Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2004

Open Access 01-12-2004 | Research article

Signaling of angiotensin II-induced vascular protein synthesis in conduit and resistance arteries in vivo

Authors: Christine Daigle, Fabrice MAC Martens, Daphné Girardot, Huy Hao Dao, Rhian M Touyz, Pierre Moreau

Published in: BMC Cardiovascular Disorders | Issue 1/2004

Login to get access

Abstract

Background

From in vitro studies, it has become clear that several signaling cascades are involved in angiotensin II-induced cellular hypertrophy. The aim of the present study was to determine some of the signaling pathways mediating angiotensin II (Ang II)-induced protein synthesis in vivo in large and small arteries.

Methods

Newly synthesized proteins were labeled during 4 hours with tritiated leucine in conscious control animals, or animals infused for 24 hours with angiotensin II (400 ng/kg/min). Hemodynamic parameters were measure simultaneously. Pharmacological agents affecting signaling cascades were injected 5 hours before the end of Ang II infusion.

Results

Angiotensin II nearly doubled the protein synthesis rate in the aorta and small mesenteric arteries, without affecting arterial pressure. The AT1 receptor antagonist Irbesartan antagonized the actions of Ang II. The Ang II-induced protein synthesis was associated with increased extracellular signal-regulated kinases (ERK)1/2 phosphorylation in aortic, but not in mesenteric vessels. Systemic administration of PD98059, an inhibitor of the ERK-1/2 pathway, produced a significant reduction of protein synthesis rate in the aorta, and only a modest decrease in mesenteric arteries. Rapamycin, which influences protein synthesis by alternative signaling, had a significant effect in both vessel types. Rapamycin and PD98059 did not alter basal protein synthesis and had minimal effects on arterial pressure.

