Skip to main content
Top
Published in: Journal of Translational Medicine 1/2021

Open Access 01-12-2021 | Shock | Research

Monitoring the tissue perfusion during hemorrhagic shock and resuscitation: tissue-to-arterial carbon dioxide partial pressure gradient in a pig model

Authors: Yusuke Endo, Taku Hirokawa, Taku Miyasho, Ryosuke Takegawa, Koichiro Shinozaki, Daniel M. Rolston, Lance B. Becker, Kei Hayashida

Published in: Journal of Translational Medicine | Issue 1/2021

Login to get access

Abstract

Background

Despite much evidence supporting the monitoring of the divergence of transcutaneous partial pressure of carbon dioxide (tcPCO2) from arterial partial pressure carbon dioxide (artPCO2) as an indicator of the shock status, data are limited on the relationships of the gradient between tcPCO2 and artPCO2 (tc-artPCO2) with the systemic oxygen metabolism and hemodynamic parameters. Our study aimed to test the hypothesis that tc-artPCO2 can detect inadequate tissue perfusion during hemorrhagic shock and resuscitation.

Methods

This prospective animal study was performed using female pigs at a university-based experimental laboratory. Progressive massive hemorrhagic shock was induced in mechanically ventilated pigs by stepwise blood withdrawal. All animals were then resuscitated by transfusing the stored blood in stages. A transcutaneous monitor was attached to their ears to measure tcPCO2. A pulmonary artery catheter (PAC) and pulse index continuous cardiac output (PiCCO) were used to monitor cardiac output (CO) and several hemodynamic parameters. The relationships of tc-artPCO2 with the study parameters and systemic oxygen delivery (DO2) were analyzed.

Results

Hemorrhage and blood transfusion precisely impacted hemodynamic and laboratory data as expected. The tc-artPCO2 level markedly increased as CO decreased. There were significant correlations of tc-artPCO2 with DO2 and COs (DO2: r = − 0.83, CO by PAC: r = − 0.79; CO by PiCCO: r = − 0.74; all P < 0.0001). The critical level of oxygen delivery (DO2crit) was 11.72 mL/kg/min according to transcutaneous partial pressure of oxygen (threshold of 30 mmHg). Receiver operating characteristic curve analyses revealed that the value of tc-artPCO2 for discrimination of DO2crit was highest with an area under the curve (AUC) of 0.94, followed by shock index (AUC = 0.78; P < 0.04 vs tc-artPCO2), and lactate (AUC = 0.65; P < 0.001 vs tc-artPCO2).

