Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2021

01-12-2021 | Shingles | Research article

Causal inference concepts applied to three observational studies in the context of vaccine development: from theory to practice

Authors: Emilia Gvozdenović, Lucio Malvisi, Elisa Cinconze, Stijn Vansteelandt, Phoebe Nakanwagi, Emmanuel Aris, Dominique Rosillon

Published in: BMC Medical Research Methodology | Issue 1/2021

Login to get access

Abstract

Background

Randomized controlled trials are considered the gold standard to evaluate causal associations, whereas assessing causality in observational studies is challenging.

Methods

We applied Hill’s Criteria, counterfactual reasoning, and causal diagrams to evaluate a potentially causal relationship between an exposure and outcome in three published observational studies: a) one burden of disease cohort study to determine the association between type 2 diabetes and herpes zoster, b) one post-authorization safety cohort study to assess the effect of AS04-HPV-16/18 vaccine on the risk of autoimmune diseases, and c) one matched case-control study to evaluate the effectiveness of a rotavirus vaccine in preventing hospitalization for rotavirus gastroenteritis.

Results

Among the 9 Hill’s criteria, 8 (Strength, Consistency, Specificity, Temporality, Plausibility, Coherence, Analogy, Experiment) were considered as met for study c, 3 (Temporality, Plausibility, Coherence) for study a, and 2 (Temporary, Plausibility) for study b. For counterfactual reasoning criteria, exchangeability, the most critical assumption, could not be tested. Using these tools, we concluded that causality was very unlikely in study b, unlikely in study a, and very likely in study c. Directed acyclic graphs provided complementary visual structures that identified confounding bias and helped determine the most accurate design and analysis to assess causality.

Conclusions

Based on our assessment we found causal Hill’s criteria and counterfactual thinking valuable in determining some level of certainty about causality in observational studies. Application of causal inference frameworks should be considered in designing and interpreting observational studies.
Appendix
Available only for authorised users
Literature
2.
go back to reference Hernán MA, Robins JM. Causal inference: what if. Boca Raton: Chapman & Hall/CRC; 2020. Hernán MA, Robins JM. Causal inference: what if. Boca Raton: Chapman & Hall/CRC; 2020.
3.
go back to reference Hernan MA, Hernandez-Diaz S, Werler MM, Mitchell AA. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol. 2002;155(2):176–84.PubMedCrossRef Hernan MA, Hernandez-Diaz S, Werler MM, Mitchell AA. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol. 2002;155(2):176–84.PubMedCrossRef
4.
go back to reference Pearl J. Causal diagrams for empirical research. Biometrika. 1995;82:669–710.CrossRef Pearl J. Causal diagrams for empirical research. Biometrika. 1995;82:669–710.CrossRef
5.
go back to reference Rubin D. Estimating causal effects of treatments in randomized and non randomized studies. J Educ Psychol. 1974;66:688–701.CrossRef Rubin D. Estimating causal effects of treatments in randomized and non randomized studies. J Educ Psychol. 1974;66:688–701.CrossRef
6.
go back to reference Hanquet G, Valenciano M, Simondon F, Moren A. Vaccine effects and impact of vaccination programmes in post-licensure studies. Vaccine. 2013;31(48):5634–42.PubMedCrossRef Hanquet G, Valenciano M, Simondon F, Moren A. Vaccine effects and impact of vaccination programmes in post-licensure studies. Vaccine. 2013;31(48):5634–42.PubMedCrossRef
7.
go back to reference Greenland S, Pearl J. Causal diagrams. In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels JL, editors. Wiley StatsRef: statistics reference online; 2017. Greenland S, Pearl J. Causal diagrams. In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels JL, editors. Wiley StatsRef: statistics reference online; 2017.
8.
go back to reference Guignard AP, Greenberg M, Lu C, Rosillon D, Vannappagari V. Risk of herpes zoster among diabetics: a matched cohort study in a US insurance claim database before introduction of vaccination, 1997-2006. Infection. 2014;42(4):729–35.PubMedPubMedCentralCrossRef Guignard AP, Greenberg M, Lu C, Rosillon D, Vannappagari V. Risk of herpes zoster among diabetics: a matched cohort study in a US insurance claim database before introduction of vaccination, 1997-2006. Infection. 2014;42(4):729–35.PubMedPubMedCentralCrossRef
9.
go back to reference Willame C, Rosillon D, Zima J, Angelo MG, Stuurman A, Vroling H, et al. Risk of new onset autoimmune disease in 9- to 25-year-old women exposed to human papillomavirus-16/18 AS04-adjuvanted vaccine in the United Kingdom. Hum Vaccin Immunother. 2016;12(11):2862–71.PubMedPubMedCentralCrossRef Willame C, Rosillon D, Zima J, Angelo MG, Stuurman A, Vroling H, et al. Risk of new onset autoimmune disease in 9- to 25-year-old women exposed to human papillomavirus-16/18 AS04-adjuvanted vaccine in the United Kingdom. Hum Vaccin Immunother. 2016;12(11):2862–71.PubMedPubMedCentralCrossRef
10.
go back to reference Braeckman T, Van Herck K, Meyer N, Pirçon J-Y, Soriano-Gabarró M, Heylen E, et al. Effectiveness of rotavirus vaccination in prevention of hospital admissions for rotavirus gastroenteritis among young children in Belgium: case-control study. Br Med J. 2012;345:e4752.CrossRef Braeckman T, Van Herck K, Meyer N, Pirçon J-Y, Soriano-Gabarró M, Heylen E, et al. Effectiveness of rotavirus vaccination in prevention of hospital admissions for rotavirus gastroenteritis among young children in Belgium: case-control study. Br Med J. 2012;345:e4752.CrossRef
11.
go back to reference Herrett E, Gallagher AM, Bhaskaran K, Forbes H, Mathur R, van Staa T, et al. Data resource profile: clinical practice research Datalink (CPRD). Int J Epidemiol. 2015;44(3):827–36.PubMedPubMedCentralCrossRef Herrett E, Gallagher AM, Bhaskaran K, Forbes H, Mathur R, van Staa T, et al. Data resource profile: clinical practice research Datalink (CPRD). Int J Epidemiol. 2015;44(3):827–36.PubMedPubMedCentralCrossRef
12.
go back to reference Aldaz P, Diaz JA, Loayssa JR, Dronda MJ, Oscariz M, Castilla J. Herpes zoster incidence in diabetic patients. An Sist Sanit Navar. 2013;36(1):57–62.PubMedCrossRef Aldaz P, Diaz JA, Loayssa JR, Dronda MJ, Oscariz M, Castilla J. Herpes zoster incidence in diabetic patients. An Sist Sanit Navar. 2013;36(1):57–62.PubMedCrossRef
13.
go back to reference Heymann AD, Chodick G, Karpati T, Kamer L, Kremer E, Green MS, et al. Diabetes as a risk factor for herpes zoster infection: results of a population-based study in Israel. Infection. 2008;36(3):226–30.PubMedCrossRef Heymann AD, Chodick G, Karpati T, Kamer L, Kremer E, Green MS, et al. Diabetes as a risk factor for herpes zoster infection: results of a population-based study in Israel. Infection. 2008;36(3):226–30.PubMedCrossRef
14.
go back to reference McDonald JR, Zeringue AL, Caplan L, Ranganathan P, Xian H, Burroughs TE, et al. Herpes zoster risk factors in a national cohort of veterans with rheumatoid arthritis. Clin Infect Dis. 2009;48(10):1364–71.PubMedCrossRef McDonald JR, Zeringue AL, Caplan L, Ranganathan P, Xian H, Burroughs TE, et al. Herpes zoster risk factors in a national cohort of veterans with rheumatoid arthritis. Clin Infect Dis. 2009;48(10):1364–71.PubMedCrossRef
15.
go back to reference Okamoto S, Hata A, Sadaoka K, Yamanishi K, Mori Y. Comparison of varicella-zoster virus-specific immunity of patients with diabetes mellitus and healthy individuals. J Infect Dis. 2009;200(10):1606–10.PubMedCrossRef Okamoto S, Hata A, Sadaoka K, Yamanishi K, Mori Y. Comparison of varicella-zoster virus-specific immunity of patients with diabetes mellitus and healthy individuals. J Infect Dis. 2009;200(10):1606–10.PubMedCrossRef
16.
go back to reference Weinberg JM. Herpes zoster: epidemiology, natural history, and common complications. J Am Acad Dermatol. 2007;57(6 Suppl):S130–5.PubMedCrossRef Weinberg JM. Herpes zoster: epidemiology, natural history, and common complications. J Am Acad Dermatol. 2007;57(6 Suppl):S130–5.PubMedCrossRef
17.
go back to reference Zhu FC, Chen W, Hu YM, Hong Y, Li J, Zhang X, et al. Efficacy, immunogenicity and safety of the HPV-16/18 AS04-adjuvanted vaccine in healthy Chinese women aged 18-25 years: results from a randomized controlled trial. Int J Cancer. 2014;135(11):2612–22.PubMedPubMedCentralCrossRef Zhu FC, Chen W, Hu YM, Hong Y, Li J, Zhang X, et al. Efficacy, immunogenicity and safety of the HPV-16/18 AS04-adjuvanted vaccine in healthy Chinese women aged 18-25 years: results from a randomized controlled trial. Int J Cancer. 2014;135(11):2612–22.PubMedPubMedCentralCrossRef
18.
go back to reference Roteli-Martins CM, Naud P, De Borba P, Teixeira JC, De Carvalho NS, Zahaf T, et al. Sustained immunogenicity and efficacy of the HPV-16/18 AS04-adjuvanted vaccine: up to 8.4 years of follow-up. Hum Vaccin Immunother. 2012;8(3):390–7.PubMedCrossRef Roteli-Martins CM, Naud P, De Borba P, Teixeira JC, De Carvalho NS, Zahaf T, et al. Sustained immunogenicity and efficacy of the HPV-16/18 AS04-adjuvanted vaccine: up to 8.4 years of follow-up. Hum Vaccin Immunother. 2012;8(3):390–7.PubMedCrossRef
19.
go back to reference Sow PS, Watson-Jones D, Kiviat N, Changalucha J, Mbaye KD, Brown J, et al. Safety and immunogenicity of human papillomavirus-16/18 AS04-adjuvanted vaccine: a randomized trial in 10-25-year-old HIV-Seronegative African girls and young women. J Infect Dis. 2013;207(11):1753–63.PubMedCrossRef Sow PS, Watson-Jones D, Kiviat N, Changalucha J, Mbaye KD, Brown J, et al. Safety and immunogenicity of human papillomavirus-16/18 AS04-adjuvanted vaccine: a randomized trial in 10-25-year-old HIV-Seronegative African girls and young women. J Infect Dis. 2013;207(11):1753–63.PubMedCrossRef
20.
go back to reference Hildesheim A, Wacholder S, Catteau G, Struyf F, Dubin G, Herrero R, et al. Efficacy of the HPV-16/18 vaccine: final according to protocol results from the blinded phase of the randomized Costa Rica HPV-16/18 vaccine trial. Vaccine. 2014;32(39):5087–97.PubMedPubMedCentralCrossRef Hildesheim A, Wacholder S, Catteau G, Struyf F, Dubin G, Herrero R, et al. Efficacy of the HPV-16/18 vaccine: final according to protocol results from the blinded phase of the randomized Costa Rica HPV-16/18 vaccine trial. Vaccine. 2014;32(39):5087–97.PubMedPubMedCentralCrossRef
21.
go back to reference Konno R, Yoshikawa H, Okutani M, Quint W, P VS, Lin L, et al. Efficacy of the human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical intraepithelial neoplasia and cervical infection in young Japanese women. Hum Vaccin Immunother. 2014;10(7):1781–94.PubMedPubMedCentralCrossRef Konno R, Yoshikawa H, Okutani M, Quint W, P VS, Lin L, et al. Efficacy of the human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical intraepithelial neoplasia and cervical infection in young Japanese women. Hum Vaccin Immunother. 2014;10(7):1781–94.PubMedPubMedCentralCrossRef
22.
go back to reference Ahmed SS, Plotkin SA, Black S, Coffman RL. Assessing the safety of adjuvanted vaccines. Sci Transl Med. 2011;3(93):93rv92.CrossRef Ahmed SS, Plotkin SA, Black S, Coffman RL. Assessing the safety of adjuvanted vaccines. Sci Transl Med. 2011;3(93):93rv92.CrossRef
23.
go back to reference Descamps D, Hardt K, Spiessens B, Izurieta P, Verstraeten T, Breuer T, et al. Safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine for cervical cancer prevention: a pooled analysis of 11 clinical trials. Hum Vaccin. 2009;5(5):332–40.PubMedCrossRef Descamps D, Hardt K, Spiessens B, Izurieta P, Verstraeten T, Breuer T, et al. Safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine for cervical cancer prevention: a pooled analysis of 11 clinical trials. Hum Vaccin. 2009;5(5):332–40.PubMedCrossRef
24.
go back to reference Chao C, Klein NP, Velicer CM, Sy LS, Slezak JM, Takhar H, et al. Surveillance of autoimmune conditions following routine use of quadrivalent human papillomavirus vaccine. J Intern Med. 2011;271(2):193-203. Chao C, Klein NP, Velicer CM, Sy LS, Slezak JM, Takhar H, et al. Surveillance of autoimmune conditions following routine use of quadrivalent human papillomavirus vaccine. J Intern Med. 2011;271(2):193-203.
25.
go back to reference Willame C, Vonk Noordegraaf-Schouten M, Gvozdenovic E, Kochems K, Oordt-Speets A, Praet N, et al. Effectiveness of the Oral human attenuated rotavirus vaccine: a systematic review and meta-analysis-2006-2016. Open Forum Infect Dis. 2018;5(11):ofy292.PubMedPubMedCentralCrossRef Willame C, Vonk Noordegraaf-Schouten M, Gvozdenovic E, Kochems K, Oordt-Speets A, Praet N, et al. Effectiveness of the Oral human attenuated rotavirus vaccine: a systematic review and meta-analysis-2006-2016. Open Forum Infect Dis. 2018;5(11):ofy292.PubMedPubMedCentralCrossRef
26.
go back to reference Ruiz-Palacios GM, Pérez-Schael I, Velázquez FR, Abate H, Breuer T, Clemens SC, et al. Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N Engl J Med. 2006;354(1):11–22.PubMedCrossRef Ruiz-Palacios GM, Pérez-Schael I, Velázquez FR, Abate H, Breuer T, Clemens SC, et al. Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N Engl J Med. 2006;354(1):11–22.PubMedCrossRef
28.
go back to reference Vesikari T, Prymula R, Schuster V, Tejedor JC, Cohen R, Bouckenooghe A, et al. Efficacy and immunogenicity of live-attenuated human rotavirus vaccine in breast-fed and formula-fed European infants. Pediatr Infect Dis J. 2012;31(5):509–13.PubMedCrossRef Vesikari T, Prymula R, Schuster V, Tejedor JC, Cohen R, Bouckenooghe A, et al. Efficacy and immunogenicity of live-attenuated human rotavirus vaccine in breast-fed and formula-fed European infants. Pediatr Infect Dis J. 2012;31(5):509–13.PubMedCrossRef
29.
go back to reference Hungerford D, Read JM, Cooke RPD, Vivancos R, Iturriza-Gómara M, Allen DJ, et al. Early impact of rotavirus vaccination in a large paediatric hospital in the UK. J Hosp Infect. 2016;93(2):117–20.PubMedCrossRef Hungerford D, Read JM, Cooke RPD, Vivancos R, Iturriza-Gómara M, Allen DJ, et al. Early impact of rotavirus vaccination in a large paediatric hospital in the UK. J Hosp Infect. 2016;93(2):117–20.PubMedCrossRef
30.
go back to reference Pendleton A, Galic M, Clarke C, Ng SP, Ledesma E, Ramakrishnan G, et al. Impact of rotavirus vaccination in Australian children below 5 years of age: a database study. Hum Vaccin Immunother. 2013;9(8):1617–25.PubMedPubMedCentralCrossRef Pendleton A, Galic M, Clarke C, Ng SP, Ledesma E, Ramakrishnan G, et al. Impact of rotavirus vaccination in Australian children below 5 years of age: a database study. Hum Vaccin Immunother. 2013;9(8):1617–25.PubMedPubMedCentralCrossRef
31.
go back to reference Boom JA, Tate JE, Sahni LC, Rench MA, Hull JJ, Gentsch JR, et al. Effectiveness of pentavalent rotavirus vaccine in a large urban population in the United States. Pediatrics. 2010;125(2):e199–207.PubMedCrossRef Boom JA, Tate JE, Sahni LC, Rench MA, Hull JJ, Gentsch JR, et al. Effectiveness of pentavalent rotavirus vaccine in a large urban population in the United States. Pediatrics. 2010;125(2):e199–207.PubMedCrossRef
32.
go back to reference Desai SN, Esposito DB, Shapiro ED, Dennehy PH, Vazquez M. Effectiveness of rotavirus vaccine in preventing hospitalization due to rotavirus gastroenteritis in young children in Connecticut, USA. Vaccine. 2010;28(47):7501–6.PubMedPubMedCentralCrossRef Desai SN, Esposito DB, Shapiro ED, Dennehy PH, Vazquez M. Effectiveness of rotavirus vaccine in preventing hospitalization due to rotavirus gastroenteritis in young children in Connecticut, USA. Vaccine. 2010;28(47):7501–6.PubMedPubMedCentralCrossRef
33.
go back to reference Degelman ML, Herman KM. Smoking and multiple sclerosis: a systematic review and meta-analysis using the Bradford Hill criteria for causation. Mult Scler Relat Disord. 2017;17:207–16.PubMedCrossRef Degelman ML, Herman KM. Smoking and multiple sclerosis: a systematic review and meta-analysis using the Bradford Hill criteria for causation. Mult Scler Relat Disord. 2017;17:207–16.PubMedCrossRef
34.
go back to reference Dickerson MC, Johnston J, Delea TE, White A, Andrews E. The causal role for genital ulcer disease as a risk factor for transmission of human immunodeficiency virus. An application of the Bradford Hill criteria. Sex Transm Dis. 1996;23(5):429–40.PubMedCrossRef Dickerson MC, Johnston J, Delea TE, White A, Andrews E. The causal role for genital ulcer disease as a risk factor for transmission of human immunodeficiency virus. An application of the Bradford Hill criteria. Sex Transm Dis. 1996;23(5):429–40.PubMedCrossRef
35.
go back to reference Fenton TR, Tough SC, Lyon AW, Eliasziw M, Hanley DA. Causal assessment of dietary acid load and bone disease: a systematic review & meta-analysis applying Hill's epidemiologic criteria for causality. Nutr J. 2011;10:41.PubMedPubMedCentralCrossRef Fenton TR, Tough SC, Lyon AW, Eliasziw M, Hanley DA. Causal assessment of dietary acid load and bone disease: a systematic review & meta-analysis applying Hill's epidemiologic criteria for causality. Nutr J. 2011;10:41.PubMedPubMedCentralCrossRef
36.
37.
go back to reference Muganurmath CS, Curry AL, Schindzielorz AH. Causality assessment of olfactory and gustatory dysfunction associated with intranasal fluticasone propionate: application of the Bradford Hill criteria. Adv Ther. 2018;35(2):173–90.PubMedPubMedCentralCrossRef Muganurmath CS, Curry AL, Schindzielorz AH. Causality assessment of olfactory and gustatory dysfunction associated with intranasal fluticasone propionate: application of the Bradford Hill criteria. Adv Ther. 2018;35(2):173–90.PubMedPubMedCentralCrossRef
38.
go back to reference Shahar E. The association of body mass index with health outcomes: causal, inconsistent, or confounded? Am J Epidemiol. 2009;170(8):957–8.PubMedCrossRef Shahar E. The association of body mass index with health outcomes: causal, inconsistent, or confounded? Am J Epidemiol. 2009;170(8):957–8.PubMedCrossRef
39.
go back to reference Staplin N, Herrington WG, Judge PK, Reith CA, Haynes R, Landray MJ, et al. Use of causal diagrams to inform the design and interpretation of observational studies: an example from the study of heart and renal protection (SHARP). Clin J Am Soc Nephrol. 2017;12(3):546–52.PubMedCrossRef Staplin N, Herrington WG, Judge PK, Reith CA, Haynes R, Landray MJ, et al. Use of causal diagrams to inform the design and interpretation of observational studies: an example from the study of heart and renal protection (SHARP). Clin J Am Soc Nephrol. 2017;12(3):546–52.PubMedCrossRef
40.
go back to reference Fedak KM, Bernal A, Capshaw ZA, Gross S. Applying the Bradford Hill criteria in the 21st century: how data integration has changed causal inference in molecular epidemiology. Emerg Themes Epidemiol. 2015;12:14.PubMedPubMedCentralCrossRef Fedak KM, Bernal A, Capshaw ZA, Gross S. Applying the Bradford Hill criteria in the 21st century: how data integration has changed causal inference in molecular epidemiology. Emerg Themes Epidemiol. 2015;12:14.PubMedPubMedCentralCrossRef