Conclusion

ERK1/2 and rapamycin-sensitive pathways are involved in pressure-independent angiotensin II-induced vascular protein synthesis in vivo. However, their relative contribution may vary depending on the nature of the artery under investigation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Geisterfer AAT, Peach MJ, Owens GK: Angiotensin II induces hypertrophy, not hyperplasia, of cultured vascular smooth muscle cells. Circulation Research. 1988, 62: 749-756.CrossRefPubMed Geisterfer AAT, Peach MJ, Owens GK: Angiotensin II induces hypertrophy, not hyperplasia, of cultured vascular smooth muscle cells. Circulation Research. 1988, 62: 749-756.CrossRefPubMed
2.
go back to reference Simon G, Illyes G, Csiky B: Structural vascular changes in hypertension: role of angiotensin II, dietary sodium supplementation, blood pressure and time. Hypertension. 1998, 32: 654-660.CrossRefPubMed Simon G, Illyes G, Csiky B: Structural vascular changes in hypertension: role of angiotensin II, dietary sodium supplementation, blood pressure and time. Hypertension. 1998, 32: 654-660.CrossRefPubMed
3.
go back to reference Moreau P, d'Uscio LV, Takase H, Shaw S, Barton M, Lüscher TF: Angiotensin II increases tissue endothelin and induced vascular hypertrophy in vivo: reversal by ETA-receptor antagonist. Circulation. 1997, 96: 1593-1597.CrossRefPubMed Moreau P, d'Uscio LV, Takase H, Shaw S, Barton M, Lüscher TF: Angiotensin II increases tissue endothelin and induced vascular hypertrophy in vivo: reversal by ETA-receptor antagonist. Circulation. 1997, 96: 1593-1597.CrossRefPubMed
4.
go back to reference Griffin SA, Brown WCB, Macpherson F, McGrawth JC, Wilson VG, Korsgaard N, Mulvany MJ, Lever AF: Angiotensin II causes vascular hypertrophy in part by a non-pressor mechanism. Hypertension. 1991, 17: 626-635.CrossRefPubMed Griffin SA, Brown WCB, Macpherson F, McGrawth JC, Wilson VG, Korsgaard N, Mulvany MJ, Lever AF: Angiotensin II causes vascular hypertrophy in part by a non-pressor mechanism. Hypertension. 1991, 17: 626-635.CrossRefPubMed
5.
go back to reference Kato H, Hou J, Chobanian AV, Brecher P: Effects of angiotensin II infusion and inhibition of nitric oxyde synthase on the rat aorta. Hypertension. 1996, 28: 153-158.CrossRefPubMed Kato H, Hou J, Chobanian AV, Brecher P: Effects of angiotensin II infusion and inhibition of nitric oxyde synthase on the rat aorta. Hypertension. 1996, 28: 153-158.CrossRefPubMed
6.
go back to reference Daemen MJAP, Lombardi DM, Bosman FT, Schwartz SM: Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circulation Research. 1991, 68: 450-456.CrossRefPubMed Daemen MJAP, Lombardi DM, Bosman FT, Schwartz SM: Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circulation Research. 1991, 68: 450-456.CrossRefPubMed
7.
go back to reference Berk BC: Angiotensin II signal transduction in vascular smooth muscle: pathways activated by specific tyrosine kinases. Journal of the American Society of Nephrology. 1999, 10: S62-S68.PubMed Berk BC: Angiotensin II signal transduction in vascular smooth muscle: pathways activated by specific tyrosine kinases. Journal of the American Society of Nephrology. 1999, 10: S62-S68.PubMed
8.
go back to reference Sonenberg N, Gingras AC: The mRNA 5' cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol. 1998, 10: 268-275. 10.1016/S0955-0674(98)80150-6.CrossRefPubMed Sonenberg N, Gingras AC: The mRNA 5' cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol. 1998, 10: 268-275. 10.1016/S0955-0674(98)80150-6.CrossRefPubMed
9.
go back to reference Servant MJ, Giasson E, Meloche S: Inhibition of growth factor-induced protein synthesis by a selective MEK inhibitor in aortic smooth muscle cells. Journal of Biological Chemistry. 1996, 271: 16047-16052. 10.1074/jbc.271.27.16047.CrossRefPubMed Servant MJ, Giasson E, Meloche S: Inhibition of growth factor-induced protein synthesis by a selective MEK inhibitor in aortic smooth muscle cells. Journal of Biological Chemistry. 1996, 271: 16047-16052. 10.1074/jbc.271.27.16047.CrossRefPubMed
10.
go back to reference Giasson E, Meloche S: Role of P70 S6 protein kinase in angiotensin II-induced protein synthesis in vascular smooth muscle cells. Journal of Biological Chemistry. 1995, 270: 5225-5231. 10.1074/jbc.270.10.5225.CrossRefPubMed Giasson E, Meloche S: Role of P70 S6 protein kinase in angiotensin II-induced protein synthesis in vascular smooth muscle cells. Journal of Biological Chemistry. 1995, 270: 5225-5231. 10.1074/jbc.270.10.5225.CrossRefPubMed
