Skip to main content
Top
Published in: Virology Journal 1/2019

Open Access 01-12-2019 | Septicemia | Research

The glycoprotein, non-virion protein, and polymerase of viral hemorrhagic septicemia virus are not determinants of host-specific virulence in rainbow trout

Authors: Shamila Yusuff, Gael Kurath, Min Sun Kim, Tarin M. Tesfaye, Jie Li, Douglas G. McKenney, Vikram N. Vakharia

Published in: Virology Journal | Issue 1/2019

Login to get access

Abstract

Background

Viral hemorrhagic septicemia virus (VHSV), a fish rhabdovirus belonging to the Novirhabdovirus genus, causes severe disease and mortality in many marine and freshwater fish species worldwide. VHSV isolates are classified into four genotypes and each group is endemic to specific geographic regions in the north Atlantic and Pacific Oceans. Most viruses in the European VHSV genotype Ia are highly virulent for rainbow trout (Oncorhynchus mykiss), whereas, VHSV genotype IVb viruses from the Great Lakes region in the United States, which caused high mortality in wild freshwater fish species, are avirulent for trout. This study describes molecular characterization and construction of an infectious clone of the virulent VHSV-Ia strain DK-3592B from Denmark, and application of the clone in reverse genetics to investigate the role of selected VHSV protein(s) in host-specific virulence in rainbow trout (referred to as trout-virulence).

Methods

Overlapping cDNA fragments of the DK-3592B genome were cloned after RT-PCR amplification, and their DNA sequenced by the di-deoxy chain termination method. A full-length cDNA copy (pVHSVdk) of the DK-3592B strain genome was constructed by assembling six overlapping cDNA fragments by using natural or artificially created unique restriction sites in the overlapping regions of the clones. Using an existing clone of the trout-avirulent VHSV-IVb strain MI03 (pVHSVmi), eight chimeric VHSV clones were constructed in which the coding region(s) of the glycoprotein (G), non-virion protein (NV), G and NV, or G, NV and L (polymerase) genes together, were exchanged between the two clones. Ten recombinant VHSVs (rVHSVs) were generated, including two parental rVHSVs, by transfecting fish cells with ten individual full-length plasmid constructs along with supporting plasmids using the established protocol. Recovered rVHSVs were characterized for viability and growth in vitro and used to challenge groups of juvenile rainbow trout by intraperitoneal injection.

Results

Complete sequence of the VHSV DK-3592B genome was determined from the cloned cDNA and deposited in GenBank under the accession no. KC778774. The trout-virulent DK-3592B genome (genotype Ia) is 11,159 nt in length and differs from the trout-avirulent MI03 genome (pVHSVmi) by 13% at the nucleotide level. When the rVHSVs were assessed for the trout-virulence phenotype in vivo, the parental rVHSVdk and rVHSVmi were virulent and avirulent, respectively, as expected. Four chimeric rVHSVdk viruses with the substitutions of the G, NV, G and NV, or G, NV and L genes from the avirulent pVHSVmi constructs were still highly virulent (100% mortality), while the reciprocal four chimeric rVHSVmi viruses with genes from pVHSVdk remained avirulent (0–10% mortality).

