Skip to main content
Top
Published in: Virology Journal 1/2019

Open Access 01-12-2019 | Research

Evaluation of novel inactivated vaccines for the SAT 1, SAT 2 and SAT 3 serotypes of foot-and-mouth disease in pigs

Authors: Hye-Eun Jo, Su-Hwa You, Joo-Hyung Choi, Mi-Kyeong Ko, Sung Ho Shin, Jisoo Song, Hyundong Jo, Min Ja Lee, Su-Mi Kim, Byounghan Kim, Jong-Hyeon Park

Published in: Virology Journal | Issue 1/2019

Login to get access

Abstract

Background

The foot-and-mouth disease (FMD) virus is classified into seven serotypes, of which the South African types have South African Territories (SAT)1, SAT2, and SAT3 that are prevalent in Africa. Especially SAT2 have spread to Arabian Peninsula and the Palestinian Autonomous Territories. Of these viruses, the incidence of SAT2 is the highest. It is important to prepare for the spread of the virus to other continents, even though most FMD viruses are bovine-derived. In particular, due to the high breeding density of pigs in Asia, more attention is usually paid to the immunity and protection of pigs than cattle. For this reason, this study investigated the immunity and protection of pigs against the SAT viruses.

Methods

Specific vaccines were developed for SAT1, SAT2, and SAT3 serotypes. These vaccine viruses were designed to be distinguished from the wild-type strain. An immunogenicity test was conducted using these vaccines in both cattle (n = 5/group) and pigs (n = 20/group).

Results

High virus-neutralizing titer of antibodies (> 1:100) was induced in only 2 weeks after the immunization of cattle with the individual vaccine for SAT1, SAT2 or SAT3, and a clear immune response was induced after the second immunization in pigs. When the vaccinated pigs (n = 4–5/group) were challenged by the homologous wild-type virus strain 4 weeks after immunization, all the pigs were protected from the challenge.

