Skip to main content
Top
Published in: Critical Care 1/2016

Open Access 01-12-2016 | Editorial

Decatecholaminisation during sepsis

Authors: Alain Rudiger, Mervyn Singer

Published in: Critical Care | Issue 1/2016

Login to get access

Excerpt

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection [1]. The syndrome is characterised by autonomic dysfunction and increased plasma levels of noradrenaline and adrenaline [2]. These catecholamines originate mainly from the activated sympathetic nervous system, but also originate from the adrenal gland, gut, and immune cells [3]. While necessary and life-saving in the early fight or flight reaction to any insult, prolonged adrenergic stress is detrimental and contributes to organ dysfunction [4]. Strategies to reduce adrenergic stress have been proposed (Table 1) under the umbrella term decatecholaminisation.
Table 1
Decatecholaminisation strategies for patients with septic shock
 
Strategy
Recommendations
Blunt endogenous catecholamine release; avoid compensatory adrenergic stimulation
Optimize cardiac preload and vascular filling
Assess fluid status by leg-raise test
Perform repetitive fluid challenges to a target (e.g. stroke volume)
Use cardiac output monitoring and/or echocardiography
Treat hypoxia and severe anaemia
Target oxygen saturation between 92–96 %
Transfuse red blood cells if haemoglobin falls below 70 g/l
Optimize sedation and analgesia
Avoid over-sedation; use sedation targets
Interrupt sedation daily, especially if long-lasting sedatives (e.g. midazolam) are used
Use dexmedetomidine (see text for details)
Reduce exogenous catecholamine administration
Avoid excessive beta-mimetic stimulation
Use cardiac output monitoring and/or echocardiography Avoid supra-normal physiological targets
Only use inotropes if contractility is impaired
Use cardiac output monitoring and/or echocardiography
Consider alternative drugs
Consider alternative inotropes (e.g. levosimendan) and vasopressors (e.g. vasopressin)
Accept abnormal physiological values
Adjust therapeutic targets
Consider beta-blockers if tachycardia persists
Prefer short-acting drugs (e.g esmolol, see text) that can be stopped if adverse effects occur
Blunt inflammatory response (to reduce cardiac depression and microvascular dysfunction)
Treat underlying infection
Use intravenous antibiotics (after sampling for microbiology)
Push for urgent surgical/interventional source control
Reduce cytokine load
Consider low-dose steroids
Consider extra-corporeal cytokine removal
Evidence and class of recommendations vary between the different interventions
Literature
1.
go back to reference Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315:801–10.CrossRefPubMedPubMedCentral Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315:801–10.CrossRefPubMedPubMedCentral
2.
go back to reference Annane D, Trabold F, Sharshar T, Jarrin I, Blanc AS, Raphael J-C, Gajdos P. Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach. Am J Respir Crit Care Med. 1999;160:458–65.CrossRefPubMed Annane D, Trabold F, Sharshar T, Jarrin I, Blanc AS, Raphael J-C, Gajdos P. Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach. Am J Respir Crit Care Med. 1999;160:458–65.CrossRefPubMed
3.
go back to reference Rudiger A, Singer M. The heart in sepsis: from basic mechanisms to clinical management. Curr Vasc Pharmacol. 2013;11:187–95.PubMed Rudiger A, Singer M. The heart in sepsis: from basic mechanisms to clinical management. Curr Vasc Pharmacol. 2013;11:187–95.PubMed
4.
go back to reference Andreis DT, Singer M. Catecholamines for inflammatory shock: a Jekyll-and-Hyde conundrum. Intensive Care Med. 2016;42:1387-97. Andreis DT, Singer M. Catecholamines for inflammatory shock: a Jekyll-and-Hyde conundrum. Intensive Care Med. 2016;42:1387-97.
6.
go back to reference Morelli A, Ertmer C, Westphal M, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310:1683–91. Morelli A, Ertmer C, Westphal M, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310:1683–91.
7.