Conclusions

When chimeric rVHSVs, containing all the G, NV, and L gene substitutions, were tested in vivo, they did not exhibit any change in trout-virulence relative to the background clones. These results demonstrate that the G, NV and L genes of VHSV are not, by themselves or in combination, major determinants of host-specific virulence in trout.
Literature
1.
go back to reference Skall HF, Olesen NJ, Mellergaard S. Viral haemorrhagic septicaemia virus in marine fish and its implications for fish farming -- a review. J Fish Dis. 2005;28:509–29.CrossRef Skall HF, Olesen NJ, Mellergaard S. Viral haemorrhagic septicaemia virus in marine fish and its implications for fish farming -- a review. J Fish Dis. 2005;28:509–29.CrossRef
2.
go back to reference Smail DA, Snow M. Viral haemorrhagic septicaemia. 2011. In: Woo PTK, Bruno DW, eds. Fish diseases and disorders, Vol. 3, Viral, bacterial, and fungal infections. 2nd Edition. Wallingford, U.K.: CAB International; pp. 110–142. Smail DA, Snow M. Viral haemorrhagic septicaemia. 2011. In: Woo PTK, Bruno DW, eds. Fish diseases and disorders, Vol. 3, Viral, bacterial, and fungal infections. 2nd Edition. Wallingford, U.K.: CAB International; pp. 110–142.
3.
go back to reference World Organisation for Animal Health. 2018. Manual of diagnostic tests for aquatic animals. Viral haemorrhagic septicaemia. World Organisation for Animal Health, Paris, France. World Organisation for Animal Health. 2018. Manual of diagnostic tests for aquatic animals. Viral haemorrhagic septicaemia. World Organisation for Animal Health, Paris, France.
6.
go back to reference Schütze H, Mundt E, Mettenleiter TC. Complete genomic sequence of viral hemorrhagic septicemia virus, a fish rhabdovirus. Virus Genes. 1999;19:59–65.CrossRef Schütze H, Mundt E, Mettenleiter TC. Complete genomic sequence of viral hemorrhagic septicemia virus, a fish rhabdovirus. Virus Genes. 1999;19:59–65.CrossRef
7.
go back to reference Ammayappan A, Vakharia VN. Molecular characterization of the Great Lakes viral hemorrhagic septicemia virus (VHSV) isolate from USA. Virol J. 2009;6:171.CrossRef Ammayappan A, Vakharia VN. Molecular characterization of the Great Lakes viral hemorrhagic septicemia virus (VHSV) isolate from USA. Virol J. 2009;6:171.CrossRef
8.
go back to reference Dietzgen RG, Kondo H, Goodin MM, Kurath G, Vasilakis N. The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Res. 2017;227:158–70.CrossRef Dietzgen RG, Kondo H, Goodin MM, Kurath G, Vasilakis N. The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Res. 2017;227:158–70.CrossRef
9.
go back to reference Engelking HM, Leong JC. The glycoprotein of infectious hematopoietic necrosis virus elicits neutralizing antibody and protective responses. Virus Res. 1989;13:213–30.CrossRef Engelking HM, Leong JC. The glycoprotein of infectious hematopoietic necrosis virus elicits neutralizing antibody and protective responses. Virus Res. 1989;13:213–30.CrossRef
10.
go back to reference Lecocq-Xhonneux F, Thiry M, Dheur I, Rossis M, Vanderheijden N, Martial J, de Kinkelin P. A recombinant viral haemorrhagic septicaemia virus glycoprotein expressed in insect cells induces immunity in rainbow trout. J Gen Virol. 1994;75:1579–87.CrossRef Lecocq-Xhonneux F, Thiry M, Dheur I, Rossis M, Vanderheijden N, Martial J, de Kinkelin P. A recombinant viral haemorrhagic septicaemia virus glycoprotein expressed in insect cells induces immunity in rainbow trout. J Gen Virol. 1994;75:1579–87.CrossRef
11.
go back to reference Thoulouze MI, Bouguyon E, Carpentier C, Bremont M. Essential role of the NV protein of Novirhabdovirus for pathogenicity in rainbow trout. J Virol. 2004;78:4098–107.CrossRef Thoulouze MI, Bouguyon E, Carpentier C, Bremont M. Essential role of the NV protein of Novirhabdovirus for pathogenicity in rainbow trout. J Virol. 2004;78:4098–107.CrossRef