11.
go back to reference Sadoshima J, Izumo S: Rapamycin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytes in vitro: potential role of 70-kD S6 kinase in angiotensin II-induced cardiac hypertrophy. Circulation Research. 1995, 77: 1040-1052.CrossRefPubMed Sadoshima J, Izumo S: Rapamycin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytes in vitro: potential role of 70-kD S6 kinase in angiotensin II-induced cardiac hypertrophy. Circulation Research. 1995, 77: 1040-1052.CrossRefPubMed
12.
go back to reference Tsuda T, Kawahara Y, Ishida Y, M. Koide., K. Shii., Yokoyama M: Angiotensin II stimulates two myelin basic protein/microtubular associated protein 2 kinases in cultured vascular smoothe muscle cells. Circulation Research. 1992, 71: 620-630.CrossRefPubMed Tsuda T, Kawahara Y, Ishida Y, M. Koide., K. Shii., Yokoyama M: Angiotensin II stimulates two myelin basic protein/microtubular associated protein 2 kinases in cultured vascular smoothe muscle cells. Circulation Research. 1992, 71: 620-630.CrossRefPubMed
13.
go back to reference Alessi DR, Cuenda A, Cohen P, Dudley DT, Salteil AR: PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. Journal of Biological Chemistry. 1995, 270: 27489-27494. 10.1074/jbc.270.46.27489.CrossRefPubMed Alessi DR, Cuenda A, Cohen P, Dudley DT, Salteil AR: PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. Journal of Biological Chemistry. 1995, 270: 27489-27494. 10.1074/jbc.270.46.27489.CrossRefPubMed
14.
go back to reference Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR: A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Nat Acad Sci U.S.A. 1995, 92: 7686-7689.CrossRef Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR: A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Nat Acad Sci U.S.A. 1995, 92: 7686-7689.CrossRef
15.
go back to reference Proud CG: p70 S6 kinase: an enigma with variations. Trends in Biological Sciences. 1996, 21: 181-185. 10.1016/0968-0004(96)10016-5.CrossRef Proud CG: p70 S6 kinase: an enigma with variations. Trends in Biological Sciences. 1996, 21: 181-185. 10.1016/0968-0004(96)10016-5.CrossRef
16.
go back to reference Moreau P, Lamarche L, K.-Laflamme A, Yamaguchi N, de Champlain J: Chronic hyperinsulinemia and hypertension: the role of the sympathetic nervous system. Journal of Hypertension. 1995, 13: 333-340.CrossRefPubMed Moreau P, Lamarche L, K.-Laflamme A, Yamaguchi N, de Champlain J: Chronic hyperinsulinemia and hypertension: the role of the sympathetic nervous system. Journal of Hypertension. 1995, 13: 333-340.CrossRefPubMed
17.
go back to reference McNulty PH, Young LH, Barrett EJ: Response of the rat heart and skeletal muscle protein in vivo to insulin and amino acid infusion. American Journal of Physiology. 1993, 264: E958-E965.PubMed McNulty PH, Young LH, Barrett EJ: Response of the rat heart and skeletal muscle protein in vivo to insulin and amino acid infusion. American Journal of Physiology. 1993, 264: E958-E965.PubMed
18.
go back to reference Voisin L, Foisy S, Giasson E, Moreau P, Meloche S: EGF receptor transactivation is obligatory for protein synthesisstimulation by G protein-coupled receptors. Am J Physiol Cell Physiol. 2002, 83: C446-55.CrossRef Voisin L, Foisy S, Giasson E, Moreau P, Meloche S: EGF receptor transactivation is obligatory for protein synthesisstimulation by G protein-coupled receptors. Am J Physiol Cell Physiol. 2002, 83: C446-55.CrossRef
19.
go back to reference Martens FMAC, Demeilliers B, Girardot D, Daigle C, Dao HH, deBlois D, Moreau P: Vessel specific stimulation of protein synthesis by nitric oxide synthase inhibition: role of extracellular regulated kinases 1/2. Hypertension. 2002, 39: 16-21. 10.1161/hy0102.099025.CrossRefPubMed Martens FMAC, Demeilliers B, Girardot D, Daigle C, Dao HH, deBlois D, Moreau P: Vessel specific stimulation of protein synthesis by nitric oxide synthase inhibition: role of extracellular regulated kinases 1/2. Hypertension. 2002, 39: 16-21. 10.1161/hy0102.099025.CrossRefPubMed
20.