go back to reference Morelli A, Donati A, Ertmer C, Rehberg S, Kampmeier T, Orecchioni A, D’Egidio A, Cecchini V, Landoni G, Pietropaoli P, et al. Microvascular effects of heart rate control with esmolol in patients with septic shock: a pilot study. Crit Care Med. 2013;41:2162–8.CrossRefPubMed Morelli A, Donati A, Ertmer C, Rehberg S, Kampmeier T, Orecchioni A, D’Egidio A, Cecchini V, Landoni G, Pietropaoli P, et al. Microvascular effects of heart rate control with esmolol in patients with septic shock: a pilot study. Crit Care Med. 2013;41:2162–8.CrossRefPubMed
8.
go back to reference Reeves RA, Boer WH, DeLeve L, Leenen FH. Nonselective beta-blockade enhances pressor responsiveness to epinephrine, norepinephrine, and angiotensin II in normal man. Clin Pharmacol Ther. 1984;35:461–6.CrossRefPubMed Reeves RA, Boer WH, DeLeve L, Leenen FH. Nonselective beta-blockade enhances pressor responsiveness to epinephrine, norepinephrine, and angiotensin II in normal man. Clin Pharmacol Ther. 1984;35:461–6.CrossRefPubMed
9.
go back to reference Keating GM. Dexmedetomidine: a review of its use for sedation in the intensive care setting. Drugs. 2015;75:1119–30.CrossRefPubMed Keating GM. Dexmedetomidine: a review of its use for sedation in the intensive care setting. Drugs. 2015;75:1119–30.CrossRefPubMed
10.
go back to reference Cruickshank M, Henderson L, MacLennan G, Fraser C, Campbell M, Blackwood B, Gordon A, Brazzelli M. Alpha-2 agonists for sedation of mechanically ventilated adults in intensive care units: a systematic review. Health Technol Assess. 2016;20:1–118.CrossRefPubMedPubMedCentral Cruickshank M, Henderson L, MacLennan G, Fraser C, Campbell M, Blackwood B, Gordon A, Brazzelli M. Alpha-2 agonists for sedation of mechanically ventilated adults in intensive care units: a systematic review. Health Technol Assess. 2016;20:1–118.CrossRefPubMedPubMedCentral
11.
go back to reference Reade MC, Eastwood GM, Bellomo R, Bailey M, Bersten A, Cheung B, Davies A, Delaney A, Ghosh A, van Haren F, et al. Effect of dexmedetomidine added to standard care on ventilator-free time in patients with agitated delirium: a randomized clinical trial. JAMA. 2016;315:1460–8.CrossRefPubMed Reade MC, Eastwood GM, Bellomo R, Bailey M, Bersten A, Cheung B, Davies A, Delaney A, Ghosh A, van Haren F, et al. Effect of dexmedetomidine added to standard care on ventilator-free time in patients with agitated delirium: a randomized clinical trial. JAMA. 2016;315:1460–8.CrossRefPubMed
12.
go back to reference Ji F, Li Z, Nguyen H, Young N, Shi P, Fleming N, Liu H. Perioperative dexmedetomidine improves outcomes of cardiac surgery. Circulation. 2013;127:1576–84.CrossRefPubMedPubMedCentral Ji F, Li Z, Nguyen H, Young N, Shi P, Fleming N, Liu H. Perioperative dexmedetomidine improves outcomes of cardiac surgery. Circulation. 2013;127:1576–84.CrossRefPubMedPubMedCentral
13.
go back to reference Talke P, Richardson CA, Scheinin M, Fisher DM. Postoperative pharmacokinetics and sympatholytic effects of dexmedetomidine. Anesth Analg. 1997;85:1136–42.CrossRefPubMed Talke P, Richardson CA, Scheinin M, Fisher DM. Postoperative pharmacokinetics and sympatholytic effects of dexmedetomidine. Anesth Analg. 1997;85:1136–42.CrossRefPubMed
14.
go back to reference Hofer S, Steppan J, Wagner T, Funke B, Lichtenstern C, Martin E, Graf BM, Bierhaus A, Weigand MA. Central sympatholytics prolong survival in experimental sepsis. Crit Care. 2009;13:R11.CrossRefPubMedPubMedCentral Hofer S, Steppan J, Wagner T, Funke B, Lichtenstern C, Martin E, Graf BM, Bierhaus A, Weigand MA. Central sympatholytics prolong survival in experimental sepsis. Crit Care. 2009;13:R11.CrossRefPubMedPubMedCentral
15.
go back to reference Hernandez G, Tapia P, Alegria L, et al. Effects of dexmedetomidine and esmolol on systemic hemodynamics and exogenous lactate clearance in early experimental septic shock. Crit Care. 2016;20:234. Hernandez G, Tapia P, Alegria L, et al. Effects of dexmedetomidine and esmolol on systemic hemodynamics and exogenous lactate clearance in early experimental septic shock. Crit Care. 2016;20:234.
Metadata
Title
Decatecholaminisation during sepsis
Authors
Alain Rudiger
Mervyn Singer
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2016
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1488-x

Other articles of this Issue 1/2016

Critical Care 1/2016 Go to the issue