12.
go back to reference Biacchesi S, Lamoureux A, Merour E, Bernard J, Bremont M. Limited interference at the early stage of infection between two novirhabdoviruses: viral hemorrhagic septicemia virus and infectious hematopoietic necrosis virus. J Virol. 2010;84:10038–50.CrossRef Biacchesi S, Lamoureux A, Merour E, Bernard J, Bremont M. Limited interference at the early stage of infection between two novirhabdoviruses: viral hemorrhagic septicemia virus and infectious hematopoietic necrosis virus. J Virol. 2010;84:10038–50.CrossRef
13.
go back to reference Ammayappan A, Kurath G, Thompson TM, Vakharia VN. A reverse genetics system for the Great Lakes strain of viral hemorrhagic septicemia virus: the NV gene is required for pathogenicity. Mar Biotechnol (NY). 2011;13:672–83.CrossRef Ammayappan A, Kurath G, Thompson TM, Vakharia VN. A reverse genetics system for the Great Lakes strain of viral hemorrhagic septicemia virus: the NV gene is required for pathogenicity. Mar Biotechnol (NY). 2011;13:672–83.CrossRef
14.
go back to reference Ammayappan A, Vakharia VN. Nonvirion protein of novirhabdovirus suppresses apoptosis at the early stage of virus infection. J Virol. 2011;85:8393–402.CrossRef Ammayappan A, Vakharia VN. Nonvirion protein of novirhabdovirus suppresses apoptosis at the early stage of virus infection. J Virol. 2011;85:8393–402.CrossRef
15.
go back to reference Choi MK, Moon CH, Ko MS, Lee U-H, Cho WJ, Cha SJ, Do JW, Heo GJ, Jeong SG, Hahm YS, Harmache A, Bremont M, Kurath G, Park JW. A nuclear localization of the infectious haematopoietic necrosis virus NV protein is necessary for optimal viral growth. PLoS One. 2011;6:e22362.CrossRef Choi MK, Moon CH, Ko MS, Lee U-H, Cho WJ, Cha SJ, Do JW, Heo GJ, Jeong SG, Hahm YS, Harmache A, Bremont M, Kurath G, Park JW. A nuclear localization of the infectious haematopoietic necrosis virus NV protein is necessary for optimal viral growth. PLoS One. 2011;6:e22362.CrossRef
16.
go back to reference Kim MS, Kim KH. The role of viral hemorrhagic septicemia virus (VHSV) NV gene in TNF-alpha- and VHSV infection-mediated NF-kappaB activation. Fish Shellfish Immunol. 2013;34:1315–9.CrossRef Kim MS, Kim KH. The role of viral hemorrhagic septicemia virus (VHSV) NV gene in TNF-alpha- and VHSV infection-mediated NF-kappaB activation. Fish Shellfish Immunol. 2013;34:1315–9.CrossRef
17.
go back to reference Wolf K. (1988). Viral hemorrhagic septicemia. In: Fish Viruses and Fish Viral Diseases. , Cornell University Press, Ithaca, New York, USA, 217–249. Wolf K. (1988). Viral hemorrhagic septicemia. In: Fish Viruses and Fish Viral Diseases. , Cornell University Press, Ithaca, New York, USA, 217–249.
18.
go back to reference Meyers TR, Winton JR. Viral hemorrhagic septicemia virus in North America. Ann Rev Fish Dis. 1995;5:3–24.CrossRef Meyers TR, Winton JR. Viral hemorrhagic septicemia virus in North America. Ann Rev Fish Dis. 1995;5:3–24.CrossRef
19.
go back to reference Elsayed E, Faisal M, Thomas M, Whelan G, Batts W, Winton J. Isolation of viral haemorrhagic septicaemia virus from muskellunge, Esox masquinongy (Mitchill), in Lake St Clair, Michigan, USA reveals a new sublineage of the north American genotype. J Fish Dis. 2006;29:611–9.CrossRef Elsayed E, Faisal M, Thomas M, Whelan G, Batts W, Winton J. Isolation of viral haemorrhagic septicaemia virus from muskellunge, Esox masquinongy (Mitchill), in Lake St Clair, Michigan, USA reveals a new sublineage of the north American genotype. J Fish Dis. 2006;29:611–9.CrossRef
20.
