Skip to main content
Top

08-04-2024 | Septicemia | REVIEW

“Feed a Cold, Starve a Fever?” A Review of Nutritional Strategies in the Setting of Bacterial Versus Viral Infections

Authors: Senthilkumar Sankararaman, Carla Venegas, Sonia Seth, Sonali Palchaudhuri

Published in: Current Nutrition Reports

Login to get access

Abstract

Purpose of Review

Some data, mostly originally derived from animal studies, suggest that low glucose intake is protective in bacterial sepsis but detrimental in overwhelming viral infections. This has been interpreted into a broad belief that different forms of sepsis may potentially require different nutritional management strategies. There are a few mechanistic differences between the host interactions with virus and bacteria which can explain why there may be opposing responses to macronutrient and micronutrient during the infected state. Here, we aim to review relevant evidence on the mechanisms and pathophysiology of nutritional management strategies in various infectious syndromes and summarize their clinical implications.

Recent Findings

Newer literature — in the context of the SARS-CoV-19 pandemic — offers some insight to viral infections. There is still limited clinically applicable data during infection that clearly delineate the role of nutrition during an active viral vs bacterial infections.

Summary

Based on contrasting findings in different models of viruses and bacteria, the macronutrient and micronutrient needs may depend more on specific infectious organisms that may not be generalizable as bacterial versus viral. Overall, the metabolic effects of sepsis are context dependent, and various host-specific (e.g., age, baseline nutritional status, immune status, comorbidities) and illness variables (phase, duration, and severity of illness) play a significant role in determining the outcome besides pathogen-specific (virus or bacterial or fungi and combined infections) factors. Microbe therapy (probiotics and prebiotics) seems to have therapeutic potential in both viral and bacterial infected states, and this seems like a promising area for further practical research.
Literature
1.
go back to reference Prewitt EM. Fever: facts, fiction, physiology. Crit Care Nurs. 2005;25(1):S8–S. Prewitt EM. Fever: facts, fiction, physiology. Crit Care Nurs. 2005;25(1):S8–S.
2.
go back to reference Bazar KA, Yun AJ, Lee PY. “Starve a fever and feed a cold”: feeding and anorexia may be adaptive behavioral modulators of autonomic and T helper balance. Med Hypotheses. 2005;64(6):1080–4.PubMedCrossRef Bazar KA, Yun AJ, Lee PY. “Starve a fever and feed a cold”: feeding and anorexia may be adaptive behavioral modulators of autonomic and T helper balance. Med Hypotheses. 2005;64(6):1080–4.PubMedCrossRef
3.
go back to reference Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.PubMedPubMedCentralCrossRef Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.PubMedPubMedCentralCrossRef
4.
go back to reference Yadav H, Cartin-Ceba R, editors. Balance between hyperinflammation and immunosuppression in sepsis. Semin Respir Crit Care Med. 2016;37(01):042–50.CrossRef Yadav H, Cartin-Ceba R, editors. Balance between hyperinflammation and immunosuppression in sepsis. Semin Respir Crit Care Med. 2016;37(01):042–50.CrossRef
5.
go back to reference Téblick A, Gunst J, Langouche L, Van den Berghe G. Novel insights in endocrine and metabolic pathways in sepsis and gaps for future research. Clin Sci. 2022;136(11):861–78.CrossRef Téblick A, Gunst J, Langouche L, Van den Berghe G. Novel insights in endocrine and metabolic pathways in sepsis and gaps for future research. Clin Sci. 2022;136(11):861–78.CrossRef
6.
go back to reference Cha J-K, Kim H-S, Kim E-J, Lee E-S, Lee J-H, Song I-A. Effect of early nutritional support on clinical outcomes of critically ill patients with sepsis and septic shock: a single-center retrospective study. Nutrients. 2022;14(11):2318.PubMedPubMedCentralCrossRef Cha J-K, Kim H-S, Kim E-J, Lee E-S, Lee J-H, Song I-A. Effect of early nutritional support on clinical outcomes of critically ill patients with sepsis and septic shock: a single-center retrospective study. Nutrients. 2022;14(11):2318.PubMedPubMedCentralCrossRef
7.