Conclusions

Our observations suggest the less-invasive tc-artPCO2 monitoring can sensitively detect inadequate systemic oxygen supply during hemorrhagic shock. Further evaluations are required in different forms of shock in other large animal models and in humans to assess its usefulness, safety, and ability to predict outcomes in critical illnesses.
Literature
3.
go back to reference Chatterjee K. The Swan-Ganz catheters: past, present, and future a viewpoint. Circulation. 2009;119(1):147–52.PubMedCrossRef Chatterjee K. The Swan-Ganz catheters: past, present, and future a viewpoint. Circulation. 2009;119(1):147–52.PubMedCrossRef
4.
5.
go back to reference Rajaram SS, Desai NK, Kalra A, Gajera M, Cavanaugh SK, Brampton W, Young D, Harvey S, Rowan K. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev. 2013;2:CD003408. Rajaram SS, Desai NK, Kalra A, Gajera M, Cavanaugh SK, Brampton W, Young D, Harvey S, Rowan K. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev. 2013;2:CD003408.
6.
go back to reference Zhang Z, Ni H, Qian Z. Effectiveness of treatment based on PiCCO parameters in critically ill patients with septic shock and/or acute respiratory distress syndrome: a randomized controlled trial. Intensive Care Med. 2015;41(3):444–51.PubMedCrossRef Zhang Z, Ni H, Qian Z. Effectiveness of treatment based on PiCCO parameters in critically ill patients with septic shock and/or acute respiratory distress syndrome: a randomized controlled trial. Intensive Care Med. 2015;41(3):444–51.PubMedCrossRef
7.
go back to reference Mari A, Nougue H, Mateo J, Vallet B, Vallee F. Transcutaneous PCO2 monitoring in critically ill patients: update and perspectives. J Thorac Dis. 2019;11(Suppl 11):S1558–67.PubMedPubMedCentralCrossRef Mari A, Nougue H, Mateo J, Vallet B, Vallee F. Transcutaneous PCO2 monitoring in critically ill patients: update and perspectives. J Thorac Dis. 2019;11(Suppl 11):S1558–67.PubMedPubMedCentralCrossRef
8.
go back to reference Huttmann SE, Windisch W, Storre JH. Techniques for the measurement and monitoring of carbon dioxide in the blood. Ann Am Thorac Soc. 2014;11(4):645–52.PubMedCrossRef Huttmann SE, Windisch W, Storre JH. Techniques for the measurement and monitoring of carbon dioxide in the blood. Ann Am Thorac Soc. 2014;11(4):645–52.PubMedCrossRef
9.
go back to reference Binder N, Atherton H, Thorkelsson T, Hoath SB. Measurement of transcutaneous carbon dioxide in low birthweight infants during the first two weeks of life. Am J Perinatol. 1994;11(3):237–41.PubMedCrossRef Binder N, Atherton H, Thorkelsson T, Hoath SB. Measurement of transcutaneous carbon dioxide in low birthweight infants during the first two weeks of life. Am J Perinatol. 1994;11(3):237–41.PubMedCrossRef
10.
go back to reference Severinghaus JW. Methods of measurement of blood and gas carbon dioxide during anesthesia. Anesthesiology. 1960;21:717–26.PubMedCrossRef Severinghaus JW. Methods of measurement of blood and gas carbon dioxide during anesthesia. Anesthesiology. 1960;21:717–26.PubMedCrossRef
11.
go back to reference Mindt W, Eberhard P, Schafer R. Monitoring of PCO2 by skin surface sensors. Biotelem Patient Monit. 1982;9(1):28–35.PubMed Mindt W, Eberhard P, Schafer R. Monitoring of PCO2 by skin surface sensors. Biotelem Patient Monit. 1982;9(1):28–35.PubMed
12.
