Skip to main content
Top
Published in: BMC Emergency Medicine 1/2023

Open Access 01-12-2023 | Septicemia | Research

Peripheral blood monocyte status is a predictor for judging occurrence and development on sepsis in older adult population: a case control study

Authors: Qian Gao, Li Yang, Fei Teng, Shu‑Bin Guo

Published in: BMC Emergency Medicine | Issue 1/2023

Login to get access

Abstract

Background

Peripheral blood monocytes are important immune modulatory cells that change during aging. Previous studies on sepsis and monocytes did not distinguish between age groups, especially in the older adult population. The mechanisms of monocyte subsets and function are not well-understood in the aging context with sepsis.

Methods

Monocyte subsets were measured using flow cytometry in 80 sepsis patients and 40 healthy controls. Plasma cytokine levels were measured using cytokine antibody arrays.

Results

The percentage of MO3 (CD14 + CD16 + +)/monocytes was higher in sepsis patients than in controls (P = 0.011), whereas the percentage of MO1 (CD14 +  + CD16 −)/monocytes was higher in septic shock patients and 28-day death group than in those without shock and 28-day survival group (P = 0.034, 0.038). Logistic regression analysis showed that the percentage of MO3/monocytes (OR = 1.120, P = 0.046) and plasma level of monocyte chemoattractant protein (MCP)-1 (OR = 1.006, P = 0.023) were independently associated with the occurrence of sepsis, whereas the percentage of MO1/monocytes (OR = 1.255, P = 0.048) was independently associated with septic shock. The receiver operating characteristic (ROC) curve showed that the area under the curve (AUC) of MO3/monocyte percentage in combination with MCP-1 plasma level (AUC = 0.799) for predicting sepsis was higher than that of each parameter alone (P < 0.001). The AUC of MO1/monocyte percentage with the value 0.706 (P = 0.003) was lower than the AUC of SOFA (sequential organ failure assessment) score with the value 0.966 (P < 0.001) for predicting septic shock, but the value of the two AUCs were similar for predicting 28-day mortality (AUC = 0.705, 0.827; P = 0.020, P < 0.001). The AUC of MO1/monocytes percentage in combination with SOFA score for predicting 28-day mortality was higher than that of each parameter alone (AUC = 0.867, P < 0.001). Using a cut-off of 58.5% (for MO1/monocytes determined by ROC) could discriminate between survivors and non-survivors on Kaplan–Meier curves for 28-day mortality with a positive predictive value of 77.4%.

Conclusion

The MO3/monocyte percentage and plasma MCP-1 level were independent predictors of sepsis occurrence, whereas the percentage of MO1/monocytes was an independent predictor of prognosis in the Chinese Han older adult population.