go back to reference Lee-anne SC, Tatucu-Babet OA, Lambell KJ, Fetterplace K, Ridley EJ. Nutrition guidelines for critically ill adults admitted with COVID-19: Is there consensus? Clinical Nutrition ESPEN. 2021;44:69–77.CrossRef Lee-anne SC, Tatucu-Babet OA, Lambell KJ, Fetterplace K, Ridley EJ. Nutrition guidelines for critically ill adults admitted with COVID-19: Is there consensus? Clinical Nutrition ESPEN. 2021;44:69–77.CrossRef
8.
go back to reference Barazzoni R, Bischoff SC, Breda J, Wickramasinghe K, Krznaric Z, Nitzan D, et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin Nutr. 2020;39(6):1631–8.PubMedPubMedCentralCrossRef Barazzoni R, Bischoff SC, Breda J, Wickramasinghe K, Krznaric Z, Nitzan D, et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin Nutr. 2020;39(6):1631–8.PubMedPubMedCentralCrossRef
10.
go back to reference Martindale R, Patel JJ, Taylor B, Arabi YM, Warren M, McClave SA. Nutrition therapy in critically ill patients with coronavirus disease 2019. J Parenter Enter Nutr. 2020;44(7):1174–84.CrossRef Martindale R, Patel JJ, Taylor B, Arabi YM, Warren M, McClave SA. Nutrition therapy in critically ill patients with coronavirus disease 2019. J Parenter Enter Nutr. 2020;44(7):1174–84.CrossRef
11.
go back to reference Ojo O, Ojo OO, Feng Q, Boateng J, Wang X, Brooke J, et al. The effects of enteral nutrition in critically ill patients with COVID-19: a systematic review and meta-analysis. Nutrients. 2022;14(5):1120.PubMedPubMedCentralCrossRef Ojo O, Ojo OO, Feng Q, Boateng J, Wang X, Brooke J, et al. The effects of enteral nutrition in critically ill patients with COVID-19: a systematic review and meta-analysis. Nutrients. 2022;14(5):1120.PubMedPubMedCentralCrossRef
12.
go back to reference Dantzer R. Cytokine, sickness behavior, and depression. Immunol Allergy Clin. 2009;29(2):247–64.CrossRef Dantzer R. Cytokine, sickness behavior, and depression. Immunol Allergy Clin. 2009;29(2):247–64.CrossRef
13.
go back to reference Murray M, Murray A. Anorexia of infection as a mechanism of host defense. Am J Clin Nutr. 1979;32(3):593–6.PubMedCrossRef Murray M, Murray A. Anorexia of infection as a mechanism of host defense. Am J Clin Nutr. 1979;32(3):593–6.PubMedCrossRef
15.
16.
17.
go back to reference Van Niekerk G, Meaker C, Engelbrecht A-M. Nutritional support in sepsis: when less may be more. Crit Care. 2020;24:1–6. Van Niekerk G, Meaker C, Engelbrecht A-M. Nutritional support in sepsis: when less may be more. Crit Care. 2020;24:1–6.
18.
go back to reference Hite JL, Pfenning AC, Cressler CE. Starving the enemy? Feeding behavior shapes host-parasite interactions. Trends Ecol Evol. 2020;35(1):68–80.PubMedCrossRef Hite JL, Pfenning AC, Cressler CE. Starving the enemy? Feeding behavior shapes host-parasite interactions. Trends Ecol Evol. 2020;35(1):68–80.PubMedCrossRef
19.
go back to reference van den Brink GR, van den Boogaardt DE, van Deventer SJ, Peppelenbosch MP. Feed a cold, starve a fever? Clin Vaccine Immunol. 2002;9(1):182–3.CrossRef van den Brink GR, van den Boogaardt DE, van Deventer SJ, Peppelenbosch MP. Feed a cold, starve a fever? Clin Vaccine Immunol. 2002;9(1):182–3.CrossRef
20.
go back to reference Wang A, Huen SC, Luan HH, Yu S, Zhang C, Gallezot J-D, et al. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell. 2016;166(6):1512-25. e12.PubMedPubMedCentralCrossRef Wang A, Huen SC, Luan HH, Yu S, Zhang C, Gallezot J-D, et al. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell. 2016;166(6):1512-25. e12.PubMedPubMedCentralCrossRef
21.
go back to reference McClave SA, Lowen CC, Martindale RG. The 2016 ESPEN Arvid Wretlind lecture: the gut in stress. Clin Nutr. 2018;37(1):19–36.PubMedCrossRef McClave SA, Lowen CC, Martindale RG. The 2016 ESPEN Arvid Wretlind lecture: the gut in stress. Clin Nutr. 2018;37(1):19–36.PubMedCrossRef
22.
go back to reference McClave SA, Heyland DK. The physiologic response and associated clinical benefits from provision of early enteral nutrition. Nutr Clin Pract. 2009;24(3):305–15.PubMedCrossRef McClave SA, Heyland DK. The physiologic response and associated clinical benefits from provision of early enteral nutrition. Nutr Clin Pract. 2009;24(3):305–15.PubMedCrossRef
23.