go back to reference Tatevossian RG, Wo CC, Velmahos GC, Demetriades D, Shoemaker WC. Transcutaneous oxygen and CO2 as early warning of tissue hypoxia and hemodynamic shock in critically ill emergency patients. Crit Care Med. 2000;28(7):2248–53.PubMedCrossRef Tatevossian RG, Wo CC, Velmahos GC, Demetriades D, Shoemaker WC. Transcutaneous oxygen and CO2 as early warning of tissue hypoxia and hemodynamic shock in critically ill emergency patients. Crit Care Med. 2000;28(7):2248–53.PubMedCrossRef
13.
go back to reference Rodriguez P, Lellouche F, Aboab J, Buisson CB, Brochard L. Transcutaneous arterial carbon dioxide pressure monitoring in critically ill adult patients. Intensive Care Med. 2006;32(2):309–12.PubMedCrossRef Rodriguez P, Lellouche F, Aboab J, Buisson CB, Brochard L. Transcutaneous arterial carbon dioxide pressure monitoring in critically ill adult patients. Intensive Care Med. 2006;32(2):309–12.PubMedCrossRef
15.
16.
go back to reference Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol (1985). 2000;89(4):1317–21.CrossRef Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol (1985). 2000;89(4):1317–21.CrossRef
17.
go back to reference Marik PE. Regional carbon dioxide monitoring to assess the adequacy of tissue perfusion. Curr Opin Crit Care. 2005;11(3):245–51.PubMedCrossRef Marik PE. Regional carbon dioxide monitoring to assess the adequacy of tissue perfusion. Curr Opin Crit Care. 2005;11(3):245–51.PubMedCrossRef
18.
go back to reference Wickramasinghe SN, Marjot DH, Rosalki SB, Fink RS. Correlations between serum proteins modified by acetaldehyde and biochemical variables in heavy drinkers. J Clin Pathol. 1989;42(3):295–9.PubMedPubMedCentralCrossRef Wickramasinghe SN, Marjot DH, Rosalki SB, Fink RS. Correlations between serum proteins modified by acetaldehyde and biochemical variables in heavy drinkers. J Clin Pathol. 1989;42(3):295–9.PubMedPubMedCentralCrossRef
19.
go back to reference Tremper KK, Waxman K, Shoemaker WC. Effects of hypoxia and shock on transcutaneous PO2 values in dogs. Crit Care Med. 1979;7(12):526–31.PubMedCrossRef Tremper KK, Waxman K, Shoemaker WC. Effects of hypoxia and shock on transcutaneous PO2 values in dogs. Crit Care Med. 1979;7(12):526–31.PubMedCrossRef
20.
go back to reference Tremper KK, Shoemaker WC. Continuous CPR monitoring with transcutaneous oxygen and carbon dioxide sensors. Crit Care Med. 1981;9(5):417–8.PubMedCrossRef Tremper KK, Shoemaker WC. Continuous CPR monitoring with transcutaneous oxygen and carbon dioxide sensors. Crit Care Med. 1981;9(5):417–8.PubMedCrossRef
21.
go back to reference Vallee F, Mateo J, Dubreuil G, Poussant T, Tachon G, Ouanounou I, Payen D. Cutaneous ear lobe Pco(2) at 37 degrees C to evaluate microperfusion in patients with septic shock. Chest. 2010;138(5):1062–70.PubMedCrossRef Vallee F, Mateo J, Dubreuil G, Poussant T, Tachon G, Ouanounou I, Payen D. Cutaneous ear lobe Pco(2) at 37 degrees C to evaluate microperfusion in patients with septic shock. Chest. 2010;138(5):1062–70.PubMedCrossRef
23.
go back to reference Torres Filho IP, Spiess BD, Pittman RN, Barbee RW, Ward KR. Experimental analysis of critical oxygen delivery. Am J Physiol Heart Circ Physiol. 2005;288(3):H1071-1079.PubMedCrossRef Torres Filho IP, Spiess BD, Pittman RN, Barbee RW, Ward KR. Experimental analysis of critical oxygen delivery. Am J Physiol Heart Circ Physiol. 2005;288(3):H1071-1079.PubMedCrossRef
24.
go back to reference Ronco JJ, Fenwick JC, Tweeddale MG, Wiggs BR, Phang PT, Cooper DJ, Cunningham KF, Russell JA, Walley KR. Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and nonseptic humans. JAMA. 1993;270(14):1724–30.PubMedCrossRef Ronco JJ, Fenwick JC, Tweeddale MG, Wiggs BR, Phang PT, Cooper DJ, Cunningham KF, Russell JA, Walley KR. Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and nonseptic humans. JAMA. 1993;270(14):1724–30.PubMedCrossRef
