 | Primary research

SNHG17 promotes the proliferation and migration of colorectal adenocarcinoma cells by modulating CXCL12-mediated angiogenesis

Authors: Yang Liu, Qinshan Li, Dongxin Tang, Mengxing Li, Peng Zhao, Wenxiu Yang, Liping Shu, Jishi Wang, Zhixu He, Yanju Li, Feiqing Wang

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

Background

Colorectal adenocarcinoma (CRA) is one of the leading causes of cancer-related deaths in the world. Long non-coding RNAs (lncRNAs) have been implicated to be effective regulators in the disease course of human cancers, including CRA. Small nucleolar RNA host gene 17 (SNHG17) belongs to lncRNAs, and it has been reported in breast cancer and gastric cancer. However, the function of SNHG17 and its mechanism in CRA progression remain largely unknown. In this study, we attended to shedding some light on the role of SNHG17 in CRA.

Methods

RT-qPCR was used to assess SNHG17 expression in CRA cells. CCK-8 assay, colony formation and transwell assay were carried out to detect the regulatory effect of SNHG17 silencing on CRA cell proliferation and migration. The angiogenesis of SNHG7-downregulated CRA cells was analyzed by tube formation assay. Mechanism experiments were conducted to identify the interaction between miR-23a-3p and SNHG17 or C-X-C motif chemokine ligand 12 (CXCL12).

Results

SNHG17 possessed with high expression in CRA cells. Knockdown of SNHG17 caused the inhibition on CRA cell proliferation and migration. SNHG17 promoted CRA cell proliferation and migration by sponging miR-23a-3p to upregulate CXCL12.