go back to reference Marik PE. Nutritional support among medical inpatients—feed the cold (and malnourished) and starve the febrile. JAMA Netw Open. 2019;2(11):e1915707-e.CrossRef Marik PE. Nutritional support among medical inpatients—feed the cold (and malnourished) and starve the febrile. JAMA Netw Open. 2019;2(11):e1915707-e.CrossRef
24.
go back to reference Casaer MP, Hermans G, Wilmer A, Van den Berghe G. Impact of early parenteral nutrition completing enteral nutrition in adult critically ill patients (EPaNIC trial): a study protocol and statistical analysis plan for a randomized controlled trial. Trials. 2011;12:1–11.CrossRef Casaer MP, Hermans G, Wilmer A, Van den Berghe G. Impact of early parenteral nutrition completing enteral nutrition in adult critically ill patients (EPaNIC trial): a study protocol and statistical analysis plan for a randomized controlled trial. Trials. 2011;12:1–11.CrossRef
25.
go back to reference Fivez T, Kerklaan D, Verbruggen S, Vanhorebeek I, Verstraete S, Tibboel D, et al. Impact of withholding early parenteral nutrition completing enteral nutrition in pediatric critically ill patients (PEPaNIC trial): study protocol for a randomized controlled trial. Trials. 2015;16(1):1–9.CrossRef Fivez T, Kerklaan D, Verbruggen S, Vanhorebeek I, Verstraete S, Tibboel D, et al. Impact of withholding early parenteral nutrition completing enteral nutrition in pediatric critically ill patients (PEPaNIC trial): study protocol for a randomized controlled trial. Trials. 2015;16(1):1–9.CrossRef
26.
go back to reference Harvey SE, Parrott F, Harrison DA, Bear DE, Segaran E, Beale R, et al. Trial of the route of early nutritional support in critically ill adults. N Engl J Med. 2014;371(18):1673–84.PubMedCrossRef Harvey SE, Parrott F, Harrison DA, Bear DE, Segaran E, Beale R, et al. Trial of the route of early nutritional support in critically ill adults. N Engl J Med. 2014;371(18):1673–84.PubMedCrossRef
27.
go back to reference Reignier J, Boisramé-Helms J, Brisard L, Lascarrou J-B, Hssain AA, Anguel N, et al. Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). Lancet. 2018;391(10116):133–43.PubMedCrossRef Reignier J, Boisramé-Helms J, Brisard L, Lascarrou J-B, Hssain AA, Anguel N, et al. Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). Lancet. 2018;391(10116):133–43.PubMedCrossRef
28.
30.
32.
go back to reference Verhoeven JJ, den Brinker M, Hokken-Koelega A, Hazelzet JA, Joosten KF. Pathophysiological aspects of hyperglycemia in children with meningococcal sepsis and septic shock: a prospective, observational cohort study. Crit Care. 2011;15(1):1–10.CrossRef Verhoeven JJ, den Brinker M, Hokken-Koelega A, Hazelzet JA, Joosten KF. Pathophysiological aspects of hyperglycemia in children with meningococcal sepsis and septic shock: a prospective, observational cohort study. Crit Care. 2011;15(1):1–10.CrossRef
33.
go back to reference Szentirmai É, Massie AR, Kapás L. Lipoteichoic acid, a cell wall component of Gram-positive bacteria, induces sleep and fever and suppresses feeding. Brain Behav Immun. 2021;92:184–92.PubMedCrossRef Szentirmai É, Massie AR, Kapás L. Lipoteichoic acid, a cell wall component of Gram-positive bacteria, induces sleep and fever and suppresses feeding. Brain Behav Immun. 2021;92:184–92.PubMedCrossRef
34.
go back to reference Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR. Pattern recognition receptors and the host cell death molecular machinery. Front Immunol. 2018;9:2379.PubMedPubMedCentralCrossRef Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR. Pattern recognition receptors and the host cell death molecular machinery. Front Immunol. 2018;9:2379.PubMedPubMedCentralCrossRef
36.
37.
go back to reference Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119(6):753–66.PubMedCrossRef Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119(6):753–66.PubMedCrossRef
38.
go back to reference Rikihisa Y. Glycogen autophagosomes in polymorphonuclear leukocytes induced by rickettsiae. Anat Rec. 1984;208(3):319–27.PubMedCrossRef Rikihisa Y. Glycogen autophagosomes in polymorphonuclear leukocytes induced by rickettsiae. Anat Rec. 1984;208(3):319–27.PubMedCrossRef
40.
go back to reference Heaton NS, Perera R, Berger KL, Khadka S, LaCount DJ, Kuhn RJ, et al. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci. 2010;107(40):17345–50.PubMedPubMedCentralCrossRef Heaton NS, Perera R, Berger KL, Khadka S, LaCount DJ, Kuhn RJ, et al. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci. 2010;107(40):17345–50.PubMedPubMedCentralCrossRef