Trial registration

Registration number: ChiCTR2200061490, date of registration: 2022–6-26 (retrospectively registered).
Literature
1.
go back to reference Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16):e74-80.CrossRef Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16):e74-80.CrossRef
2.
go back to reference Lund H, Boysen P, Akesson CP, Lewandowska-Sabat AM, Storset AK. Transient Migration of Large Numbers of CD14(++) CD16(+) Monocytes to the Draining Lymph Node after Onset of Inflammation. Front Immunol. 2016;7:322.CrossRef Lund H, Boysen P, Akesson CP, Lewandowska-Sabat AM, Storset AK. Transient Migration of Large Numbers of CD14(++) CD16(+) Monocytes to the Draining Lymph Node after Onset of Inflammation. Front Immunol. 2016;7:322.CrossRef
3.
go back to reference Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.CrossRef Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.CrossRef
4.
go back to reference Keenan CR, Allan RS. Epigenomic drivers of immune dysfunction in aging. Aging Cell. 2019;18(1):e12878.CrossRef Keenan CR, Allan RS. Epigenomic drivers of immune dysfunction in aging. Aging Cell. 2019;18(1):e12878.CrossRef
5.
go back to reference Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–10.CrossRef Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–10.CrossRef
6.
go back to reference Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 2010;33(3):375–86.CrossRef Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 2010;33(3):375–86.CrossRef
7.
go back to reference Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol. 2010;11:30.CrossRef Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol. 2010;11:30.CrossRef
8.
go back to reference Stansfield BK, Ingram DA. Clinical significance of monocyte heterogeneity. Clin Transl Med. 2015;4:5.CrossRef Stansfield BK, Ingram DA. Clinical significance of monocyte heterogeneity. Clin Transl Med. 2015;4:5.CrossRef
9.
go back to reference Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol. 2002;168(7):3536–42.CrossRef Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol. 2002;168(7):3536–42.CrossRef
10.
go back to reference Mukherjee R, Kanti Barman P, Kumar Thatoi P, Tripathy R, Kumar Das B, Ravindran B. Non-Classical monocytes display inflammatory features: Validation in Sepsis and Systemic Lupus Erythematous. Sci Rep. 2015;5:13886.CrossRef Mukherjee R, Kanti Barman P, Kumar Thatoi P, Tripathy R, Kumar Das B, Ravindran B. Non-Classical monocytes display inflammatory features: Validation in Sepsis and Systemic Lupus Erythematous. Sci Rep. 2015;5:13886.CrossRef
11.
go back to reference Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2(1):1.CrossRef Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2(1):1.CrossRef
12.
go back to reference Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19(1):71–82.CrossRef Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19(1):71–82.CrossRef
13.
go back to reference Pence BD, Yarbro JR. Aging impairs mitochondrial respiratory capacity in classical monocytes. Exp Gerontol. 2018;108:112–7.CrossRef Pence BD, Yarbro JR. Aging impairs mitochondrial respiratory capacity in classical monocytes. Exp Gerontol. 2018;108:112–7.CrossRef
14.
go back to reference Ong SM, Hadadi E, Dang TM, Yeap WH, Tan CT, Ng TP, et al. The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death Dis. 2018;9(3):266.CrossRef Ong SM, Hadadi E, Dang TM, Yeap WH, Tan CT, Ng TP, et al. The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death Dis. 2018;9(3):266.CrossRef
15.
go back to reference Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM. Cellular senescence in aging primates. Science. 2006;311(5765):1257.CrossRef Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM. Cellular senescence in aging primates. Science. 2006;311(5765):1257.CrossRef
16.
go back to reference Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.CrossRef Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.CrossRef
17.
go back to reference Saare M, Tserel L, Haljasmagi L, Taalberg E, Peet N, Eimre M, et al. Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. Aging Cell. 2020;19(4):e13127.CrossRef Saare M, Tserel L, Haljasmagi L, Taalberg E, Peet N, Eimre M, et al. Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. Aging Cell. 2020;19(4):e13127.CrossRef
18.
go back to reference Calderon TM, Williams DW, Lopez L, Eugenin EA, Cheney L, Gaskill PJ, et al. Dopamine Increases CD14(+)CD16(+) Monocyte Transmigration across the Blood Brain Barrier: Implications for Substance Abuse and HIV Neuropathogenesis. J Neuroimmune Pharmacol. 2017;12(2):353–70.CrossRef Calderon TM, Williams DW, Lopez L, Eugenin EA, Cheney L, Gaskill PJ, et al. Dopamine Increases CD14(+)CD16(+) Monocyte Transmigration across the Blood Brain Barrier: Implications for Substance Abuse and HIV Neuropathogenesis. J Neuroimmune Pharmacol. 2017;12(2):353–70.CrossRef
19.