41.
go back to reference Ioannidis JP. Exposure-wide epidemiology: revisiting Bradford Hill. Stat Med. 2016;35(11):1749–62.PubMedCrossRef Ioannidis JP. Exposure-wide epidemiology: revisiting Bradford Hill. Stat Med. 2016;35(11):1749–62.PubMedCrossRef
42.
go back to reference Olsen J, Jensen UJ. Causal criteria: time has come for a revision. Eur J Epidemiol. 2019;34(6):537–41.PubMedCrossRef Olsen J, Jensen UJ. Causal criteria: time has come for a revision. Eur J Epidemiol. 2019;34(6):537–41.PubMedCrossRef
43.
go back to reference Rothman KJ, Greenland S. Causation and causal inference in epidemiology. Am J Public Health. 2005;95(Suppl 1):S144–50.PubMedCrossRef Rothman KJ, Greenland S. Causation and causal inference in epidemiology. Am J Public Health. 2005;95(Suppl 1):S144–50.PubMedCrossRef
45.
go back to reference Weed DL, Gorelic LS. The practice of causal inference in cancer epidemiology. Cancer Epidemiol Biomarkers Prev. 1996;5(4):303–11.PubMed Weed DL, Gorelic LS. The practice of causal inference in cancer epidemiology. Cancer Epidemiol Biomarkers Prev. 1996;5(4):303–11.PubMed
46.
go back to reference Khokhar B, Jette N, Metcalfe A, Cunningham CT, Quan H, Kaplan GG, et al. Systematic review of validated case definitions for diabetes in ICD-9-coded and ICD-10-coded data in adult populations. BMJ Open. 2016;6(8):e009952.PubMedPubMedCentralCrossRef Khokhar B, Jette N, Metcalfe A, Cunningham CT, Quan H, Kaplan GG, et al. Systematic review of validated case definitions for diabetes in ICD-9-coded and ICD-10-coded data in adult populations. BMJ Open. 2016;6(8):e009952.PubMedPubMedCentralCrossRef
48.
go back to reference Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10(1):37–48.PubMedCrossRef Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10(1):37–48.PubMedCrossRef
50.
go back to reference Pearce N. Bias in matched case-control studies: DAGs are not enough. Eur J Epidemiol. 2018;33(1):1–4.PubMedCrossRef Pearce N. Bias in matched case-control studies: DAGs are not enough. Eur J Epidemiol. 2018;33(1):1–4.PubMedCrossRef
52.
go back to reference Van der Weele TJ. On the distinction between interaction and effect modification. Epidemiology. 2009;20(6):863–71.CrossRef Van der Weele TJ. On the distinction between interaction and effect modification. Epidemiology. 2009;20(6):863–71.CrossRef
53.
go back to reference Williamson EJ, Aitken Z, Lawrie J, Dharmage SC, Burgess JA, Forbes AB. Introduction to causal diagrams for confounder selection. Respirology. 2014;19(3):303–11.PubMedCrossRef Williamson EJ, Aitken Z, Lawrie J, Dharmage SC, Burgess JA, Forbes AB. Introduction to causal diagrams for confounder selection. Respirology. 2014;19(3):303–11.PubMedCrossRef
54.
go back to reference Hernán M, Hsu J, Healy B. A second chance to get causal inference right: a classification of data science tasks. Chance. 2019;32(1):42–9.CrossRef Hernán M, Hsu J, Healy B. A second chance to get causal inference right: a classification of data science tasks. Chance. 2019;32(1):42–9.CrossRef
55.
go back to reference Zhang X, Faries DE, Li H, Stamey JD, Imbens GW. Addressing unmeasured confounding in comparative observational research. Pharmacoepidemiol Drug Saf. 2018;27(4):373–82.PubMedCrossRef Zhang X, Faries DE, Li H, Stamey JD, Imbens GW. Addressing unmeasured confounding in comparative observational research. Pharmacoepidemiol Drug Saf. 2018;27(4):373–82.PubMedCrossRef
57.
go back to reference Faries D, Zhang X, Kadziola Z, Siebert U, Kuehne F, Obenchain RL, et al. Real world health care data analysis: causal methods and implementation using SAS®. Cary: SAS Institute Inc.; 2020. Faries D, Zhang X, Kadziola Z, Siebert U, Kuehne F, Obenchain RL, et al. Real world health care data analysis: causal methods and implementation using SAS®. Cary: SAS Institute Inc.; 2020.
Metadata
Title
Causal inference concepts applied to three observational studies in the context of vaccine development: from theory to practice
Authors
Emilia Gvozdenović
Lucio Malvisi
Elisa Cinconze
Stijn Vansteelandt
Phoebe Nakanwagi
Emmanuel Aris
Dominique Rosillon
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2021
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-021-01220-1

Other articles of this Issue 1/2021

BMC Medical Research Methodology 1/2021 Go to the issue