Conclusion

SNHG17 promotes the proliferation and migration of CRA cells by inhibiting miR-23a-3p to modulate CXCL12-mediated angiogenesis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Colon Cancer. American family physician 2018, 97(10):Online. Colon Cancer. American family physician 2018, 97(10):Online.
2.
go back to reference Cappell MS. Pathophysiology, clinical presentation, and management of colon cancer. Gastroenterol Clinics North Am. 2008;37(1):1–24, v. Cappell MS. Pathophysiology, clinical presentation, and management of colon cancer. Gastroenterol Clinics North Am. 2008;37(1):1–24, v.
3.
go back to reference Labianca R, Beretta GD, Kildani B, Milesi L, Merlin F, Mosconi S, Pessi MA, Prochilo T, Quadri A, Gatta G, et al. Colon cancer. Crit Rev Oncol Hematol. 2010;74(2):106–33.CrossRef Labianca R, Beretta GD, Kildani B, Milesi L, Merlin F, Mosconi S, Pessi MA, Prochilo T, Quadri A, Gatta G, et al. Colon cancer. Crit Rev Oncol Hematol. 2010;74(2):106–33.CrossRef
4.
go back to reference Agnantis N, Goussia AC. Colorectal carcinogenesis. Bulletin de l’Academie nationale de medecine 2012, 196(3):705–15 (discussion 715–706). Agnantis N, Goussia AC. Colorectal carcinogenesis. Bulletin de l’Academie nationale de medecine 2012, 196(3):705–15 (discussion 715–706).
5.
go back to reference Parramore JB, Wei JP, Yeh KA. Colorectal cancer in patients under forty: presentation and outcome. Am Surg. 1998;64(6):563–7 (discussion 567–568).PubMed Parramore JB, Wei JP, Yeh KA. Colorectal cancer in patients under forty: presentation and outcome. Am Surg. 1998;64(6):563–7 (discussion 567–568).PubMed
6.
go back to reference Steele G Jr, Posner MR. Adjuvant treatment of colorectal adenocarcinoma. Curr Probl Cancer. 1993;17(4):223–69.PubMed Steele G Jr, Posner MR. Adjuvant treatment of colorectal adenocarcinoma. Curr Probl Cancer. 1993;17(4):223–69.PubMed
7.
go back to reference Yoon YS, Kim JC. Recent applications of chemosensitivity tests for colorectal cancer treatment. World J Gastroenterol. 2014;20(44):16398–408.CrossRef Yoon YS, Kim JC. Recent applications of chemosensitivity tests for colorectal cancer treatment. World J Gastroenterol. 2014;20(44):16398–408.CrossRef
8.
go back to reference Wu T, Du Y. LncRNAs: from basic research to medical application. Int J Biol Sci. 2017;13(3):295–307.CrossRef Wu T, Du Y. LncRNAs: from basic research to medical application. Int J Biol Sci. 2017;13(3):295–307.CrossRef
9.
go back to reference Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics. 2016;14(1):42–54.CrossRef Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics. 2016;14(1):42–54.CrossRef
10.
go back to reference Sun TT, He J, Liang Q, Ren LL, Yan TT, Yu TC, Tang JY, Bao YJ, Hu Y, Lin Y, et al. LncRNA GClnc1 promotes gastric carcinogenesis and may act as a modular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer Discov. 2016;6(7):784–801.CrossRef Sun TT, He J, Liang Q, Ren LL, Yan TT, Yu TC, Tang JY, Bao YJ, Hu Y, Lin Y, et al. LncRNA GClnc1 promotes gastric carcinogenesis and may act as a modular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer Discov. 2016;6(7):784–801.CrossRef
11.
go back to reference Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol. 2013;45(8):1895–910.CrossRef Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol. 2013;45(8):1895–910.CrossRef
12.
go back to reference Slaby O. Non-coding RNAs as biomarkers for colorectal cancer screening and early detection. Adv Exp Med Biol. 2016;937:153–70.CrossRef Slaby O. Non-coding RNAs as biomarkers for colorectal cancer screening and early detection. Adv Exp Med Biol. 2016;937:153–70.CrossRef
13.
go back to reference Dong X, Wang J, Li T, Xu YP, Li SY. Down regulation of lncRNA MEG3 promotes colorectal adenocarcinoma cell proliferation and inhibits the apoptosis by up-regulating TGF-beta1 and its downstream sphingosine kinase 1. Eur Rev Med Pharmacol Sci. 2018;22(23):8265–72.PubMed Dong X, Wang J, Li T, Xu YP, Li SY. Down regulation of lncRNA MEG3 promotes colorectal adenocarcinoma cell proliferation and inhibits the apoptosis by up-regulating TGF-beta1 and its downstream sphingosine kinase 1. Eur Rev Med Pharmacol Sci. 2018;22(23):8265–72.PubMed
14.
go back to reference Zhuo W, Hu D, Chen X, Zhang T. LINC01638 silencing inhibits cancer cell proliferation in colorectal adenocarcinoma through interaction with RUNX2. Mol Med Rep. 2019;19(6):5275–80.PubMedPubMedCentral Zhuo W, Hu D, Chen X, Zhang T. LINC01638 silencing inhibits cancer cell proliferation in colorectal adenocarcinoma through interaction with RUNX2. Mol Med Rep. 2019;19(6):5275–80.PubMedPubMedCentral
15.
go back to reference Zhang G, Xu Y, Wang S, Gong Z, Zou C, Zhang H, Ma G, Zhang W. LncRNA SNHG17 promotes gastric cancer progression by epigenetically silencing of p15 and p57. J Cell Physiol. 2019;234(4):5163–74.CrossRef Zhang G, Xu Y, Wang S, Gong Z, Zou C, Zhang H, Ma G, Zhang W. LncRNA SNHG17 promotes gastric cancer progression by epigenetically silencing of p15 and p57. J Cell Physiol. 2019;234(4):5163–74.CrossRef
16.
go back to reference Bai M, Lei Y, Wang M, Ma J, Yang P, Mou X, Dong Y, Han S. Long non-coding RNA SNHG17 promotes cell proliferation and invasion in castration-resistant prostate cancer by targeting the miR-144/CD51 Axis. Front Geneti. 2020;11:274.CrossRef Bai M, Lei Y, Wang M, Ma J, Yang P, Mou X, Dong Y, Han S. Long non-coding RNA SNHG17 promotes cell proliferation and invasion in castration-resistant prostate cancer by targeting the miR-144/CD51 Axis. Front Geneti. 2020;11:274.CrossRef
17.