go back to reference Lumsden JS, Morrison B, Yason C, Russell S, Young K, Yazdanpanah A, Huber P, Al-Hussinee L, Stone D, Way K. Mortality event in freshwater drum Aplodinotus grunniens from Lake Ontario, Canada, associated with viral haemorrhagic septicemia virus, type IV. Dis Aquat Org. 2007;76:99–111.CrossRef Lumsden JS, Morrison B, Yason C, Russell S, Young K, Yazdanpanah A, Huber P, Al-Hussinee L, Stone D, Way K. Mortality event in freshwater drum Aplodinotus grunniens from Lake Ontario, Canada, associated with viral haemorrhagic septicemia virus, type IV. Dis Aquat Org. 2007;76:99–111.CrossRef
21.
go back to reference Groocock GH, Getchell RG, Wooster GA, Britt KL, Batts WN, Winton JR, Casey RN, Casey JW, Bowser PR. Detection of viral hemorrhagic septicemia in round gobies in New York state (USA) waters of Lake Ontario and the St. Lawrence River. Dis Aquat Org. 2007;76:187–92.CrossRef Groocock GH, Getchell RG, Wooster GA, Britt KL, Batts WN, Winton JR, Casey RN, Casey JW, Bowser PR. Detection of viral hemorrhagic septicemia in round gobies in New York state (USA) waters of Lake Ontario and the St. Lawrence River. Dis Aquat Org. 2007;76:187–92.CrossRef
22.
go back to reference Gagné N, Mackinnon AM, Boston L, Souter B, Cook-Versloot M, Griffiths S, Olivier G. Isolation of viral haemorrhagic septicaemia virus from mummichog, stickleback, striped bass and brown trout in eastern Canada. J Fish Dis. 2007;30:213–23.CrossRef Gagné N, Mackinnon AM, Boston L, Souter B, Cook-Versloot M, Griffiths S, Olivier G. Isolation of viral haemorrhagic septicaemia virus from mummichog, stickleback, striped bass and brown trout in eastern Canada. J Fish Dis. 2007;30:213–23.CrossRef
23.
go back to reference Kane-Sutton M, Kinter B, Dennis PM, Koonce JF. Viral hemorrhagic septicemia virus infection in yellow perch, Perca flavesens, in Lake Erie. J Great Lakes Res. 2010;36:37–43.CrossRef Kane-Sutton M, Kinter B, Dennis PM, Koonce JF. Viral hemorrhagic septicemia virus infection in yellow perch, Perca flavesens, in Lake Erie. J Great Lakes Res. 2010;36:37–43.CrossRef
24.
go back to reference Snow M, Bain N, Black J, Taupin V, Cunningham CO, King JA, Skall HF, Raynard RS. Genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Dis Aquat Org. 2004;61:11–21.CrossRef Snow M, Bain N, Black J, Taupin V, Cunningham CO, King JA, Skall HF, Raynard RS. Genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Dis Aquat Org. 2004;61:11–21.CrossRef
25.
go back to reference Einer-Jensen K, Ahrens P, Forsberg R, Lorenzen N. Evolution of the fish rhabdovirus viral haemorrhagic septicaemia virus. J Gen Virol. 2004;85:1167–79.CrossRef Einer-Jensen K, Ahrens P, Forsberg R, Lorenzen N. Evolution of the fish rhabdovirus viral haemorrhagic septicaemia virus. J Gen Virol. 2004;85:1167–79.CrossRef
26.
go back to reference Cieslak M, Mikkelsen SS, Skall HF, Baud M, Diserens N, Engelsma MY, Haenen OL, Mousakhani S, Panzarin V, Wahli T, Olesen NJ, Schütze H. Phylogeny of the viral hemorrhagic septicemia virus in European aquaculture. PLoS One. 2016;11:e0164475.CrossRef Cieslak M, Mikkelsen SS, Skall HF, Baud M, Diserens N, Engelsma MY, Haenen OL, Mousakhani S, Panzarin V, Wahli T, Olesen NJ, Schütze H. Phylogeny of the viral hemorrhagic septicemia virus in European aquaculture. PLoS One. 2016;11:e0164475.CrossRef
27.
go back to reference Schönherz AA, Forsberg R, Guldbrandtsen B, Buitenhuis AJ, Einer-Jensen K. Introduction of viral hemorrhagic septicemia virus into freshwater cultured rainbow trout is followed by bursts of adaptive evolution. J Virol. 2018;92:e00436–18.CrossRef Schönherz AA, Forsberg R, Guldbrandtsen B, Buitenhuis AJ, Einer-Jensen K. Introduction of viral hemorrhagic septicemia virus into freshwater cultured rainbow trout is followed by bursts of adaptive evolution. J Virol. 2018;92:e00436–18.CrossRef
28.
go back to reference Dale OB, Orpetveit I, Lyngstad TM, Kahns S, Skall HF, Olesen NJ, Dannevig BH. Outbreak of viral haemorrhagic septicaemia (VHS) in seawater-farmed rainbow trout in Norway caused by VHS virus genotype III. Dis Aquat Org. 2009;85:93–103.CrossRef Dale OB, Orpetveit I, Lyngstad TM, Kahns S, Skall HF, Olesen NJ, Dannevig BH. Outbreak of viral haemorrhagic septicaemia (VHS) in seawater-farmed rainbow trout in Norway caused by VHS virus genotype III. Dis Aquat Org. 2009;85:93–103.CrossRef
29.
go back to reference Duesund H, Nylund S, Watanabe K, Nylund A. Characterization of a VHS virus genotype III isolated from rainbow trout (Oncorhychus mykiss) at a marine site on the west coast of Norway. Virol J. 2010;7:19.CrossRef Duesund H, Nylund S, Watanabe K, Nylund A. Characterization of a VHS virus genotype III isolated from rainbow trout (Oncorhychus mykiss) at a marine site on the west coast of Norway. Virol J. 2010;7:19.CrossRef
30.
go back to reference Nishizawa T, Iida H, Takano R, Isshiki T, Nakajima K, Muroga K. Genetic relatedness among Japanese, American and European isolates of viral haemorrhagic septicaemia virus (VHSV) based on partial G and P genes. Dis Aquat Org. 2002;48:143–8.CrossRef Nishizawa T, Iida H, Takano R, Isshiki T, Nakajima K, Muroga K. Genetic relatedness among Japanese, American and European isolates of viral haemorrhagic septicaemia virus (VHSV) based on partial G and P genes. Dis Aquat Org. 2002;48:143–8.CrossRef
31.
go back to reference Pierce LR, Stepien CA. Evolution and biogeography of an emerging quasispecies: diversity patterns of the fish viral hemorrhagic septicemia virus (VHSv). Mol Phylogenet Evol. 2012;63:327–41.CrossRef Pierce LR, Stepien CA. Evolution and biogeography of an emerging quasispecies: diversity patterns of the fish viral hemorrhagic septicemia virus (VHSv). Mol Phylogenet Evol. 2012;63:327–41.CrossRef
32.
go back to reference Faisal M, Shavalier M, Kim RK, Millard EV, Gunn MR, Winters AD, Schulz CA, Eissa A, Thomas MV, Wolmagood M, Whelan GE, Winton J. Spread of the emerging viral hemorrhagic septicemia virus strain, genotype IVb, in Michigan, USA. Viruses. 2012;4:734–60.CrossRef Faisal M, Shavalier M, Kim RK, Millard EV, Gunn MR, Winters AD, Schulz CA, Eissa A, Thomas MV, Wolmagood M, Whelan GE, Winton J. Spread of the emerging viral hemorrhagic septicemia virus strain, genotype IVb, in Michigan, USA. Viruses. 2012;4:734–60.CrossRef
33.
go back to reference Skall HF, Slierendrecht WJ, King JA, Olesen NJ. Experimental infection of rainbow trout Oncorhynchus mykiss with viral haemorrhagic septicaemia virus isolates from European marine and farmed fishes. Dis Aquat Org. 2004;58:99–110.CrossRef Skall HF, Slierendrecht WJ, King JA, Olesen NJ. Experimental infection of rainbow trout Oncorhynchus mykiss with viral haemorrhagic septicaemia virus isolates from European marine and farmed fishes. Dis Aquat Org. 2004;58:99–110.CrossRef
34.
go back to reference Kim R, Faisal M. Comparative susceptibility of representative Great Lakes fish species to the north American viral hemorrhagic septicemia virus sublineage IVb. Dis Aquat Org. 2010;91:23–34.CrossRef Kim R, Faisal M. Comparative susceptibility of representative Great Lakes fish species to the north American viral hemorrhagic septicemia virus sublineage IVb. Dis Aquat Org. 2010;91:23–34.CrossRef
35.
go back to reference Emmenegger EJ, Moon CH, Hershberger PK, Kurath G. Virulence of viral hemorrhagic septicemia virus (VHSV) genotypes Ia, IVa, IVb, and IVc in five fish species. Dis Aquat Org. 2013;107:99–111.CrossRef Emmenegger EJ, Moon CH, Hershberger PK, Kurath G. Virulence of viral hemorrhagic septicemia virus (VHSV) genotypes Ia, IVa, IVb, and IVc in five fish species. Dis Aquat Org. 2013;107:99–111.CrossRef
36.
go back to reference Betts AM, Stone D. Nucleotide sequence analysis of the entire coding regions of virulent and avirulent strains of viral haemorrhagic septicaemia virus. Virus Genes. 2000;20:259–62.CrossRef Betts AM, Stone D. Nucleotide sequence analysis of the entire coding regions of virulent and avirulent strains of viral haemorrhagic septicaemia virus. Virus Genes. 2000;20:259–62.CrossRef
37.
go back to reference Campbell S, Collet B, Einer-Jensen K, Secombes CJ, Snow M. Identifying potential virulence determinants in viral haemorrhagic septicaemia virus (VHSV) for rainbow trout. Dis Aquat Org. 2009;86:205–12.CrossRef Campbell S, Collet B, Einer-Jensen K, Secombes CJ, Snow M. Identifying potential virulence determinants in viral haemorrhagic septicaemia virus (VHSV) for rainbow trout. Dis Aquat Org. 2009;86:205–12.CrossRef
38.
go back to reference Ito T, Kurita J, Mori K, Skall HF, Lorenzen N, Vendramin N, Andersen NG, Einer-Jensen K, Olesen NJ. Virulence marker candidates in N-protein of viral haemorrhagic septicaemia virus (VHSV): virulence variability within VHSV Ib clones. Dis Aquat Org. 2018;128:51–62.CrossRef Ito T, Kurita J, Mori K, Skall HF, Lorenzen N, Vendramin N, Andersen NG, Einer-Jensen K, Olesen NJ. Virulence marker candidates in N-protein of viral haemorrhagic septicaemia virus (VHSV): virulence variability within VHSV Ib clones. Dis Aquat Org. 2018;128:51–62.CrossRef
39.
go back to reference Ito T, Kurita J, Mori K, Olesen NJ. Virulence of viral haemorrhagic septicaemia virus (VHSV) genotype III in rainbow trout. Vet Res. 2016;47:4.CrossRef Ito T, Kurita J, Mori K, Olesen NJ. Virulence of viral haemorrhagic septicaemia virus (VHSV) genotype III in rainbow trout. Vet Res. 2016;47:4.CrossRef
40.
go back to reference Romero A, Figueras A, Tafalla C, Thoulouze MI, Bremont M, Novoa B. Histological, serological and virulence studies on rainbow trout experimentally infected with recombinant infectious hematopoietic necrosis viruses. Dis Aquat Org. 2005;68:17–28.CrossRef Romero A, Figueras A, Tafalla C, Thoulouze MI, Bremont M, Novoa B. Histological, serological and virulence studies on rainbow trout experimentally infected with recombinant infectious hematopoietic necrosis viruses. Dis Aquat Org. 2005;68:17–28.CrossRef
41.
go back to reference Biacchesi S. The reverse genetics applied to fish RNA viruses. Vet Res. 2011;42:12.CrossRef Biacchesi S. The reverse genetics applied to fish RNA viruses. Vet Res. 2011;42:12.CrossRef
42.
go back to reference Einer-Jensen K, Harmache A, Biacchesi S, Bremont M, Stegman A, Lorenzen N. High virulence differences among phylogenetically distinct isolates of the fish rhabdovirus viral hemorrhagic septicaemia virus are not explained by variability of the surface glycoprotein G or the non-virion protein NV. J Gen Virol. 2014;95:307–16.CrossRef Einer-Jensen K, Harmache A, Biacchesi S, Bremont M, Stegman A, Lorenzen N. High virulence differences among phylogenetically distinct isolates of the fish rhabdovirus viral hemorrhagic septicaemia virus are not explained by variability of the surface glycoprotein G or the non-virion protein NV. J Gen Virol. 2014;95:307–16.CrossRef
43.
go back to reference Emmenegger EJ, Biacchesi S, Mérour E, Glenn JA, Palmer AD, Brémont M, Kurath G. Virulence of a chimeric recombinant infectious haematopoietic necrosis virus expressing the spring viraemia of carp virus glycoprotein in salmonid and cyprinid fish. J Fish Dis. 2018;41:67–78.CrossRef Emmenegger EJ, Biacchesi S, Mérour E, Glenn JA, Palmer AD, Brémont M, Kurath G. Virulence of a chimeric recombinant infectious haematopoietic necrosis virus expressing the spring viraemia of carp virus glycoprotein in salmonid and cyprinid fish. J Fish Dis. 2018;41:67–78.CrossRef
44.
go back to reference Fijan ND, Sulimanovic D, Bearzotti M, Muzinic LD, Zwillenberg LO, Chilmonczyk S, Vantherot JF, de Kinkelin P. Some properties of the Epithelioma papulosum cyprini (EPC) cell line from carp Cyprinus carpio. Ann Virol (Inst Pasteur). 1983;134:207–20.CrossRef Fijan ND, Sulimanovic D, Bearzotti M, Muzinic LD, Zwillenberg LO, Chilmonczyk S, Vantherot JF, de Kinkelin P. Some properties of the Epithelioma papulosum cyprini (EPC) cell line from carp Cyprinus carpio. Ann Virol (Inst Pasteur). 1983;134:207–20.CrossRef
45.
go back to reference Batts WN, Winton JR. Enhanced detection of infectious hematopoietic necrosis virus and other fish viruses by pretreatment of cell monolayers with polyethylene glycol. J Aquat Anim Health. 1989;1:284–90.CrossRef Batts WN, Winton JR. Enhanced detection of infectious hematopoietic necrosis virus and other fish viruses by pretreatment of cell monolayers with polyethylene glycol. J Aquat Anim Health. 1989;1:284–90.CrossRef
46.
go back to reference Kim MS, Kim DS, Kim KH. Generation and characterization of NV gene-knockout recombinant viral hemorrhagic septicemia virus (VHSV) genotype IVa. Dis Aquat Org. 2011;97:25–35.CrossRef Kim MS, Kim DS, Kim KH. Generation and characterization of NV gene-knockout recombinant viral hemorrhagic septicemia virus (VHSV) genotype IVa. Dis Aquat Org. 2011;97:25–35.CrossRef
47.
go back to reference Biacchesi S, Thoulouze MI, Bearzotti M, Yu YX, Bremont M. Recovery of NV knockout infectious hematopoietic necrosis virus expressing foreign genes. J Virol. 2000;74:11247–53.CrossRef Biacchesi S, Thoulouze MI, Bearzotti M, Yu YX, Bremont M. Recovery of NV knockout infectious hematopoietic necrosis virus expressing foreign genes. J Virol. 2000;74:11247–53.CrossRef
48.
go back to reference Ammayappan A, LaPatra S, Vakharia VN. A vaccinia-virus-free reverse genetics system for infectious hematopoietic necrosis virus. J Virol Methods. 2010;167:132–9.CrossRef Ammayappan A, LaPatra S, Vakharia VN. A vaccinia-virus-free reverse genetics system for infectious hematopoietic necrosis virus. J Virol Methods. 2010;167:132–9.CrossRef
49.
go back to reference Wang C, Lian GH, Zhao LL, Wu Y, Li YJ, Tang LJ, Qiao XY, Jiang YP, Liu M. Virulence and serological studies of recombinant infectious hematopoietic necrosis virus (IHNV) in rainbow trout. Virus Res. 2016;220:193–202.CrossRef Wang C, Lian GH, Zhao LL, Wu Y, Li YJ, Tang LJ, Qiao XY, Jiang YP, Liu M. Virulence and serological studies of recombinant infectious hematopoietic necrosis virus (IHNV) in rainbow trout. Virus Res. 2016;220:193–202.CrossRef
50.
go back to reference Johnson MC, Simon BE, Kim CH, Leong JA. Production of recombinant snakehead rhabdovirus: the NV protein is not required for viral replication. J Virol. 2000;74:2343–50.CrossRef Johnson MC, Simon BE, Kim CH, Leong JA. Production of recombinant snakehead rhabdovirus: the NV protein is not required for viral replication. J Virol. 2000;74:2343–50.CrossRef
51.
go back to reference Biacchesi S, Bearzotti M, Bouguyon E, Bremont M. Heterologous exchanges of the glycoprotein and the matrix protein in a Novirhabdovirus. J Virol. 2002;76:2881–9.CrossRef Biacchesi S, Bearzotti M, Bouguyon E, Bremont M. Heterologous exchanges of the glycoprotein and the matrix protein in a Novirhabdovirus. J Virol. 2002;76:2881–9.CrossRef
52.
go back to reference Alonso M, Kim CH, Johnson MC, Pressley M, Leong JA. The NV gene of snakehead rhabdovirus (SHRV) is not required for pathogenesis, and a heterologous glycoprotein can be incorporated into the SHRV envelope. J Virol. 2004;78:5875–82.CrossRef Alonso M, Kim CH, Johnson MC, Pressley M, Leong JA. The NV gene of snakehead rhabdovirus (SHRV) is not required for pathogenesis, and a heterologous glycoprotein can be incorporated into the SHRV envelope. J Virol. 2004;78:5875–82.CrossRef
53.
go back to reference Kim SH, Thu BJ, Skall HF, Vendramin N, Evensen O. A single amino acid mutation (I1012F) of the RNA polymerase of marine viral hemorrhagic septicemia virus changes in vitro virulence to rainbow trout gill epithelial cells. J Virol. 2014;88:7189–98.CrossRef Kim SH, Thu BJ, Skall HF, Vendramin N, Evensen O. A single amino acid mutation (I1012F) of the RNA polymerase of marine viral hemorrhagic septicemia virus changes in vitro virulence to rainbow trout gill epithelial cells. J Virol. 2014;88:7189–98.CrossRef
54.
go back to reference Song H, Santi N, Evensen O, Vakharia VN. Molecular determinants of infectious pancreatic necrosis virus virulence and cell culture adaptation. J Virol. 2005;79:10289–99.CrossRef Song H, Santi N, Evensen O, Vakharia VN. Molecular determinants of infectious pancreatic necrosis virus virulence and cell culture adaptation. J Virol. 2005;79:10289–99.CrossRef
55.
go back to reference Coulibaly F, Chevalier C, Delmas B, Rey FA. Crystal structure of an Aquabirnavirus particle: insights into antigenic diversity and virulence determinism. J Virol. 2010;84:1792–9.CrossRef Coulibaly F, Chevalier C, Delmas B, Rey FA. Crystal structure of an Aquabirnavirus particle: insights into antigenic diversity and virulence determinism. J Virol. 2010;84:1792–9.CrossRef
56.
go back to reference Iwamoto T, Okinaka Y, Mise K, Mori K, Arimoto M, Okuno T, Nakai T. Identification of host-specificity determinants in betanodaviruses by using reassortants between striped jack nervous necrosis virus and sevenband grouper nervous necrosis virus. J Virol. 2004;78:1256–62.CrossRef Iwamoto T, Okinaka Y, Mise K, Mori K, Arimoto M, Okuno T, Nakai T. Identification of host-specificity determinants in betanodaviruses by using reassortants between striped jack nervous necrosis virus and sevenband grouper nervous necrosis virus. J Virol. 2004;78:1256–62.CrossRef
57.
go back to reference Ito Y, Okinaka M, Mori K, Sugaya T, Nishioka T, Oka M, Nakai T. Variable region of betanodavirus RNA 2 is sufficient to determine host specificity. Dis Aquat Org. 2008;79:199–205.CrossRef Ito Y, Okinaka M, Mori K, Sugaya T, Nishioka T, Oka M, Nakai T. Variable region of betanodavirus RNA 2 is sufficient to determine host specificity. Dis Aquat Org. 2008;79:199–205.CrossRef
58.
go back to reference Tang L, Lin CS, Krishna NK, Yeager M, Schneemann A, Johnson JE. Virus-like particles of a fish nodavirus display a capsid subunit domain organization different from that of insect nodaviruses. J Virol. 2002;76:6370–5.CrossRef Tang L, Lin CS, Krishna NK, Yeager M, Schneemann A, Johnson JE. Virus-like particles of a fish nodavirus display a capsid subunit domain organization different from that of insect nodaviruses. J Virol. 2002;76:6370–5.CrossRef
Metadata
Title
The glycoprotein, non-virion protein, and polymerase of viral hemorrhagic septicemia virus are not determinants of host-specific virulence in rainbow trout
Authors
Shamila Yusuff
Gael Kurath
Min Sun Kim
Tarin M. Tesfaye
Jie Li
Douglas G. McKenney
Vikram N. Vakharia
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2019
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-019-1139-3

Other articles of this Issue 1/2019

Virology Journal 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.