25.
go back to reference Schumacker PT, Cain SM. The concept of a critical oxygen delivery. Intensive Care Med. 1987;13(4):223–9.PubMedCrossRef Schumacker PT, Cain SM. The concept of a critical oxygen delivery. Intensive Care Med. 1987;13(4):223–9.PubMedCrossRef
26.
go back to reference Shoemaker WC. Oxygen transport and oxygen metabolism in shock and critical illness. Invasive and noninvasive monitoring of circulatory dysfunction and shock. Crit Care Clin. 1996;12(4):939–69.PubMedCrossRef Shoemaker WC. Oxygen transport and oxygen metabolism in shock and critical illness. Invasive and noninvasive monitoring of circulatory dysfunction and shock. Crit Care Clin. 1996;12(4):939–69.PubMedCrossRef
27.
go back to reference Osthaus WA, Huber D, Beck C, Roehler A, Marx G, Hecker H, Sumpelmann R. Correlation of oxygen delivery with central venous oxygen saturation, mean arterial pressure and heart rate in piglets. Paediatr Anaesth. 2006;16(9):944–7.PubMedCrossRef Osthaus WA, Huber D, Beck C, Roehler A, Marx G, Hecker H, Sumpelmann R. Correlation of oxygen delivery with central venous oxygen saturation, mean arterial pressure and heart rate in piglets. Paediatr Anaesth. 2006;16(9):944–7.PubMedCrossRef
28.
go back to reference Yu M, Morita SY, Daniel SR, Chapital A, Waxman K, Severino R. Transcutaneous pressure of oxygen: a noninvasive and early detector of peripheral shock and outcome. Shock. 2006;26(5):450–6.PubMedCrossRef Yu M, Morita SY, Daniel SR, Chapital A, Waxman K, Severino R. Transcutaneous pressure of oxygen: a noninvasive and early detector of peripheral shock and outcome. Shock. 2006;26(5):450–6.PubMedCrossRef
29.
go back to reference Tremper KK, Waxman K, Bowman R, Shoemaker WC. Continuous transcutaneous oxygen monitoring during respiratory failure, cardiac decompensation, cardiac arrest, and CPR. Transcutaneous oxygen monitoring during arrest and CPR. Crit Care Med. 1980;8(7):377–81.PubMedCrossRef Tremper KK, Waxman K, Bowman R, Shoemaker WC. Continuous transcutaneous oxygen monitoring during respiratory failure, cardiac decompensation, cardiac arrest, and CPR. Transcutaneous oxygen monitoring during arrest and CPR. Crit Care Med. 1980;8(7):377–81.PubMedCrossRef
30.
go back to reference Van Esbroeck G, Gys T, Hubens A. Evaluation of tissue oximetry in perioperative monitoring of colorectal surgery. Br J Surg. 1992;79(6):584–7.PubMedCrossRef Van Esbroeck G, Gys T, Hubens A. Evaluation of tissue oximetry in perioperative monitoring of colorectal surgery. Br J Surg. 1992;79(6):584–7.PubMedCrossRef
31.
go back to reference Yu M, Chapital A, Ho HC, Wang J, Takanishi D Jr. A prospective randomized trial comparing oxygen delivery versus transcutaneous pressure of oxygen values as resuscitative goals. Shock. 2007;27(6):615–22.PubMedCrossRef Yu M, Chapital A, Ho HC, Wang J, Takanishi D Jr. A prospective randomized trial comparing oxygen delivery versus transcutaneous pressure of oxygen values as resuscitative goals. Shock. 2007;27(6):615–22.PubMedCrossRef
32.
go back to reference Mitra B, Fitzgerald M, Chan J. The utility of a shock index >/= 1 as an indication for pre-hospital oxygen carrier administration in major trauma. Injury. 2014;45(1):61–5.PubMedCrossRef Mitra B, Fitzgerald M, Chan J. The utility of a shock index >/= 1 as an indication for pre-hospital oxygen carrier administration in major trauma. Injury. 2014;45(1):61–5.PubMedCrossRef