go back to reference Du Y, Wei N, Hong J, Pan W. Long non-coding RNASNHG17 promotes the progression of breast cancer by sponging miR-124-3p. Cancer Cell Int. 2020;20:40.CrossRef Du Y, Wei N, Hong J, Pan W. Long non-coding RNASNHG17 promotes the progression of breast cancer by sponging miR-124-3p. Cancer Cell Int. 2020;20:40.CrossRef
19.
go back to reference Chen LL, He J, Qiu XT, Yu J, Wang ZM. The prognostic roles of long non-coding RNA SNHG17 in the patients with gastric cancer. Eur Rev Med Pharmacol Sci. 2019;23(3):1063–8.PubMed Chen LL, He J, Qiu XT, Yu J, Wang ZM. The prognostic roles of long non-coding RNA SNHG17 in the patients with gastric cancer. Eur Rev Med Pharmacol Sci. 2019;23(3):1063–8.PubMed
20.
go back to reference Xu T, Yan S, Jiang L, Yu S, Lei T, Yang D, Lu B, Wei C, Zhang E, Wang Z. Gene amplification-driven long noncoding RNA SNHG17 regulates cell proliferation and migration in human non-small-cell lung cancer. Mol Ther Nucleic Acids. 2019;17:405–13.CrossRef Xu T, Yan S, Jiang L, Yu S, Lei T, Yang D, Lu B, Wei C, Zhang E, Wang Z. Gene amplification-driven long noncoding RNA SNHG17 regulates cell proliferation and migration in human non-small-cell lung cancer. Mol Ther Nucleic Acids. 2019;17:405–13.CrossRef
21.
go back to reference Ma Z, Gu S, Song M, Yan C, Hui B, Ji H, Wang J, Zhang J, Wang K, Zhao Q. Long non-coding RNA SNHG17 is an unfavourable prognostic factor and promotes cell proliferation by epigenetically silencing P57 in colorectal cancer. Mol BioSyst. 2017;13(11):2350–61.CrossRef Ma Z, Gu S, Song M, Yan C, Hui B, Ji H, Wang J, Zhang J, Wang K, Zhao Q. Long non-coding RNA SNHG17 is an unfavourable prognostic factor and promotes cell proliferation by epigenetically silencing P57 in colorectal cancer. Mol BioSyst. 2017;13(11):2350–61.CrossRef
22.
go back to reference Awan HM, Shah A, Rashid F, Shan G. Primate-specific Long non-coding RNAs and microRNAs. Genomics Proteomics Bioinformatics. 2017;15(3):187–95.CrossRef Awan HM, Shah A, Rashid F, Shan G. Primate-specific Long non-coding RNAs and microRNAs. Genomics Proteomics Bioinformatics. 2017;15(3):187–95.CrossRef
23.
go back to reference Li X, Yu T, Shan H, Jiang H, Sun J, Zhao X, Su W, Yang L, Shan H, Liang H. lncRNA PFAL promotes lung fibrosis through CTGF by competitively binding miR-18a. FASEB J. 2018;32(10):5285–97.CrossRef Li X, Yu T, Shan H, Jiang H, Sun J, Zhao X, Su W, Yang L, Shan H, Liang H. lncRNA PFAL promotes lung fibrosis through CTGF by competitively binding miR-18a. FASEB J. 2018;32(10):5285–97.CrossRef
24.
go back to reference Ye S, Yang L, Zhao X, Song W, Wang W, Zheng S. Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer. Cell Biochem Biophys. 2014;70(3):1849–58.CrossRef Ye S, Yang L, Zhao X, Song W, Wang W, Zheng S. Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer. Cell Biochem Biophys. 2014;70(3):1849–58.CrossRef
25.
go back to reference Zhao C, Wang S, Zhao Y, Du F, Wang W, Lv P, Qi L. Long noncoding RNA NEAT1 modulates cell proliferation and apoptosis by regulating miR-23a-3p/SMC1A in acute myeloid leukemia. J Cell Physiol. 2019;234(5):6161–72.CrossRef Zhao C, Wang S, Zhao Y, Du F, Wang W, Lv P, Qi L. Long noncoding RNA NEAT1 modulates cell proliferation and apoptosis by regulating miR-23a-3p/SMC1A in acute myeloid leukemia. J Cell Physiol. 2019;234(5):6161–72.CrossRef
26.
go back to reference Ding F, Lai J, Gao Y, Wang G, Shang J, Zhang D, Zheng S. NEAT1/miR-23a-3p/KLF3: a novel regulatory axis in melanoma cancer progression. Cancer Cell Int. 2019;19:217.CrossRef Ding F, Lai J, Gao Y, Wang G, Shang J, Zhang D, Zheng S. NEAT1/miR-23a-3p/KLF3: a novel regulatory axis in melanoma cancer progression. Cancer Cell Int. 2019;19:217.CrossRef
27.
go back to reference Mao G, Liu Y, Fang X, Liu Y, Fang L, Lin L, Liu X, Wang N. Tumor-derived microRNA-494 promotes angiogenesis in non-small cell lung cancer. Angiogenesis. 2015;18(3):373–82.CrossRef Mao G, Liu Y, Fang X, Liu Y, Fang L, Lin L, Liu X, Wang N. Tumor-derived microRNA-494 promotes angiogenesis in non-small cell lung cancer. Angiogenesis. 2015;18(3):373–82.CrossRef
28.
go back to reference Park H, Jung HY, Choi HJ, Kim DY, Yoo JY, Yun CO, Min JK, Kim YM, Kwon YG. Distinct roles of DKK1 and DKK2 in tumor angiogenesis. Angiogenesis. 2014;17(1):221–34.CrossRef Park H, Jung HY, Choi HJ, Kim DY, Yoo JY, Yun CO, Min JK, Kim YM, Kwon YG. Distinct roles of DKK1 and DKK2 in tumor angiogenesis. Angiogenesis. 2014;17(1):221–34.CrossRef
29.
go back to reference Ziegler ME, Hatch MM, Wu N, Muawad SA, Hughes CC. mTORC2 mediates CXCL12-induced angiogenesis. Angiogenesis. 2016;19(3):359–71.CrossRef Ziegler ME, Hatch MM, Wu N, Muawad SA, Hughes CC. mTORC2 mediates CXCL12-induced angiogenesis. Angiogenesis. 2016;19(3):359–71.CrossRef
30.
go back to reference Liekens S, Schols D, Hatse S. CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Curr Pharm Des. 2010;16(35):3903–20.CrossRef Liekens S, Schols D, Hatse S. CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Curr Pharm Des. 2010;16(35):3903–20.CrossRef
31.
go back to reference Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 2010;16(11):2927–31.CrossRef Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 2010;16(11):2927–31.CrossRef
Metadata
Title
SNHG17 promotes the proliferation and migration of colorectal adenocarcinoma cells by modulating CXCL12-mediated angiogenesis
Authors
Yang Liu
Qinshan Li
Dongxin Tang
Mengxing Li
Peng Zhao
Wenxiu Yang
Liping Shu
Jishi Wang
Zhixu He
Yanju Li
Feiqing Wang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01621-0

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine