Skip to main content
Top
Published in: Annals of Intensive Care 1/2021

Open Access 01-12-2021 | Septicemia | Review

The autonomic nervous system in septic shock and its role as a future therapeutic target: a narrative review

Authors: Marta Carrara, Manuela Ferrario, Bernardo Bollen Pinto, Antoine Herpain

Published in: Annals of Intensive Care | Issue 1/2021

Login to get access

Abstract

The autonomic nervous system (ANS) regulates the cardiovascular system. A growing body of experimental and clinical evidence confirms significant dysfunction of this regulation during sepsis and septic shock. Clinical guidelines do not currently include any evaluation of ANS function during the resuscitation phase of septic shock despite the fact that the severity and persistence of ANS dysfunction are correlated with worse clinical outcomes. In the critical care setting, the clinical use of ANS-related hemodynamic indices is currently limited to preliminary investigations trying to predict and anticipate imminent clinical deterioration. In this review, we discuss the evidence supporting the concept that, in septic shock, restoration of ANS-mediated control of the cardiovascular system or alleviation of the clinical consequences induced by its dysfunction (e.g., excessive tachycardia, etc.), may be an important therapeutic goal, in combination with traditional resuscitation targets. Recent studies, which have used standard and advanced monitoring methods and mathematical models to investigate the ANS-mediated mechanisms of physiological regulation, have shown the feasibility and importance of monitoring ANS hemodynamic indices at the bedside, based on the acquisition of simple signals, such as heart rate and arterial blood pressure fluctuations. During the early phase of septic shock, experimental and/or clinical studies have shown the efficacy of negative-chronotropic agents (i.e., beta-blockers or ivabradine) in controlling persistent tachycardia despite adequate resuscitation. Central α-2 agonists have been shown to prevent peripheral adrenergic receptor desensitization by reducing catecholamine exposure. Whether these new therapeutic approaches can safely improve clinical outcomes remains to be confirmed in larger clinical trials. New technological solutions are now available to non-invasively modulate ANS outflow, such as transcutaneous vagal stimulation, with initial pre-clinical studies showing promising results and paving the way for ANS modulation to be considered as a new potential therapeutic target in patients with septic shock.
Literature
1.
go back to reference Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign. Crit Care Med. 2017;45:486–552.PubMedCrossRef Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign. Crit Care Med. 2017;45:486–552.PubMedCrossRef
2.
go back to reference Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992;101:1644–55.PubMedCrossRef Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992;101:1644–55.PubMedCrossRef
3.
go back to reference Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.PubMedCrossRef Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.PubMedCrossRef
4.
go back to reference Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580–637.PubMedCrossRef Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580–637.PubMedCrossRef
5.
go back to reference Radaelli A, Castiglioni P, Cerrito MG, De Carlini C, Soriano F, Di Rienzo M, et al. Infusion of Escherichia coli lipopolysaccharide toxin in rats produces an early and severe impairment of baroreflex function in absence of blood pressure changes. Shock. 2013;39:204–9.PubMedCrossRef Radaelli A, Castiglioni P, Cerrito MG, De Carlini C, Soriano F, Di Rienzo M, et al. Infusion of Escherichia coli lipopolysaccharide toxin in rats produces an early and severe impairment of baroreflex function in absence of blood pressure changes. Shock. 2013;39:204–9.PubMedCrossRef
6.
go back to reference Penn AH, Schmid-Schönbein GW. Severe intestinal ischemia can trigger cardiovascular collapse and sudden death via a parasympathetic mechanism. Shock. 2011;36:251–62.PubMedPubMedCentralCrossRef Penn AH, Schmid-Schönbein GW. Severe intestinal ischemia can trigger cardiovascular collapse and sudden death via a parasympathetic mechanism. Shock. 2011;36:251–62.PubMedPubMedCentralCrossRef
7.
go back to reference Schmidt H, Müller-Werdan U, Hoffmann T, Francis DP, Piepoli MF, Rauchhaus M, et al. Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups*. Crit Care Med. 2005;33:1994–2002.PubMedCrossRef Schmidt H, Müller-Werdan U, Hoffmann T, Francis DP, Piepoli MF, Rauchhaus M, et al. Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups*. Crit Care Med. 2005;33:1994–2002.PubMedCrossRef
8.
go back to reference Pancoto JAT, Corrêa PBF, Oliveira-Pelegrin GR, Rocha MJA. Autonomic dysfunction in experimental sepsis induced by cecal ligation and puncture. Auton Neurosci. 2008;138:57–63.PubMedCrossRef Pancoto JAT, Corrêa PBF, Oliveira-Pelegrin GR, Rocha MJA. Autonomic dysfunction in experimental sepsis induced by cecal ligation and puncture. Auton Neurosci. 2008;138:57–63.PubMedCrossRef
9.
go back to reference Shi K-Y, Shen F-M, Liu A-J, Chu Z-X, Cao Y-L, Su D-F. The survival time post-cecal ligation and puncture in sinoaortic denervated rats. J Cardiovasc Pharmacol. 2007;50:162–7.PubMedCrossRef Shi K-Y, Shen F-M, Liu A-J, Chu Z-X, Cao Y-L, Su D-F. The survival time post-cecal ligation and puncture in sinoaortic denervated rats. J Cardiovasc Pharmacol. 2007;50:162–7.PubMedCrossRef
10.
go back to reference Annane D, Trabold F, Sharshar T, Jarrin I, Blanc AS, Raphael JC, et al. Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach. Am J Respir Crit Care Med. 1999;160:458–65.PubMedCrossRef Annane D, Trabold F, Sharshar T, Jarrin I, Blanc AS, Raphael JC, et al. Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach. Am J Respir Crit Care Med. 1999;160:458–65.PubMedCrossRef
11.
go back to reference Piepoli M, Garrard CS, Kontoyannis DA, Bernardi L. Autonomic control of the heart and peripheral vessels in human septic shock. Intensive Care Med. 1995;21:112–9.PubMedCrossRef Piepoli M, Garrard CS, Kontoyannis DA, Bernardi L. Autonomic control of the heart and peripheral vessels in human septic shock. Intensive Care Med. 1995;21:112–9.PubMedCrossRef
12.
go back to reference Korach M, Sharshar T, Jarrin I, Fouillot J-P, Raphaël J-C, Gajdos P, et al. Cardiac variability in critically ill adults: influence of sepsis. Crit Care Med. 2001;29:1380–5.PubMedCrossRef Korach M, Sharshar T, Jarrin I, Fouillot J-P, Raphaël J-C, Gajdos P, et al. Cardiac variability in critically ill adults: influence of sepsis. Crit Care Med. 2001;29:1380–5.PubMedCrossRef
13.
go back to reference De Pasquale M, Moss TJ, Cerutti S, Calland JF, Lake DE, Moorman JR, et al. Hemorrhage prediction models in surgical intensive care: bedside monitoring data adds information to lab values. IEEE J Biomed Heal Informatics IEEE. 2017;21:1703–10.CrossRef De Pasquale M, Moss TJ, Cerutti S, Calland JF, Lake DE, Moorman JR, et al. Hemorrhage prediction models in surgical intensive care: bedside monitoring data adds information to lab values. IEEE J Biomed Heal Informatics IEEE. 2017;21:1703–10.CrossRef
14.
go back to reference Moorman JR, Delos JB, Flower AA, Cao H, Kovatchev BP, Richman JS, et al. Cardiovascular oscillations at the bedside: early diagnosis of neonatal sepsis using heart rate characteristics monitoring. Physiol Meas. 2011;32:1821–32.PubMedPubMedCentralCrossRef Moorman JR, Delos JB, Flower AA, Cao H, Kovatchev BP, Richman JS, et al. Cardiovascular oscillations at the bedside: early diagnosis of neonatal sepsis using heart rate characteristics monitoring. Physiol Meas. 2011;32:1821–32.PubMedPubMedCentralCrossRef
16.
go back to reference Vincent JL, Rhodes A, Perel A, Martin GS, Rocca GD, Vallet B, et al. Clinical review: update on hemodynamic monitoring—a consensus of 16. Crit Care. 2011;15:229.PubMedPubMedCentralCrossRef Vincent JL, Rhodes A, Perel A, Martin GS, Rocca GD, Vallet B, et al. Clinical review: update on hemodynamic monitoring—a consensus of 16. Crit Care. 2011;15:229.PubMedPubMedCentralCrossRef
17.
go back to reference Moorman JR, Carlo WA, Kattwinkel J, Schelonka RL, Porcelli PJ, Navarrete CT, et al. Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial. J Pediatr. 2011;159:900-906.e1.PubMedPubMedCentralCrossRef Moorman JR, Carlo WA, Kattwinkel J, Schelonka RL, Porcelli PJ, Navarrete CT, et al. Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial. J Pediatr. 2011;159:900-906.e1.PubMedPubMedCentralCrossRef
18.
go back to reference Hatib F, Jian Z, Buddi S, Lee C, Settels J, Sibert K, et al. Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology. 2018;129:663–74.PubMedCrossRef Hatib F, Jian Z, Buddi S, Lee C, Settels J, Sibert K, et al. Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology. 2018;129:663–74.PubMedCrossRef
19.
go back to reference Hall JE. Guyton and hall textbook of medical physiology thirteenth edition. Elsevier: Saunders; 2011. Hall JE. Guyton and hall textbook of medical physiology thirteenth edition. Elsevier: Saunders; 2011.
20.
go back to reference Belletti A, Landoni G, Lomivorotov VV, Oriani A, Ajello S. Adrenergic downregulation in critical care: molecular mechanisms and therapeutic evidence. J Cardiothorac Vasc Anesth. 2020;34:1023–41.PubMedCrossRef Belletti A, Landoni G, Lomivorotov VV, Oriani A, Ajello S. Adrenergic downregulation in critical care: molecular mechanisms and therapeutic evidence. J Cardiothorac Vasc Anesth. 2020;34:1023–41.PubMedCrossRef
22.
go back to reference Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors and heart function. Nature. 2002;415:206–12.PubMedCrossRef Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors and heart function. Nature. 2002;415:206–12.PubMedCrossRef
23.
go back to reference Ferguson SSG. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev. 2001;53:1–24.PubMed Ferguson SSG. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev. 2001;53:1–24.PubMed
24.
go back to reference Wu L-L, Yang S-L, Yang R-C, Hsu H-K, Hsu C, Dong L-W, et al. G Protein and adenylate cyclase complex-mediated signal transduction in the rat heart during sepsis. Shock. 2003;19:533–7.PubMedCrossRef Wu L-L, Yang S-L, Yang R-C, Hsu H-K, Hsu C, Dong L-W, et al. G Protein and adenylate cyclase complex-mediated signal transduction in the rat heart during sepsis. Shock. 2003;19:533–7.PubMedCrossRef
25.
go back to reference Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52:595–638.PubMed Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52:595–638.PubMed
26.
go back to reference Stolk RF, van der Pasch E, Naumann F, Schouwstra J, Bressers S, van Herwaarden AE, et al. Norepinephrine dysregulates the immune response and compromises host defense during sepsis. Am J Respir Crit Care Med. 2020;202:830–42.PubMedCrossRef Stolk RF, van der Pasch E, Naumann F, Schouwstra J, Bressers S, van Herwaarden AE, et al. Norepinephrine dysregulates the immune response and compromises host defense during sepsis. Am J Respir Crit Care Med. 2020;202:830–42.PubMedCrossRef
27.
go back to reference Boldt J, Menges T, Kuhn D, Diridis C, Hempelmann G. Alterations in circulating vasoactive substances in the critically ill—a comparison between survivors and non-survivors. Intensive Care Med. 1995;21:218–25.PubMedCrossRef Boldt J, Menges T, Kuhn D, Diridis C, Hempelmann G. Alterations in circulating vasoactive substances in the critically ill—a comparison between survivors and non-survivors. Intensive Care Med. 1995;21:218–25.PubMedCrossRef
28.
go back to reference Ostrowski SR, Gaïni S, Pedersen C, Johansson PI. Sympathoadrenal activation and endothelial damage in patients with varying degrees of acute infectious disease: an observational study. J Crit Care. 2015;30:90–6.PubMedCrossRef Ostrowski SR, Gaïni S, Pedersen C, Johansson PI. Sympathoadrenal activation and endothelial damage in patients with varying degrees of acute infectious disease: an observational study. J Crit Care. 2015;30:90–6.PubMedCrossRef
29.
go back to reference Schmittinger CA, Torgersen C, Luckner G, Schröder DCH, Lorenz I, Dünser MW. Adverse cardiac events during catecholamine vasopressor therapy: a prospective observational study. Intensive Care Med. 2012;38:950–8.PubMedCrossRef Schmittinger CA, Torgersen C, Luckner G, Schröder DCH, Lorenz I, Dünser MW. Adverse cardiac events during catecholamine vasopressor therapy: a prospective observational study. Intensive Care Med. 2012;38:950–8.PubMedCrossRef
30.
go back to reference Kenney MJ, Ganta CK. Autonomic nervous system and immune system interactions. In: Comprehensive physiology. USA: Wiley; 2014. p. 1177–200.CrossRef Kenney MJ, Ganta CK. Autonomic nervous system and immune system interactions. In: Comprehensive physiology. USA: Wiley; 2014. p. 1177–200.CrossRef
32.
go back to reference Chapleau MW, Li Z, Meyrelles SS, Ma X, Abboud FM. Mechanisms determining sensitivity of baroreceptor afferents in health and disease. Ann N Y Acad Sci. 2001;940:1–19.PubMedCrossRef Chapleau MW, Li Z, Meyrelles SS, Ma X, Abboud FM. Mechanisms determining sensitivity of baroreceptor afferents in health and disease. Ann N Y Acad Sci. 2001;940:1–19.PubMedCrossRef
33.
go back to reference Chapleau MW. Baroreceptor reflexes. In: Primer on the autonomic nervous system. The Netherlands: Elsevier; 2012. p. 161–5.CrossRef Chapleau MW. Baroreceptor reflexes. In: Primer on the autonomic nervous system. The Netherlands: Elsevier; 2012. p. 161–5.CrossRef
34.
go back to reference Desai TH, Collins JC, Snell M, Mosqueda-Garcia R. Modeling of arterial and cardiopulmonary baroreflex control of heart rate. Am J Physiol Circ Physiol. 1997;272:H2343–52.CrossRef Desai TH, Collins JC, Snell M, Mosqueda-Garcia R. Modeling of arterial and cardiopulmonary baroreflex control of heart rate. Am J Physiol Circ Physiol. 1997;272:H2343–52.CrossRef
35.
go back to reference Crystal GJ, Salem MR. The Bainbridge and the “Reverse” Bainbridge reflexes. Anesth Analg. 2012;114:520–32.PubMedCrossRef Crystal GJ, Salem MR. The Bainbridge and the “Reverse” Bainbridge reflexes. Anesth Analg. 2012;114:520–32.PubMedCrossRef
36.
go back to reference Vatner SF, Zimpfer M. Bainbridge reflex in conscious, unrestrained, and tranquilized baboons. Am J Physiol Circ Physiol. 1981;240:H164–7.CrossRef Vatner SF, Zimpfer M. Bainbridge reflex in conscious, unrestrained, and tranquilized baboons. Am J Physiol Circ Physiol. 1981;240:H164–7.CrossRef
37.
go back to reference O’Regan RG, Majcherczyk S. Role of peripheral chemoreceptors and central chemosensitivity in the regulation of respiration and circulation. J Exp Biol. 1982;100:23–40.PubMedCrossRef O’Regan RG, Majcherczyk S. Role of peripheral chemoreceptors and central chemosensitivity in the regulation of respiration and circulation. J Exp Biol. 1982;100:23–40.PubMedCrossRef
38.
go back to reference Milsom WK, Burleson ML. Peripheral arterial chemoreceptors and the evolution of the carotid body. Respir Physiol Neurobiol. 2007;157:4–11.PubMedCrossRef Milsom WK, Burleson ML. Peripheral arterial chemoreceptors and the evolution of the carotid body. Respir Physiol Neurobiol. 2007;157:4–11.PubMedCrossRef
39.
go back to reference Lahiri S, Forster RE. CO2/H+ sensing: peripheral and central chemoreception. Int J Biochem Cell Biol. 2003;35:1413–35.PubMedCrossRef Lahiri S, Forster RE. CO2/H+ sensing: peripheral and central chemoreception. Int J Biochem Cell Biol. 2003;35:1413–35.PubMedCrossRef
40.
go back to reference Halliwill JR, Morgan BJ, Charkoudian N. Peripheral chemoreflex and baroreflex interactions in cardiovascular regulation in humans. J Physiol. 2003;552:295–302.PubMedPubMedCentralCrossRef Halliwill JR, Morgan BJ, Charkoudian N. Peripheral chemoreflex and baroreflex interactions in cardiovascular regulation in humans. J Physiol. 2003;552:295–302.PubMedPubMedCentralCrossRef
41.
go back to reference Somers VK, Mark AL, Abboud FM. Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J Clin Invest. 1991;87:1953–7.PubMedPubMedCentralCrossRef Somers VK, Mark AL, Abboud FM. Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J Clin Invest. 1991;87:1953–7.PubMedPubMedCentralCrossRef
42.
go back to reference Dünser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med. 2009;24:293–316.PubMedCrossRef Dünser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med. 2009;24:293–316.PubMedCrossRef
43.
go back to reference Ferreira JA, Bissell BD. Misdirected sympathy: the role of sympatholysis in sepsis and septic shock. J Intensive Care Med. 2018;33:74–86.PubMedCrossRef Ferreira JA, Bissell BD. Misdirected sympathy: the role of sympatholysis in sepsis and septic shock. J Intensive Care Med. 2018;33:74–86.PubMedCrossRef
44.
go back to reference Benedict CR, Rose JA. Arterial norepinephrine changes in patients with septic shock. Circ Shock. 1992;38:165–72.PubMed Benedict CR, Rose JA. Arterial norepinephrine changes in patients with septic shock. Circ Shock. 1992;38:165–72.PubMed
45.
go back to reference Brown SM, Lanspa MJ, Jones JP, Kuttler KG, Li Y, Carlson R, et al. Survival after shock requiring high-dose vasopressor therapy. Chest. 2013;143:664–71.PubMedCrossRef Brown SM, Lanspa MJ, Jones JP, Kuttler KG, Li Y, Carlson R, et al. Survival after shock requiring high-dose vasopressor therapy. Chest. 2013;143:664–71.PubMedCrossRef
47.
go back to reference Bucher M, Kees F, Taeger K, Kurtz A. Cytokines down-regulate α1-adrenergic receptor expression during endotoxemia. Crit Care Med. 2003;31:566–71.PubMedCrossRef Bucher M, Kees F, Taeger K, Kurtz A. Cytokines down-regulate α1-adrenergic receptor expression during endotoxemia. Crit Care Med. 2003;31:566–71.PubMedCrossRef
48.
go back to reference Bernardin G, Strosberg AD, Bernard A, Mattei M, Marullo S. Beta-adrenergic receptor-dependent and -independent stimulation of adenylate cyclase is impaired during severe sepsis in humans. Intensive Care Med. 1998;24:1315–22.PubMedCrossRef Bernardin G, Strosberg AD, Bernard A, Mattei M, Marullo S. Beta-adrenergic receptor-dependent and -independent stimulation of adenylate cyclase is impaired during severe sepsis in humans. Intensive Care Med. 1998;24:1315–22.PubMedCrossRef
49.
go back to reference Cariou A, Pinsky MR, Monchi M, Laurent I, Vinsonneau C, Chiche J-D, et al. Is myocardial adrenergic responsiveness depressed in human septic shock? Intensive Care Med. 2008;34:917–22.PubMedCrossRef Cariou A, Pinsky MR, Monchi M, Laurent I, Vinsonneau C, Chiche J-D, et al. Is myocardial adrenergic responsiveness depressed in human septic shock? Intensive Care Med. 2008;34:917–22.PubMedCrossRef
51.
go back to reference Schmidt C, Kurt B, Höcherl K, Bucher M. Inhibition of NF-kB activity prevents downregulation of alpha1-adrenergic receptors and circulatory failure during CLP-induced sepsis. Shock. 2009;32:239–46.PubMedCrossRef Schmidt C, Kurt B, Höcherl K, Bucher M. Inhibition of NF-kB activity prevents downregulation of alpha1-adrenergic receptors and circulatory failure during CLP-induced sepsis. Shock. 2009;32:239–46.PubMedCrossRef
52.
go back to reference Ackland GL, Kazymov V, Marina N, Singer M, Gourine AV. Peripheral neural detection of danger-associated and pathogen-associated molecular patterns. Crit Care Med. 2013;41:e85-92.PubMedPubMedCentralCrossRef Ackland GL, Kazymov V, Marina N, Singer M, Gourine AV. Peripheral neural detection of danger-associated and pathogen-associated molecular patterns. Crit Care Med. 2013;41:e85-92.PubMedPubMedCentralCrossRef
53.
go back to reference Schmidt H, Mueller-Werdan U, Nuding S, Hoffmann T, Francis DP, Hoyer D, et al. Impaired chemoreflex sensitivity in adult patients with multiple organ dysfunction syndrome? The potential role of disease severity. Intensive Care Med. 2004;30:665–72.PubMedCrossRef Schmidt H, Mueller-Werdan U, Nuding S, Hoffmann T, Francis DP, Hoyer D, et al. Impaired chemoreflex sensitivity in adult patients with multiple organ dysfunction syndrome? The potential role of disease severity. Intensive Care Med. 2004;30:665–72.PubMedCrossRef
54.
55.
go back to reference Sharshar T, Gray F, de la Grandmaison GL, Hopklnson NS, Ross E, Dorandeu A, et al. Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet. 2003;362:1799–805.PubMedCrossRef Sharshar T, Gray F, de la Grandmaison GL, Hopklnson NS, Ross E, Dorandeu A, et al. Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet. 2003;362:1799–805.PubMedCrossRef
56.
go back to reference Shen F-M, Guan Y-F, Xie H-H, Su D-F. Arterial baroreflex function determines the survival time in lipopolysaccharide-induced shock in rats. Shock. 2004;21:556–60.PubMedCrossRef Shen F-M, Guan Y-F, Xie H-H, Su D-F. Arterial baroreflex function determines the survival time in lipopolysaccharide-induced shock in rats. Shock. 2004;21:556–60.PubMedCrossRef
57.
go back to reference Nardocci G, Martin A, Abarzúa S, Rodríguez J, Simon F, Reyes EP, et al. Sepsis progression to multiple organ dysfunction in carotid chemo/baro-denervated rats treated with lipopolysaccharide. J Neuroimmunol. 2015;278:44–52.PubMedCrossRef Nardocci G, Martin A, Abarzúa S, Rodríguez J, Simon F, Reyes EP, et al. Sepsis progression to multiple organ dysfunction in carotid chemo/baro-denervated rats treated with lipopolysaccharide. J Neuroimmunol. 2015;278:44–52.PubMedCrossRef
58.
go back to reference Li Z, Mao HZ, Abboud FM, Chapleau MW. Oxygen-derived free radicals contribute to baroreceptor dysfunction in atherosclerotic rabbits. Circ Res. 1996;79:802–11.PubMedCrossRef Li Z, Mao HZ, Abboud FM, Chapleau MW. Oxygen-derived free radicals contribute to baroreceptor dysfunction in atherosclerotic rabbits. Circ Res. 1996;79:802–11.PubMedCrossRef
59.
go back to reference Nagano M, Nakamura M, Sato K, Tanaka F, Segawa T, Hiramori K. Association between serum C-reactive protein levels and pulse wave velocity: a population-based cross-sectional study in a general population. Atherosclerosis. 2005;180:189–95.PubMedCrossRef Nagano M, Nakamura M, Sato K, Tanaka F, Segawa T, Hiramori K. Association between serum C-reactive protein levels and pulse wave velocity: a population-based cross-sectional study in a general population. Atherosclerosis. 2005;180:189–95.PubMedCrossRef
60.
go back to reference Sayk F, Vietheer A, Schaaf B, Wellhoener P, Weitz G, Lehnert H, et al. Endotoxemia causes central downregulation of sympathetic vasomotor tone in healthy humans. Am J Physiol Integr Comp Physiol. 2008;295:R891–8.CrossRef Sayk F, Vietheer A, Schaaf B, Wellhoener P, Weitz G, Lehnert H, et al. Endotoxemia causes central downregulation of sympathetic vasomotor tone in healthy humans. Am J Physiol Integr Comp Physiol. 2008;295:R891–8.CrossRef
61.
go back to reference Ramchandra R, Wan L, Hood SG, Frithiof R, Bellomo R, May CN. Septic shock induces distinct changes in sympathetic nerve activity to the heart and kidney in conscious sheep. Am J Physiol Integr Comp Physiol. 2009;297:R1247–53.CrossRef Ramchandra R, Wan L, Hood SG, Frithiof R, Bellomo R, May CN. Septic shock induces distinct changes in sympathetic nerve activity to the heart and kidney in conscious sheep. Am J Physiol Integr Comp Physiol. 2009;297:R1247–53.CrossRef
62.
go back to reference Vayssettes-Courchay C, Bouysset F, Verbeuren TJ. Sympathetic activation and tachycardia in lipopolysaccharide treated rats are temporally correlated and unrelated to the baroreflex. Auton Neurosci. 2005;120:35–45.PubMedCrossRef Vayssettes-Courchay C, Bouysset F, Verbeuren TJ. Sympathetic activation and tachycardia in lipopolysaccharide treated rats are temporally correlated and unrelated to the baroreflex. Auton Neurosci. 2005;120:35–45.PubMedCrossRef
63.
go back to reference Pålsson J, Ricksten SE, Lundin S. Changes in central hemodynamics during experimental septic shock in conscious rats. Circ Shock. 1987;22:65–72.PubMed Pålsson J, Ricksten SE, Lundin S. Changes in central hemodynamics during experimental septic shock in conscious rats. Circ Shock. 1987;22:65–72.PubMed
64.
go back to reference Mills E. Development of the sympathetic nervous system response to endotoxicosis in the rat: importance of non-baroreflex mechanisms in pre-weanlings and adults. J Dev Physiol. 1990;13:99–103.PubMed Mills E. Development of the sympathetic nervous system response to endotoxicosis in the rat: importance of non-baroreflex mechanisms in pre-weanlings and adults. J Dev Physiol. 1990;13:99–103.PubMed
66.
go back to reference Pavlov VA, Tracey KJ. The cholinergic anti-inflammatory pathway. Brain Behav Immun. 2005;19:493–9.PubMedCrossRef Pavlov VA, Tracey KJ. The cholinergic anti-inflammatory pathway. Brain Behav Immun. 2005;19:493–9.PubMedCrossRef
67.
go back to reference Fairchild KD, Srinivasan V, Randall Moorman J, Gaykema RPA, Goehler LE. Pathogen-induced heart rate changes associated with cholinergic nervous system activation. Am J Physiol Integr Comp Physiol. 2011;300:R330–9.CrossRef Fairchild KD, Srinivasan V, Randall Moorman J, Gaykema RPA, Goehler LE. Pathogen-induced heart rate changes associated with cholinergic nervous system activation. Am J Physiol Integr Comp Physiol. 2011;300:R330–9.CrossRef
68.
go back to reference Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62.PubMedCrossRef Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62.PubMedCrossRef
69.
go back to reference Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med. 2003;9:125–34.PubMedPubMedCentralCrossRef Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med. 2003;9:125–34.PubMedPubMedCentralCrossRef
70.
go back to reference Chen M, Li X, Yang H, Tang J, Zhou S. Hype or hope: vagus nerve stimulation against acute myocardial ischemia-reperfusion injury. Trends Cardiovasc Med. 2020;30:481–8.PubMedCrossRef Chen M, Li X, Yang H, Tang J, Zhou S. Hype or hope: vagus nerve stimulation against acute myocardial ischemia-reperfusion injury. Trends Cardiovasc Med. 2020;30:481–8.PubMedCrossRef
71.
go back to reference Nuntaphum W, Pongkan W, Wongjaikam S, Thummasorn S, Tanajak P, Khamseekaew J, et al. Vagus nerve stimulation exerts cardioprotection against myocardial ischemia/reperfusion injury predominantly through its efferent vagal fibers. Basic Res Cardiol. 2018;113:22.PubMedCrossRef Nuntaphum W, Pongkan W, Wongjaikam S, Thummasorn S, Tanajak P, Khamseekaew J, et al. Vagus nerve stimulation exerts cardioprotection against myocardial ischemia/reperfusion injury predominantly through its efferent vagal fibers. Basic Res Cardiol. 2018;113:22.PubMedCrossRef
72.
go back to reference Stauss HM. Identification of blood pressure control mechanisms by power spectral analysis. Clin Exp Pharmacol Physiol. 2007;34:362–8.PubMedCrossRef Stauss HM. Identification of blood pressure control mechanisms by power spectral analysis. Clin Exp Pharmacol Physiol. 2007;34:362–8.PubMedCrossRef
73.
go back to reference Stauss HM. Heart rate variability. Am J Physiol Integr Comp Physiol. 2003;285:R927–31.CrossRef Stauss HM. Heart rate variability. Am J Physiol Integr Comp Physiol. 2003;285:R927–31.CrossRef
74.
go back to reference Haji-Michael PG, Vincent J-L, Degaute JP, van de Borne P. Power spectral analysis of cardiovascular variability in critically ill neurosurgical patients. Crit Care Med. 2000;28:2578–83.PubMedCrossRef Haji-Michael PG, Vincent J-L, Degaute JP, van de Borne P. Power spectral analysis of cardiovascular variability in critically ill neurosurgical patients. Crit Care Med. 2000;28:2578–83.PubMedCrossRef
75.
76.
go back to reference Malik M, Bigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ, et al. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–81.CrossRef Malik M, Bigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ, et al. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–81.CrossRef
77.
go back to reference Pontet J, Contreras P, Curbelo A, Medina J, Noveri S, Bentancourt S, et al. Heart rate variability as early marker of multiple organ dysfunction syndrome in septic patients. J Crit Care. 2003;18:156–63.PubMedCrossRef Pontet J, Contreras P, Curbelo A, Medina J, Noveri S, Bentancourt S, et al. Heart rate variability as early marker of multiple organ dysfunction syndrome in septic patients. J Crit Care. 2003;18:156–63.PubMedCrossRef
78.
go back to reference Jarkovska D, Valesova L, Chvojka J, Benes J, Sviglerova J, Florova B, et al. Heart rate variability in porcine progressive peritonitis-induced sepsis. Front Physiol. 2016;6:412.PubMedPubMedCentralCrossRef Jarkovska D, Valesova L, Chvojka J, Benes J, Sviglerova J, Florova B, et al. Heart rate variability in porcine progressive peritonitis-induced sepsis. Front Physiol. 2016;6:412.PubMedPubMedCentralCrossRef
79.
go back to reference Godin PJ, Fleisher LA, Eidsath A, Vandivier RW, Preas HL, Banks SM, et al. Experimental human endotoxemia increases cardiac regularity. Crit Care Med. 1996;24:1117–24.PubMedCrossRef Godin PJ, Fleisher LA, Eidsath A, Vandivier RW, Preas HL, Banks SM, et al. Experimental human endotoxemia increases cardiac regularity. Crit Care Med. 1996;24:1117–24.PubMedCrossRef
80.
go back to reference Fairchild KD, Saucerman JJ, Raynor LL, Sivak JA, Xiao Y, Lake DE, et al. Endotoxin depresses heart rate variability in mice: cytokine and steroid effects. Am J Physiol Integr Comp Physiol. 2009;297:R1019–27.CrossRef Fairchild KD, Saucerman JJ, Raynor LL, Sivak JA, Xiao Y, Lake DE, et al. Endotoxin depresses heart rate variability in mice: cytokine and steroid effects. Am J Physiol Integr Comp Physiol. 2009;297:R1019–27.CrossRef
81.
go back to reference Van de Borne P, Montano N, Pagani M, Oren R, Somers V. Absence of low-frequency variability of sympathetic nerve activity in severe heart failure. Circulation. 1997;95:1449–54.PubMedCrossRef Van de Borne P, Montano N, Pagani M, Oren R, Somers V. Absence of low-frequency variability of sympathetic nerve activity in severe heart failure. Circulation. 1997;95:1449–54.PubMedCrossRef
82.
go back to reference Carrara M, Herpain A, Baselli G, Ferrario M. Vascular decoupling in septic shock: the combined role of autonomic nervous system, arterial stiffness, and peripheral vascular tone. Front Physiol. 2020;11:594.PubMedPubMedCentralCrossRef Carrara M, Herpain A, Baselli G, Ferrario M. Vascular decoupling in septic shock: the combined role of autonomic nervous system, arterial stiffness, and peripheral vascular tone. Front Physiol. 2020;11:594.PubMedPubMedCentralCrossRef
83.
go back to reference Carrara M, Babini G, Baselli G, Ristagno G, Pastorelli R, Brunelli L, et al. Blood pressure variability, heart functionality, and left ventricular tissue alterations in a protocol of severe hemorrhagic shock and resuscitation. J Appl Physiol. 2018;125:1011–20.PubMedCrossRefPubMedCentral Carrara M, Babini G, Baselli G, Ristagno G, Pastorelli R, Brunelli L, et al. Blood pressure variability, heart functionality, and left ventricular tissue alterations in a protocol of severe hemorrhagic shock and resuscitation. J Appl Physiol. 2018;125:1011–20.PubMedCrossRefPubMedCentral
84.
go back to reference Carrara M, Bollen Pinto B, Baselli G, Bendjelid K, Ferrario M. Baroreflex sensitivity and blood pressure variability can help in understanding the different response to therapy during acute phase of septic shock. Shock. 2018;50:78–86.PubMedPubMedCentralCrossRef Carrara M, Bollen Pinto B, Baselli G, Bendjelid K, Ferrario M. Baroreflex sensitivity and blood pressure variability can help in understanding the different response to therapy during acute phase of septic shock. Shock. 2018;50:78–86.PubMedPubMedCentralCrossRef
85.
go back to reference Parker MM, Shelhamer JH, Natanson C, Alling DW, Parrillo JE. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock. Crit Care Med. 1987;15:923–9.PubMedCrossRef Parker MM, Shelhamer JH, Natanson C, Alling DW, Parrillo JE. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock. Crit Care Med. 1987;15:923–9.PubMedCrossRef
86.
87.
go back to reference Rudiger A, Singer M. The heart in sepsis: from basic mechanisms to clinical management. Curr Vasc Pharmacol. 2013;11:187–95.PubMed Rudiger A, Singer M. The heart in sepsis: from basic mechanisms to clinical management. Curr Vasc Pharmacol. 2013;11:187–95.PubMed
88.
go back to reference Suzuki T, Morisaki H, Serita R, Yamamoto M, Kotake Y, Ishizaka A, et al. Infusion of the β-adrenergic blocker esmolol attenuates myocardial dysfunction in septic rats*. Crit Care Med. 2005;33:2294–301.PubMedCrossRef Suzuki T, Morisaki H, Serita R, Yamamoto M, Kotake Y, Ishizaka A, et al. Infusion of the β-adrenergic blocker esmolol attenuates myocardial dysfunction in septic rats*. Crit Care Med. 2005;33:2294–301.PubMedCrossRef
89.
go back to reference Aboab J, Sebille V, Jourdain M, Mangalaboyi J, Gharbi M, Mansart A, et al. Effects of esmolol on systemic and pulmonary hemodynamics and on oxygenation in pigs with hypodynamic endotoxin shock. Intensive Care Med. 2011;37:1344–51.PubMedCrossRef Aboab J, Sebille V, Jourdain M, Mangalaboyi J, Gharbi M, Mansart A, et al. Effects of esmolol on systemic and pulmonary hemodynamics and on oxygenation in pigs with hypodynamic endotoxin shock. Intensive Care Med. 2011;37:1344–51.PubMedCrossRef
90.
go back to reference Morelli A, Ertmer C, Westphal M, Rehberg S, Kampmeier T, Ligges S, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock. JAMA. 2013;310:1683.PubMedCrossRef Morelli A, Ertmer C, Westphal M, Rehberg S, Kampmeier T, Ligges S, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock. JAMA. 2013;310:1683.PubMedCrossRef
91.
go back to reference Levy B, Fritz C, Piona C, Duarte K, Morelli A, Guerci P, et al. Hemodynamic and anti-inflammatory effects of early esmolol use in hyperkinetic septic shock: a pilot study. Crit Care. 2021;25:21.PubMedPubMedCentralCrossRef Levy B, Fritz C, Piona C, Duarte K, Morelli A, Guerci P, et al. Hemodynamic and anti-inflammatory effects of early esmolol use in hyperkinetic septic shock: a pilot study. Crit Care. 2021;25:21.PubMedPubMedCentralCrossRef
92.
go back to reference Hosokawa K, Su F, Taccone FS, Post EH, Pereira AJ, Herpain A, et al. Esmolol administration to control tachycardia in an ovine model of peritonitis. Anesth Analg. 2017;125:1952–9.PubMedCrossRef Hosokawa K, Su F, Taccone FS, Post EH, Pereira AJ, Herpain A, et al. Esmolol administration to control tachycardia in an ovine model of peritonitis. Anesth Analg. 2017;125:1952–9.PubMedCrossRef
93.
go back to reference Kakihana Y, Nishida O, Taniguchi T, Okajima M, Morimatsu H, Ogura H, et al. Efficacy and safety of landiolol, an ultra-short-acting β1-selective antagonist, for treatment of sepsis-related tachyarrhythmia (J-Land 3S): a multicentre, open-label, randomised controlled trial. Lancet Respir Med. 2020;8:863–72.PubMedCrossRef Kakihana Y, Nishida O, Taniguchi T, Okajima M, Morimatsu H, Ogura H, et al. Efficacy and safety of landiolol, an ultra-short-acting β1-selective antagonist, for treatment of sepsis-related tachyarrhythmia (J-Land 3S): a multicentre, open-label, randomised controlled trial. Lancet Respir Med. 2020;8:863–72.PubMedCrossRef
94.
go back to reference Wei C, Al Kattani N, Louis H, Albuisson E, Levy B, Kimmoun A. If channel inhibition with ivabradine does not improve cardiac and vascular function in experimental septic shock. Shock. 2016;46:297–303.PubMedCrossRef Wei C, Al Kattani N, Louis H, Albuisson E, Levy B, Kimmoun A. If channel inhibition with ivabradine does not improve cardiac and vascular function in experimental septic shock. Shock. 2016;46:297–303.PubMedCrossRef
95.
go back to reference Chen A, Elia N, Dunaiceva J, Rudiger A, Walder B, Bollen PB. Effect of ivabradine on major adverse cardiovascular events and mortality in critically ill patients: a systematic review and meta-analyses of randomised controlled trials with trial sequential analyses. Br J Anaesth. 2020;124:726–38.PubMedCrossRef Chen A, Elia N, Dunaiceva J, Rudiger A, Walder B, Bollen PB. Effect of ivabradine on major adverse cardiovascular events and mortality in critically ill patients: a systematic review and meta-analyses of randomised controlled trials with trial sequential analyses. Br J Anaesth. 2020;124:726–38.PubMedCrossRef
96.
go back to reference Aboab J, Mayaud L, Sebille V, de Oliveira R, Jourdain M, Annane D. Esmolol indirectly stimulates vagal nerve activity in endotoxemic pigs. Intensive Care Med Exp. 2018;6:14.PubMedPubMedCentralCrossRef Aboab J, Mayaud L, Sebille V, de Oliveira R, Jourdain M, Annane D. Esmolol indirectly stimulates vagal nerve activity in endotoxemic pigs. Intensive Care Med Exp. 2018;6:14.PubMedPubMedCentralCrossRef
97.
go back to reference Suzuki T, Inoue K, Igarashi T, Kato J, Nagata H, Yamada T, et al. Beta-blocker therapy preserves normal splenic T-lymphocyte numbers reduced in proportion to sepsis severity in a sepsis model. Crit Care Res Pract Hindawi. 2019;2019:1–5. Suzuki T, Inoue K, Igarashi T, Kato J, Nagata H, Yamada T, et al. Beta-blocker therapy preserves normal splenic T-lymphocyte numbers reduced in proportion to sepsis severity in a sepsis model. Crit Care Res Pract Hindawi. 2019;2019:1–5.
98.
go back to reference Hagiwara S, Iwasaka H, Maeda H, Noguchi T. Landiolol, an ultrashort-acting beta1-adrenoceptor antagonist, has protective effects in an LPS-induced systemic inflammation model. Shock. 2009;31:515–20.PubMedCrossRef Hagiwara S, Iwasaka H, Maeda H, Noguchi T. Landiolol, an ultrashort-acting beta1-adrenoceptor antagonist, has protective effects in an LPS-induced systemic inflammation model. Shock. 2009;31:515–20.PubMedCrossRef
99.
go back to reference Geloen A, Chapelier K, Cividjian A, Dantony E, Rabilloud M, May CN, et al. Clonidine and dexmedetomidine increase the pressor response to norepinephrine in experimental sepsis. Crit Care Med. 2013;41:e431–8.PubMedCrossRef Geloen A, Chapelier K, Cividjian A, Dantony E, Rabilloud M, May CN, et al. Clonidine and dexmedetomidine increase the pressor response to norepinephrine in experimental sepsis. Crit Care Med. 2013;41:e431–8.PubMedCrossRef
100.
go back to reference Pichot C, Géloën A, Ghignone M, Quintin L. Alpha-2 agonists to reduce vasopressor requirements in septic shock? Med Hypotheses. 2010;75:652–6.PubMedCrossRef Pichot C, Géloën A, Ghignone M, Quintin L. Alpha-2 agonists to reduce vasopressor requirements in septic shock? Med Hypotheses. 2010;75:652–6.PubMedCrossRef
101.
go back to reference Morelli A, Sanfilippo F, Arnemann P, Hessler M, Kampmeier TG, D’Egidio A, et al. The effect of propofol and dexmedetomidine sedation on norepinephrine requirements in septic shock patients. Crit Care Med. 2019;47:e89-95.PubMedCrossRef Morelli A, Sanfilippo F, Arnemann P, Hessler M, Kampmeier TG, D’Egidio A, et al. The effect of propofol and dexmedetomidine sedation on norepinephrine requirements in septic shock patients. Crit Care Med. 2019;47:e89-95.PubMedCrossRef
102.
go back to reference Cioccari L, Luethi N, Bailey M, Shehabi Y, Howe B, Messmer AS, et al. The effect of dexmedetomidine on vasopressor requirements in patients with septic shock: a subgroup analysis of the Sedation Practice in Intensive Care Evaluation [SPICE III] Trial. Crit Care. 2020;24:441.PubMedPubMedCentralCrossRef Cioccari L, Luethi N, Bailey M, Shehabi Y, Howe B, Messmer AS, et al. The effect of dexmedetomidine on vasopressor requirements in patients with septic shock: a subgroup analysis of the Sedation Practice in Intensive Care Evaluation [SPICE III] Trial. Crit Care. 2020;24:441.PubMedPubMedCentralCrossRef
103.
104.
go back to reference Liu CY, Mueller MH, Grundy D, Kreis ME. Vagal modulation of intestinal afferent sensitivity to systemic LPS in the rat. Am J Physiol Liver Physiol. 2007;292:G1213–20. Liu CY, Mueller MH, Grundy D, Kreis ME. Vagal modulation of intestinal afferent sensitivity to systemic LPS in the rat. Am J Physiol Liver Physiol. 2007;292:G1213–20.
105.
go back to reference Kohoutova M, Horak J, Jarkovska D, Martinkova V, Tegl V, Nalos L, et al. Vagus nerve stimulation attenuates multiple organ dysfunction in resuscitated porcine progressive sepsis. Crit Care Med. 2019;47:e461–9.PubMedCrossRef Kohoutova M, Horak J, Jarkovska D, Martinkova V, Tegl V, Nalos L, et al. Vagus nerve stimulation attenuates multiple organ dysfunction in resuscitated porcine progressive sepsis. Crit Care Med. 2019;47:e461–9.PubMedCrossRef
106.
go back to reference Chen S-J, Wu C-C, Yang S-N, Lin C-I, Yen M-H. Abnormal activation of K+ channels in aortic smooth muscle of rats with endotoxic shock: electrophysiological and functional evidence. Br J Pharmacol. 2000;131:213–22.PubMedPubMedCentralCrossRef Chen S-J, Wu C-C, Yang S-N, Lin C-I, Yen M-H. Abnormal activation of K+ channels in aortic smooth muscle of rats with endotoxic shock: electrophysiological and functional evidence. Br J Pharmacol. 2000;131:213–22.PubMedPubMedCentralCrossRef
107.
108.
109.
go back to reference Aiello EA, Malcolm AT, Walsh MP, Cole WC. β-Adrenoceptor activation and PKA regulate delayed rectifier K+ channels of vascular smooth muscle cells. Am J Physiol Circ Physiol. 1998;275:H448–59.CrossRef Aiello EA, Malcolm AT, Walsh MP, Cole WC. β-Adrenoceptor activation and PKA regulate delayed rectifier K+ channels of vascular smooth muscle cells. Am J Physiol Circ Physiol. 1998;275:H448–59.CrossRef
110.
go back to reference Landry DW, Oliver JA. The ATP-sensitive K+ channel mediates hypotension in endotoxemia and hypoxic lactic acidosis in dog. J Clin Invest. 1992;89:2071–4.PubMedPubMedCentralCrossRef Landry DW, Oliver JA. The ATP-sensitive K+ channel mediates hypotension in endotoxemia and hypoxic lactic acidosis in dog. J Clin Invest. 1992;89:2071–4.PubMedPubMedCentralCrossRef
111.
go back to reference Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev. 2012;248:188–204.PubMedPubMedCentralCrossRef Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev. 2012;248:188–204.PubMedPubMedCentralCrossRef
Metadata
Title
The autonomic nervous system in septic shock and its role as a future therapeutic target: a narrative review
Authors
Marta Carrara
Manuela Ferrario
Bernardo Bollen Pinto
Antoine Herpain
Publication date
01-12-2021
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2021
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-021-00869-7

Other articles of this Issue 1/2021

Annals of Intensive Care 1/2021 Go to the issue