33.
go back to reference Sammour T, Kahokehr A, Caldwell S, Hill AG. Venous glucose and arterial lactate as biochemical predictors of mortality in clinically severely injured trauma patients–a comparison with ISS and TRISS. Injury. 2009;40(1):104–8.PubMedCrossRef Sammour T, Kahokehr A, Caldwell S, Hill AG. Venous glucose and arterial lactate as biochemical predictors of mortality in clinically severely injured trauma patients–a comparison with ISS and TRISS. Injury. 2009;40(1):104–8.PubMedCrossRef
34.
go back to reference Lavery RF, Livingston DH, Tortella BJ, Sambol JT, Slomovitz BM, Siegel JH. The utility of venous lactate to triage injured patients in the trauma center. J Am Coll Surg. 2000;190(6):656–64.PubMedCrossRef Lavery RF, Livingston DH, Tortella BJ, Sambol JT, Slomovitz BM, Siegel JH. The utility of venous lactate to triage injured patients in the trauma center. J Am Coll Surg. 2000;190(6):656–64.PubMedCrossRef
35.
go back to reference Fink MP. Tissue capnometry as a monitoring strategy for critically ill patients: just about ready for prime time. Chest. 1998;114(3):667–70.PubMedCrossRef Fink MP. Tissue capnometry as a monitoring strategy for critically ill patients: just about ready for prime time. Chest. 1998;114(3):667–70.PubMedCrossRef
36.
go back to reference Katsura K, Ekholm A, Siesjo BK. Tissue PCO2 in brain ischemia related to lactate content in normo- and hypercapnic rats. J Cereb Blood Flow Metab. 1992;12(2):270–80.PubMedCrossRef Katsura K, Ekholm A, Siesjo BK. Tissue PCO2 in brain ischemia related to lactate content in normo- and hypercapnic rats. J Cereb Blood Flow Metab. 1992;12(2):270–80.PubMedCrossRef
37.
go back to reference Knichwitz G, Rotker J, Mollhoff T, Richter KD, Brussel T. Continuous intramucosal PCO2 measurement allows the early detection of intestinal malperfusion. Crit Care Med. 1998;26(9):1550–7.PubMedCrossRef Knichwitz G, Rotker J, Mollhoff T, Richter KD, Brussel T. Continuous intramucosal PCO2 measurement allows the early detection of intestinal malperfusion. Crit Care Med. 1998;26(9):1550–7.PubMedCrossRef
38.
go back to reference Rozenfeld RA, Dishart MK, Tonnessen TI, Schlichtig R. Methods for detecting local intestinal ischemic anaerobic metabolic acidosis by PCO2. J Appl Physiol (1985). 1996;81(4):1834–42.CrossRef Rozenfeld RA, Dishart MK, Tonnessen TI, Schlichtig R. Methods for detecting local intestinal ischemic anaerobic metabolic acidosis by PCO2. J Appl Physiol (1985). 1996;81(4):1834–42.CrossRef
39.
go back to reference Randall HM Jr, Cohen JJ. Anaerobic CO2 production by dog kidney in vitro. Am J Physiol. 1966;211(2):493–505.PubMedCrossRef Randall HM Jr, Cohen JJ. Anaerobic CO2 production by dog kidney in vitro. Am J Physiol. 1966;211(2):493–505.PubMedCrossRef
40.
go back to reference Belenkiy S, Ivey KM, Batchinsky AI, Langer T, Necsoiu C, Baker W, Salinas J, Cancio LC. Noninvasive carbon dioxide monitoring in a porcine model of acute lung injury due to smoke inhalation and burns. Shock. 2013;39(6):495–500.PubMedCrossRef Belenkiy S, Ivey KM, Batchinsky AI, Langer T, Necsoiu C, Baker W, Salinas J, Cancio LC. Noninvasive carbon dioxide monitoring in a porcine model of acute lung injury due to smoke inhalation and burns. Shock. 2013;39(6):495–500.PubMedCrossRef
41.