go back to reference Lowry OH, Rosenbrough NJ, Lewis Far A, Randall RJ: Protein measurement with the folin-phenol reagent. Journal of Biological Chemistry. 1951, 193: 265-275.PubMed Lowry OH, Rosenbrough NJ, Lewis Far A, Randall RJ: Protein measurement with the folin-phenol reagent. Journal of Biological Chemistry. 1951, 193: 265-275.PubMed
21.
go back to reference Touyz RM, Deng LY, He G, Wu HH, Schiffrin EL: Angiotensin II stimulates DNA and protein synthesis in vascular smooth muscle cells from human arteries: role of extracellular signal-regulated kinases. Journal of Hypertension. 1999, 17: 907-916. 10.1097/00004872-199917070-00006.CrossRefPubMed Touyz RM, Deng LY, He G, Wu HH, Schiffrin EL: Angiotensin II stimulates DNA and protein synthesis in vascular smooth muscle cells from human arteries: role of extracellular signal-regulated kinases. Journal of Hypertension. 1999, 17: 907-916. 10.1097/00004872-199917070-00006.CrossRefPubMed
22.
go back to reference Su EJ, Lombardi DM, Siegal J, Schwartz SM: Angiotensin II induces vascular smooth muscle cell replication independent of blood pressure. Hypertension. 1998, 31: 1331-1337.CrossRefPubMed Su EJ, Lombardi DM, Siegal J, Schwartz SM: Angiotensin II induces vascular smooth muscle cell replication independent of blood pressure. Hypertension. 1998, 31: 1331-1337.CrossRefPubMed
23.
go back to reference Simon G, Altman S: Subpressor angiotensin II is a bifunctional growth factor of vascular muscle in rats. Journal of Hypertension. 1992, 10: 1165-1171.CrossRefPubMed Simon G, Altman S: Subpressor angiotensin II is a bifunctional growth factor of vascular muscle in rats. Journal of Hypertension. 1992, 10: 1165-1171.CrossRefPubMed
24.
go back to reference Matrougui K, Eskildsen-Helmond A, Fiebeler A, Henrion D, Levy BI, Tedgui A, Mulvany MJ: Angiotensin II stimulates extracellular signal-regulated kinase activity in intact pressurized rat mesenteric arteries. Hypertension. 2000, 36: 617-621.CrossRefPubMed Matrougui K, Eskildsen-Helmond A, Fiebeler A, Henrion D, Levy BI, Tedgui A, Mulvany MJ: Angiotensin II stimulates extracellular signal-regulated kinase activity in intact pressurized rat mesenteric arteries. Hypertension. 2000, 36: 617-621.CrossRefPubMed
25.
go back to reference Rao GN, Griendling KK, Frederickson RM, Sonenberg N: Angiotensin II induces phosphorylation of eukaryotic protein synthesis initiation factor 4E in vascular smooth muscle cells. Journal of Biological Chemistry. 1994, 269: 7180-7184.PubMed Rao GN, Griendling KK, Frederickson RM, Sonenberg N: Angiotensin II induces phosphorylation of eukaryotic protein synthesis initiation factor 4E in vascular smooth muscle cells. Journal of Biological Chemistry. 1994, 269: 7180-7184.PubMed
26.
go back to reference von Manteuffel SR, Gingras A-C, Ming X-F, Sonenberg N, Thomas G: 4E-BP1 phosphorylation is mediated by the FRAP-p70S6k pathway and is independent of mitogen-activated protein kinase. Proceedings of the National Academy of Science of the USA. 1996, 93: 4076-4080. 10.1073/pnas.93.9.4076.CrossRef von Manteuffel SR, Gingras A-C, Ming X-F, Sonenberg N, Thomas G: 4E-BP1 phosphorylation is mediated by the FRAP-p70S6k pathway and is independent of mitogen-activated protein kinase. Proceedings of the National Academy of Science of the USA. 1996, 93: 4076-4080. 10.1073/pnas.93.9.4076.CrossRef
27.
go back to reference Jefferies HBJ, Thomas G: Ribosomal protein S6 phosphorylation and signal transduction. Translational Control. Edited by: Hershey JWB, Mathews MB and Sonenberg N. 1996, Cold Spring Harbor, Cold Spring Harbor Laboratory Press, 389-410. Jefferies HBJ, Thomas G: Ribosomal protein S6 phosphorylation and signal transduction. Translational Control. Edited by: Hershey JWB, Mathews MB and Sonenberg N. 1996, Cold Spring Harbor, Cold Spring Harbor Laboratory Press, 389-410.
28.
go back to reference Eguchi S, Iwasaki H, Ueno H, Frank GD, Motley ED, Eguchi K, Marumo F, Hirata Y, Inagami T: Intracellular signaling of angiotensin II-induced p70 S6 kinase phosphorylation at Ser(411) in vascular smooth muscle cells. Possible requirement of epidermal growth factor receptor, Ras, extracellular signal-regulated kinase, and Akt. Journal of Biological Chemistry. 1999, 274: 36843-36851. 10.1074/jbc.274.52.36843.CrossRefPubMed Eguchi S, Iwasaki H, Ueno H, Frank GD, Motley ED, Eguchi K, Marumo F, Hirata Y, Inagami T: Intracellular signaling of angiotensin II-induced p70 S6 kinase phosphorylation at Ser(411) in vascular smooth muscle cells. Possible requirement of epidermal growth factor receptor, Ras, extracellular signal-regulated kinase, and Akt. Journal of Biological Chemistry. 1999, 274: 36843-36851. 10.1074/jbc.274.52.36843.CrossRefPubMed
29.
go back to reference Herbert JM, Delisee C, Dol F, Schaeffer P, Cazaubon C, Nisato D, Chatelain P: Effect of SR 47436, a novel angiotensin II AT1 receptor antagonist, on human vascular smooth muscle cells in vitro. European Journal of Pharmacology. 1994, 251: 143-150. 10.1016/0014-2999(94)90394-8.CrossRefPubMed Herbert JM, Delisee C, Dol F, Schaeffer P, Cazaubon C, Nisato D, Chatelain P: Effect of SR 47436, a novel angiotensin II AT1 receptor antagonist, on human vascular smooth muscle cells in vitro. European Journal of Pharmacology. 1994, 251: 143-150. 10.1016/0014-2999(94)90394-8.CrossRefPubMed
30.
go back to reference Cazaubon C, Gougat J, Bousquet F, Guiraudou P, Gayraud R, Lacour C, Roccon A, Galindo G, Barthelemy G, Gautret B, et al.: Pharmacological characterization of SR 47436, a new nonpeptide AT1 subtype angiotensin II receptor antagonist. Journal of Pharmacology and Experimental Therapeutics. 1993, 265: 826-834.PubMed Cazaubon C, Gougat J, Bousquet F, Guiraudou P, Gayraud R, Lacour C, Roccon A, Galindo G, Barthelemy G, Gautret B, et al.: Pharmacological characterization of SR 47436, a new nonpeptide AT1 subtype angiotensin II receptor antagonist. Journal of Pharmacology and Experimental Therapeutics. 1993, 265: 826-834.PubMed
31.
go back to reference Wu L, Iwai M, Nakagami H, Chen R, Suzuki J, Akishita M, de Gasparo M, Horiuchi M: Effect of angiotensin II type 1 receptor blockade on cardiac remodeling in angiotensin II type 2 receptor null mice. Arteriosclerosis, Thrombosis and Vascular Biology. 2002, 22: 49-54. 10.1161/hq0102.102277.CrossRef Wu L, Iwai M, Nakagami H, Chen R, Suzuki J, Akishita M, de Gasparo M, Horiuchi M: Effect of angiotensin II type 1 receptor blockade on cardiac remodeling in angiotensin II type 2 receptor null mice. Arteriosclerosis, Thrombosis and Vascular Biology. 2002, 22: 49-54. 10.1161/hq0102.102277.CrossRef
32.
go back to reference Cavanaugh JE, Ham J, Hetman M, Poser S, Yan C, Xia Z: Differential regulation of mitogen-activated protein kinases ERK1/2 and ERK5 by neurotrophins, neuronal activity, and cAMP in neurons. J Neurosci. 2001, 21: 434-443.PubMed Cavanaugh JE, Ham J, Hetman M, Poser S, Yan C, Xia Z: Differential regulation of mitogen-activated protein kinases ERK1/2 and ERK5 by neurotrophins, neuronal activity, and cAMP in neurons. J Neurosci. 2001, 21: 434-443.PubMed
33.
go back to reference Kim S, Murakami T, Izumi Y, Yano M, Miura K, Yamanaka S, Iwao H: Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activities are continuously and differentially increased in aorta of hypertensive rats. Biochemical and Biophysical Research Communications. 1997, 236: 199-204. 10.1006/bbrc.1997.6926.CrossRefPubMed Kim S, Murakami T, Izumi Y, Yano M, Miura K, Yamanaka S, Iwao H: Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activities are continuously and differentially increased in aorta of hypertensive rats. Biochemical and Biophysical Research Communications. 1997, 236: 199-204. 10.1006/bbrc.1997.6926.CrossRefPubMed
34.
go back to reference Girardot D, Demeilliers B, deBlois D, Moreau P: ERK1/2-mediated vasoconstriction normalizes wall stress in small mesenteric arteries during NOS inhibition in vivo. J Cardiovasc Pharmacol. 2003, 42: 339-347. 10.1097/00005344-200309000-00004.CrossRefPubMed Girardot D, Demeilliers B, deBlois D, Moreau P: ERK1/2-mediated vasoconstriction normalizes wall stress in small mesenteric arteries during NOS inhibition in vivo. J Cardiovasc Pharmacol. 2003, 42: 339-347. 10.1097/00005344-200309000-00004.CrossRefPubMed
Metadata
Title
Signaling of angiotensin II-induced vascular protein synthesis in conduit and resistance arteries in vivo
Authors
Christine Daigle
Fabrice MAC Martens
Daphné Girardot
Huy Hao Dao
Rhian M Touyz
Pierre Moreau
Publication date
01-12-2004
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2004
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/1471-2261-4-6

Other articles of this Issue 1/2004

BMC Cardiovascular Disorders 1/2004 Go to the issue