Conclusions

This study confirmed that these vaccines can be used against SAT1, SAT2, and SAT3 viruses in cattle and pigs. The vaccine strains developed in this study are expected to be used as vaccines that can protect against FMD in the event of a future FMD outbreak in pigs in consideration of the situation in Asia.
Literature
1.
go back to reference Mouton L, Dekker A, Bleijenberg M, Blanchet M, Coco-Martin J, Hudelet P, Goutebroze S. A foot-and-mouth disease SAT2 vaccine protects swine against experimental challenge with a homologous virus strain, irrespective of mild pathogenicity in this species. Vaccine. 2018;36:2020–4.CrossRef Mouton L, Dekker A, Bleijenberg M, Blanchet M, Coco-Martin J, Hudelet P, Goutebroze S. A foot-and-mouth disease SAT2 vaccine protects swine against experimental challenge with a homologous virus strain, irrespective of mild pathogenicity in this species. Vaccine. 2018;36:2020–4.CrossRef
3.
go back to reference Brooksby JB. The virus of foot-and-mouth disease. Adv Virus Res. 1958;5:1–37.CrossRef Brooksby JB. The virus of foot-and-mouth disease. Adv Virus Res. 1958;5:1–37.CrossRef
4.
go back to reference Brown F. The history of research in foot-and-mouth disease. Virus Res. 2003;91:3–7.CrossRef Brown F. The history of research in foot-and-mouth disease. Virus Res. 2003;91:3–7.CrossRef
5.
go back to reference Bastos AD, Haydon DT, Forsberg R, Knowles NJ, Anderson EC, Bengis RG, Nel LH, Thomson GR. Genetic heterogeneity of SAT-1 type foot-and-mouth disease viruses in southern Africa. Arch Virol. 2001;146:1537–51.CrossRef Bastos AD, Haydon DT, Forsberg R, Knowles NJ, Anderson EC, Bengis RG, Nel LH, Thomson GR. Genetic heterogeneity of SAT-1 type foot-and-mouth disease viruses in southern Africa. Arch Virol. 2001;146:1537–51.CrossRef
6.
go back to reference Ferris NP, Donaldson AI. The world reference Laboratory for Foot and Mouth Disease: a review of thirty-three years of activity (1958-1991). Rev Sci Tech. 1992;11:657–84.CrossRef Ferris NP, Donaldson AI. The world reference Laboratory for Foot and Mouth Disease: a review of thirty-three years of activity (1958-1991). Rev Sci Tech. 1992;11:657–84.CrossRef
7.
go back to reference Brito BP, Rodriguez LL, Hammond JM, Pinto J, Perez AM. Review of the global distribution of foot-and-mouth disease virus from 2007 to 2014. Transbound Emerg Dis. 2017;64:316–32.CrossRef Brito BP, Rodriguez LL, Hammond JM, Pinto J, Perez AM. Review of the global distribution of foot-and-mouth disease virus from 2007 to 2014. Transbound Emerg Dis. 2017;64:316–32.CrossRef
8.
go back to reference Bastos AD, Haydon DT, Sangare O, Boshoff CI, Edrich JL, Thomson GR. The implications of virus diversity within the SAT 2 serotype for control of foot-and-mouth disease in sub-Saharan Africa. J Gen Virol. 2003;84:1595–606.CrossRef Bastos AD, Haydon DT, Sangare O, Boshoff CI, Edrich JL, Thomson GR. The implications of virus diversity within the SAT 2 serotype for control of foot-and-mouth disease in sub-Saharan Africa. J Gen Virol. 2003;84:1595–606.CrossRef
9.
go back to reference Maree FF, Nsamba P, Mutowembwa P, Rotherham LS, Esterhuysen J, Scott K. Intra-serotype SAT2 chimeric foot-and-mouth disease vaccine protects cattle against FMDV challenge. Vaccine. 2015;33:2909–16.CrossRef Maree FF, Nsamba P, Mutowembwa P, Rotherham LS, Esterhuysen J, Scott K. Intra-serotype SAT2 chimeric foot-and-mouth disease vaccine protects cattle against FMDV challenge. Vaccine. 2015;33:2909–16.CrossRef
10.
go back to reference Ayelet G, Soressa M, Sisay T, Belay A, Gelaye E, Jembere S, Skjerve E, Asmare K. FMD virus isolates: the candidate strains for polyvalent vaccine development in Ethiopia. Acta Trop. 2013;126:244–8.CrossRef Ayelet G, Soressa M, Sisay T, Belay A, Gelaye E, Jembere S, Skjerve E, Asmare K. FMD virus isolates: the candidate strains for polyvalent vaccine development in Ethiopia. Acta Trop. 2013;126:244–8.CrossRef
11.
go back to reference Blignaut B, Visser N, Theron J, Rieder E, Maree FF. Custom-engineered chimeric foot-and-mouth disease vaccine elicits protective immune responses in pigs. J Gen Virol. 2011;92:849–59.CrossRef Blignaut B, Visser N, Theron J, Rieder E, Maree FF. Custom-engineered chimeric foot-and-mouth disease vaccine elicits protective immune responses in pigs. J Gen Virol. 2011;92:849–59.CrossRef
12.
go back to reference Zhu Z, Yang F, He J, Li J, Cao W, Li J, Xia Y, Guo J, Jin Y, Zhang K, Zheng H, Liu X. First detection of foot-and-mouth disease virus O/ME-SA/Ind2001 in China. Transbound Emerg Dis. 2018;65:2027–31.CrossRef Zhu Z, Yang F, He J, Li J, Cao W, Li J, Xia Y, Guo J, Jin Y, Zhang K, Zheng H, Liu X. First detection of foot-and-mouth disease virus O/ME-SA/Ind2001 in China. Transbound Emerg Dis. 2018;65:2027–31.CrossRef
13.
go back to reference Park JH, Lee KN, Ko YJ, Kim SM, Lee HS, Shin YK, Sohn HJ, Park JY, Yeh JY, Lee YH, Kim MJ, Joo YS, Yoon H, Yoon SS, Cho IS, Kim B. Control of foot-and-mouth disease during 2010-2011 epidemic, South Korea. Emerg Infect Dis. 2013;19:655–9.CrossRef Park JH, Lee KN, Ko YJ, Kim SM, Lee HS, Shin YK, Sohn HJ, Park JY, Yeh JY, Lee YH, Kim MJ, Joo YS, Yoon H, Yoon SS, Cho IS, Kim B. Control of foot-and-mouth disease during 2010-2011 epidemic, South Korea. Emerg Infect Dis. 2013;19:655–9.CrossRef
14.
go back to reference Park JH, Lee KN, Kim SM, Lee HS, Ko YJ, Tark DS, Shin YK, Seo MG, Kim B. Reemergence of foot-and-mouth disease, South Korea, 2000-2011. Emerg Infect Dis. 2014;20:2158–61.CrossRef Park JH, Lee KN, Kim SM, Lee HS, Ko YJ, Tark DS, Shin YK, Seo MG, Kim B. Reemergence of foot-and-mouth disease, South Korea, 2000-2011. Emerg Infect Dis. 2014;20:2158–61.CrossRef
15.
go back to reference Park JH, Tark D, Lee KN, Chun JE, Lee HS, Ko YJ, Kye SJ, Kim YJ, Oem JK, Ryoo S, Lim SB, Lee SY, Choi JH, Ko MK, You SH, Lee MH, Kim B. Control of type O foot-and-mouth disease by vaccination in Korea, 2014-2015. J Vet Sci. 2018;19:271–9.CrossRef Park JH, Tark D, Lee KN, Chun JE, Lee HS, Ko YJ, Kye SJ, Kim YJ, Oem JK, Ryoo S, Lim SB, Lee SY, Choi JH, Ko MK, You SH, Lee MH, Kim B. Control of type O foot-and-mouth disease by vaccination in Korea, 2014-2015. J Vet Sci. 2018;19:271–9.CrossRef
16.
go back to reference Ko MK, Jo HE, Choi JH, You SH, Shin SH, Jo H, Lee MJ, Kim SM, Kim B, Park JH. Chimeric vaccine strain of type O foot-and-mouth disease elicits a strong immune response in pigs against ME-SA and SEA topotypes. Vet Microbiol. 2019;229:124–9.CrossRef Ko MK, Jo HE, Choi JH, You SH, Shin SH, Jo H, Lee MJ, Kim SM, Kim B, Park JH. Chimeric vaccine strain of type O foot-and-mouth disease elicits a strong immune response in pigs against ME-SA and SEA topotypes. Vet Microbiol. 2019;229:124–9.CrossRef
17.
go back to reference Park JN, Lee SY, Chu JQ, Lee YJ, Kim RH, Lee KN, Kim SM, Tark DS, Kim B, Park JH. Protection to homologous and heterologous challenge in pigs immunized with vaccine against foot-and-mouth disease type O caused an epidemic in East Asia during 2010/2011. Vaccine. 2014;32:1882–9.CrossRef Park JN, Lee SY, Chu JQ, Lee YJ, Kim RH, Lee KN, Kim SM, Tark DS, Kim B, Park JH. Protection to homologous and heterologous challenge in pigs immunized with vaccine against foot-and-mouth disease type O caused an epidemic in East Asia during 2010/2011. Vaccine. 2014;32:1882–9.CrossRef
18.
go back to reference Lee SY, Lee YJ, Kim RH, Park JN, Park ME, Ko MK, Choi JH, Chu JQ, Lee KN, Kim SM, Tark D, Lee HS, Ko YJ, Seo MG, Park JW, Kim B, Lee MH, Lee JS, Park JH. Rapid engineering of foot-and-mouth disease vaccine and challenge viruses. J Virol. 2017;91:e00155–17.PubMedPubMedCentral Lee SY, Lee YJ, Kim RH, Park JN, Park ME, Ko MK, Choi JH, Chu JQ, Lee KN, Kim SM, Tark D, Lee HS, Ko YJ, Seo MG, Park JW, Kim B, Lee MH, Lee JS, Park JH. Rapid engineering of foot-and-mouth disease vaccine and challenge viruses. J Virol. 2017;91:e00155–17.PubMedPubMedCentral
19.
go back to reference Park ME, You SH, Lee SY, Lee KN, Ko MK, Choi JH, Kim B, Lee JS, Park JH. Immune responses in pigs and cattle vaccinated with half-volume foot-and-mouth disease vaccine. J Vet Sci. 2017;18:323–31.CrossRef Park ME, You SH, Lee SY, Lee KN, Ko MK, Choi JH, Kim B, Lee JS, Park JH. Immune responses in pigs and cattle vaccinated with half-volume foot-and-mouth disease vaccine. J Vet Sci. 2017;18:323–31.CrossRef
20.
go back to reference Tully DC, Fares MA. The tale of a modern animal plague: tracing the evolutionary history and determining the time-scale for foot and mouth disease virus. Virology. 2008;382:250–6.CrossRef Tully DC, Fares MA. The tale of a modern animal plague: tracing the evolutionary history and determining the time-scale for foot and mouth disease virus. Virology. 2008;382:250–6.CrossRef
21.
go back to reference Tully DC, Fares MA. Shifts in the selection-drift balance drive the evolution and epidemiology of foot-and-mouth disease virus. J Virol. 2009;83:781–90.CrossRef Tully DC, Fares MA. Shifts in the selection-drift balance drive the evolution and epidemiology of foot-and-mouth disease virus. J Virol. 2009;83:781–90.CrossRef
23.
go back to reference Qiu Y, Abila R, Rodtian P, King DP, Knowles NJ, Ngo LT, Le VT, Khounsy S, Bounma P, Lwin S, Verin BC, Widders P. Emergence of an exotic strain of serotype O foot-and-mouth disease virus O/ME-SA/Ind-2001d in South-East Asia in 2015. Transbound Emerg Dis. 2018;65:e104–12.CrossRef Qiu Y, Abila R, Rodtian P, King DP, Knowles NJ, Ngo LT, Le VT, Khounsy S, Bounma P, Lwin S, Verin BC, Widders P. Emergence of an exotic strain of serotype O foot-and-mouth disease virus O/ME-SA/Ind-2001d in South-East Asia in 2015. Transbound Emerg Dis. 2018;65:e104–12.CrossRef
24.
go back to reference Dhikusooka MT, Tjornehoj K, Ayebazibwe C, Namatovu A, Ruhweza S, Siegismund HR, Wekesa SN, Normann P, Belsham GJ. Foot-and-mouth disease virus serotype SAT 3 in long-horned Ankole calf, Uganda. Emerg Infect Dis. 2015;21:111–4.CrossRef Dhikusooka MT, Tjornehoj K, Ayebazibwe C, Namatovu A, Ruhweza S, Siegismund HR, Wekesa SN, Normann P, Belsham GJ. Foot-and-mouth disease virus serotype SAT 3 in long-horned Ankole calf, Uganda. Emerg Infect Dis. 2015;21:111–4.CrossRef
25.
go back to reference Ehizibolo DO, Haegeman A, De Vleeschauwer AR, Umoh JU, Kazeem HM, Okolocha EC, Van Borm S, De Clercq K. Foot-and-mouth disease virus serotype SAT1 in cattle, Nigeria. Transbound Emerg Dis. 2017;64:683–90.CrossRef Ehizibolo DO, Haegeman A, De Vleeschauwer AR, Umoh JU, Kazeem HM, Okolocha EC, Van Borm S, De Clercq K. Foot-and-mouth disease virus serotype SAT1 in cattle, Nigeria. Transbound Emerg Dis. 2017;64:683–90.CrossRef
26.
go back to reference Lasecka-Dykes L, Wright CF, Di Nardo A, Logan G, Mioulet V, Jackson T, Tuthill TJ, Knowles NJ, King DP. Full genome sequencing reveals new southern African territories genotypes bringing us closer to understanding true variability of foot-and-mouth disease virus in Africa. Viruses. 2018;10. https://doi.org/10.3390/v10040192.CrossRef Lasecka-Dykes L, Wright CF, Di Nardo A, Logan G, Mioulet V, Jackson T, Tuthill TJ, Knowles NJ, King DP. Full genome sequencing reveals new southern African territories genotypes bringing us closer to understanding true variability of foot-and-mouth disease virus in Africa. Viruses. 2018;10. https://​doi.​org/​10.​3390/​v10040192.CrossRef
28.
go back to reference Zhou X, Li N, Luo Y, Liu Y, Miao F, Chen T, Zhang S, Cao P, Li X, Tian K, Qiu HJ, Hu R. Emergence of African swine fever in China, 2018. Transbound Emerg Dis. 2018;65:1482–4.CrossRef Zhou X, Li N, Luo Y, Liu Y, Miao F, Chen T, Zhang S, Cao P, Li X, Tian K, Qiu HJ, Hu R. Emergence of African swine fever in China, 2018. Transbound Emerg Dis. 2018;65:1482–4.CrossRef
29.
go back to reference Maree FF, Blignaut B, Esterhuysen JJ, de Beer TA, Theron J, O'Neill HG, Rieder E. Predicting antigenic sites on the foot-and-mouth disease virus capsid of the south African territories types using virus neutralization data. J Gen Virol. 2011;92:2297–309.CrossRef Maree FF, Blignaut B, Esterhuysen JJ, de Beer TA, Theron J, O'Neill HG, Rieder E. Predicting antigenic sites on the foot-and-mouth disease virus capsid of the south African territories types using virus neutralization data. J Gen Virol. 2011;92:2297–309.CrossRef
30.
go back to reference Sugiura K, Haga T. A rapid risk assessment of African swine fever introduction and spread in Japan based on expert opinions. J Vet Med Sci. 2018;80:1743–6.CrossRef Sugiura K, Haga T. A rapid risk assessment of African swine fever introduction and spread in Japan based on expert opinions. J Vet Med Sci. 2018;80:1743–6.CrossRef
Metadata
Title
Evaluation of novel inactivated vaccines for the SAT 1, SAT 2 and SAT 3 serotypes of foot-and-mouth disease in pigs
Authors
Hye-Eun Jo
Su-Hwa You
Joo-Hyung Choi
Mi-Kyeong Ko
Sung Ho Shin
Jisoo Song
Hyundong Jo
Min Ja Lee
Su-Mi Kim
Byounghan Kim
Jong-Hyeon Park
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2019
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-019-1262-1

Other articles of this Issue 1/2019

Virology Journal 1/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.