go back to reference Lebuffe G, Decoene C, Pol A, Prat A, Vallet B. Regional capnometry with air-automated tonometry detects circulatory failure earlier than conventional hemodynamics after cardiac surgery. Anesth Analg. 1999;89(5):1084–90.PubMedCrossRef Lebuffe G, Decoene C, Pol A, Prat A, Vallet B. Regional capnometry with air-automated tonometry detects circulatory failure earlier than conventional hemodynamics after cardiac surgery. Anesth Analg. 1999;89(5):1084–90.PubMedCrossRef
42.
go back to reference Belenkiy SM, Berry JS, Batchinsky AI, Kendrick C, Necsoiu C, Jordan BS, Salinas J, Cancio LC. The noninvasive carbon dioxide gradient (NICO2G) during hemorrhagic shock. Shock. 2014;42(1):38–43.PubMedCrossRef Belenkiy SM, Berry JS, Batchinsky AI, Kendrick C, Necsoiu C, Jordan BS, Salinas J, Cancio LC. The noninvasive carbon dioxide gradient (NICO2G) during hemorrhagic shock. Shock. 2014;42(1):38–43.PubMedCrossRef
43.
go back to reference Shen C, Wei D, Wang G, Kang Y, Yang F, Xu Q, Xia L, Liu J. Swine hemorrhagic shock model and pathophysiological changes in a desert dry-heat environment. PLoS One. 2021;16(1):e0244727.PubMedPubMedCentralCrossRef Shen C, Wei D, Wang G, Kang Y, Yang F, Xu Q, Xia L, Liu J. Swine hemorrhagic shock model and pathophysiological changes in a desert dry-heat environment. PLoS One. 2021;16(1):e0244727.PubMedPubMedCentralCrossRef
44.
go back to reference Maxwell TM, Lim RC Jr, Fuchs R, Hunt TK. Continuous monitoring of tissue gas tensions and pH in hemorrhagic shock. Am J Surg. 1973;126(2):249–54.PubMedCrossRef Maxwell TM, Lim RC Jr, Fuchs R, Hunt TK. Continuous monitoring of tissue gas tensions and pH in hemorrhagic shock. Am J Surg. 1973;126(2):249–54.PubMedCrossRef
45.
go back to reference Makisalo HJ, Soini HO, Tapani Lalla ML, Hockerstedt KA. Subcutaneous and liver tissue oxygen tension in hemorrhagic shock: an experimental study with whole blood and two colloids. Crit Care Med. 1988;16(9):857–61.PubMedCrossRef Makisalo HJ, Soini HO, Tapani Lalla ML, Hockerstedt KA. Subcutaneous and liver tissue oxygen tension in hemorrhagic shock: an experimental study with whole blood and two colloids. Crit Care Med. 1988;16(9):857–61.PubMedCrossRef
46.
go back to reference Nordin A, Makisalo H, Mildh L, Hockerstedt K. Gut intramucosal pH as an early indicator of effectiveness of therapy for hemorrhagic shock. Crit Care Med. 1998;26(6):1110–7.PubMedCrossRef Nordin A, Makisalo H, Mildh L, Hockerstedt K. Gut intramucosal pH as an early indicator of effectiveness of therapy for hemorrhagic shock. Crit Care Med. 1998;26(6):1110–7.PubMedCrossRef
47.
go back to reference Venkatesh B, Morgan TJ, Lipman J. Subcutaneous oxygen tensions provide similar information to ileal luminal CO2 tensions in an animal model of haemorrhagic shock. Intensive Care Med. 2000;26(5):592–600.PubMedCrossRef Venkatesh B, Morgan TJ, Lipman J. Subcutaneous oxygen tensions provide similar information to ileal luminal CO2 tensions in an animal model of haemorrhagic shock. Intensive Care Med. 2000;26(5):592–600.PubMedCrossRef
Metadata
Title
Monitoring the tissue perfusion during hemorrhagic shock and resuscitation: tissue-to-arterial carbon dioxide partial pressure gradient in a pig model
Authors
Yusuke Endo
Taku Hirokawa
Taku Miyasho
Ryosuke Takegawa
Koichiro Shinozaki
Daniel M. Rolston
Lance B. Becker
Kei Hayashida
Publication date
01-12-2021
Publisher
BioMed Central
Keywords
Shock
Shock
Published in
Journal of Translational Medicine / Issue 1/2021
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-021-03060-5

Other articles of this Issue 1/2021

Journal of Translational Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.