go back to reference Hashem HE, Ibrahim ZH, Ahmed WO. Diagnostic, Prognostic, Predictive, and Monitoring Role of Neutrophil CD11b and Monocyte CD14 in Neonatal Sepsis. Dis Markers. 2021;2021:4537760.CrossRef Hashem HE, Ibrahim ZH, Ahmed WO. Diagnostic, Prognostic, Predictive, and Monitoring Role of Neutrophil CD11b and Monocyte CD14 in Neonatal Sepsis. Dis Markers. 2021;2021:4537760.CrossRef
20.
go back to reference Gainaru G, Papadopoulos A, Tsangaris I, Lada M, Giamarellos-Bourboulis EJ, Pistiki A. Increases in inflammatory and CD14(dim)/CD16(pos)/CD45(pos) patrolling monocytes in sepsis: correlation with final outcome. Crit Care. 2018;22(1):56.CrossRef Gainaru G, Papadopoulos A, Tsangaris I, Lada M, Giamarellos-Bourboulis EJ, Pistiki A. Increases in inflammatory and CD14(dim)/CD16(pos)/CD45(pos) patrolling monocytes in sepsis: correlation with final outcome. Crit Care. 2018;22(1):56.CrossRef
21.
go back to reference Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11(5):867–75.CrossRef Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11(5):867–75.CrossRef
22.
go back to reference Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118(5):e16-31.CrossRef Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118(5):e16-31.CrossRef
23.
go back to reference O’Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16(9):553–65.CrossRef O’Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16(9):553–65.CrossRef
24.
go back to reference Campbell RA, Franks Z, Bhatnagar A, Rowley JW, Manne BK, Supiano MA, et al. Granzyme A in Human Platelets Regulates the Synthesis of Proinflammatory Cytokines by Monocytes in Aging. J Immunol. 2018;200(1):295–304.CrossRef Campbell RA, Franks Z, Bhatnagar A, Rowley JW, Manne BK, Supiano MA, et al. Granzyme A in Human Platelets Regulates the Synthesis of Proinflammatory Cytokines by Monocytes in Aging. J Immunol. 2018;200(1):295–304.CrossRef
25.
go back to reference Weyrich AS, Elstad MR, McEver RP, McIntyre TM, Moore KL, Morrissey JH, et al. Activated platelets signal chemokine synthesis by human monocytes. J Clin Invest. 1996;97(6):1525–34.CrossRef Weyrich AS, Elstad MR, McEver RP, McIntyre TM, Moore KL, Morrissey JH, et al. Activated platelets signal chemokine synthesis by human monocytes. J Clin Invest. 1996;97(6):1525–34.CrossRef
26.
go back to reference Donato AJ, Black AD, Jablonski KL, Gano LB, Seals DR. Aging is associated with greater nuclear NF kappa B, reduced I kappa B alpha, and increased expression of proinflammatory cytokines in vascular endothelial cells of healthy humans. Aging Cell. 2008;7(6):805–12.CrossRef Donato AJ, Black AD, Jablonski KL, Gano LB, Seals DR. Aging is associated with greater nuclear NF kappa B, reduced I kappa B alpha, and increased expression of proinflammatory cytokines in vascular endothelial cells of healthy humans. Aging Cell. 2008;7(6):805–12.CrossRef
27.
go back to reference Pararasa C, Ikwuobe J, Shigdar S, Boukouvalas A, Nabney IT, Brown JE, et al. Age-associated changes in long-chain fatty acid profile during healthy aging promote pro-inflammatory monocyte polarization via PPARgamma. Aging Cell. 2016;15(1):128–39.CrossRef Pararasa C, Ikwuobe J, Shigdar S, Boukouvalas A, Nabney IT, Brown JE, et al. Age-associated changes in long-chain fatty acid profile during healthy aging promote pro-inflammatory monocyte polarization via PPARgamma. Aging Cell. 2016;15(1):128–39.CrossRef
28.
go back to reference Rondina MT, Carlisle M, Fraughton T, Brown SM, Miller RR 3rd, Harris ES, et al. Platelet-monocyte aggregate formation and mortality risk in older patients with severe sepsis and septic shock. J Gerontol A Biol Sci Med Sci. 2015;70(2):225–31.CrossRef Rondina MT, Carlisle M, Fraughton T, Brown SM, Miller RR 3rd, Harris ES, et al. Platelet-monocyte aggregate formation and mortality risk in older patients with severe sepsis and septic shock. J Gerontol A Biol Sci Med Sci. 2015;70(2):225–31.CrossRef
29.
go back to reference He J, Chen Y, Lin Y, Zhang W, Cai Y, Chen F, et al. Association study of MCP-1 promoter polymorphisms with the susceptibility and progression of sepsis. PLoS ONE. 2017;12(5):e0176781.CrossRef He J, Chen Y, Lin Y, Zhang W, Cai Y, Chen F, et al. Association study of MCP-1 promoter polymorphisms with the susceptibility and progression of sepsis. PLoS ONE. 2017;12(5):e0176781.CrossRef
30.
go back to reference Barre M, Behnes M, Hamed S, Pauly D, Lepiorz D, Lang S, et al. Revisiting the prognostic value of monocyte chemotactic protein 1 and interleukin-6 in the sepsis-3 era. J Crit Care. 2018;43:21–8.CrossRef Barre M, Behnes M, Hamed S, Pauly D, Lepiorz D, Lang S, et al. Revisiting the prognostic value of monocyte chemotactic protein 1 and interleukin-6 in the sepsis-3 era. J Crit Care. 2018;43:21–8.CrossRef
Metadata
Title
Peripheral blood monocyte status is a predictor for judging occurrence and development on sepsis in older adult population: a case control study
Authors
Qian Gao
Li Yang
Fei Teng
Shu‑Bin Guo
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Emergency Medicine / Issue 1/2023
Electronic ISSN: 1471-227X
DOI
https://doi.org/10.1186/s12873-023-00779-w

Other articles of this Issue 1/2023

BMC Emergency Medicine 1/2023 Go to the issue