41.
go back to reference Ritter JB, Wahl AS, Freund S, Genzel Y, Reichl U. Metabolic effects of influenza virus infection in cultured animal cells: intra-and extracellular metabolite profiling. BMC Syst Biol. 2010;4(1):1–22.CrossRef Ritter JB, Wahl AS, Freund S, Genzel Y, Reichl U. Metabolic effects of influenza virus infection in cultured animal cells: intra-and extracellular metabolite profiling. BMC Syst Biol. 2010;4(1):1–22.CrossRef
42.
go back to reference Foo J, Bellot G, Pervaiz S, Alonso S. Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol. 2022;30(7):679–92.PubMedCrossRef Foo J, Bellot G, Pervaiz S, Alonso S. Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol. 2022;30(7):679–92.PubMedCrossRef
43.
go back to reference Pahlavani MA. Caloric restriction and immunosenescence: a current perspective. Front Biosci-Landmark. 2000;5(3):580–7.CrossRef Pahlavani MA. Caloric restriction and immunosenescence: a current perspective. Front Biosci-Landmark. 2000;5(3):580–7.CrossRef
45.
go back to reference Ritz M-F, Ratajczak P, Curin Y, Cam E, Mendelowitsch A, Pinet F, et al. Chronic treatment with red wine polyphenol compounds mediates neuroprotection in a rat model of ischemic cerebral stroke. J Nutr. 2008;138(3):519–25.PubMedCrossRef Ritz M-F, Ratajczak P, Curin Y, Cam E, Mendelowitsch A, Pinet F, et al. Chronic treatment with red wine polyphenol compounds mediates neuroprotection in a rat model of ischemic cerebral stroke. J Nutr. 2008;138(3):519–25.PubMedCrossRef
46.
go back to reference Clinthorne JF, Adams DJ, Fenton JI, Ritz BW, Gardner EM. Short-term re-feeding of previously energy-restricted C57BL/6 male mice restores body weight and body fat and attenuates the decline in natural killer cell function after primary influenza infection. J Nutr. 2010;140(8):1495–501.PubMedPubMedCentralCrossRef Clinthorne JF, Adams DJ, Fenton JI, Ritz BW, Gardner EM. Short-term re-feeding of previously energy-restricted C57BL/6 male mice restores body weight and body fat and attenuates the decline in natural killer cell function after primary influenza infection. J Nutr. 2010;140(8):1495–501.PubMedPubMedCentralCrossRef
47.
go back to reference Ritz BW, Aktan I, Nogusa S, Gardner EM. Energy restriction impairs natural killer cell function and increases the severity of influenza infection in young adult male C57BL/6 mice. J Nutr. 2008;138(11):2269–75.PubMedPubMedCentralCrossRef Ritz BW, Aktan I, Nogusa S, Gardner EM. Energy restriction impairs natural killer cell function and increases the severity of influenza infection in young adult male C57BL/6 mice. J Nutr. 2008;138(11):2269–75.PubMedPubMedCentralCrossRef
48.
go back to reference Gardner EM. Caloric restriction decreases survival of aged mice in response to primary influenza infection. J Gerontol A Biol Sci Med Sci. 2005;60(6):688–94.PubMedCrossRef Gardner EM. Caloric restriction decreases survival of aged mice in response to primary influenza infection. J Gerontol A Biol Sci Med Sci. 2005;60(6):688–94.PubMedCrossRef
49.
go back to reference Sun D, Muthukumar AR, Lawrence RA, Fernandes G. Effects of calorie restriction on polymicrobial peritonitis induced by cecum ligation and puncture in young C57BL/6 mice. Clin Diagn Lab Immunol. 2001;8(5):1003–11.PubMedPubMedCentralCrossRef Sun D, Muthukumar AR, Lawrence RA, Fernandes G. Effects of calorie restriction on polymicrobial peritonitis induced by cecum ligation and puncture in young C57BL/6 mice. Clin Diagn Lab Immunol. 2001;8(5):1003–11.PubMedPubMedCentralCrossRef
50.
go back to reference Dong W, Selgrade MK, Ian Gilmour M, Lange RW, Park P, Luster MI, et al. Altered alveolar macrophage function in calorie-restricted rats. Am J Respir Cell Mol Biol. 1998;19(3):462–9.PubMedCrossRef Dong W, Selgrade MK, Ian Gilmour M, Lange RW, Park P, Luster MI, et al. Altered alveolar macrophage function in calorie-restricted rats. Am J Respir Cell Mol Biol. 1998;19(3):462–9.PubMedCrossRef
51.
go back to reference Peck MD, Babcock GF, Alexander JW. The role of protein and calorie restriction in outcome from Salmonella infection in mice. J Parenter Enter Nutr. 1992;16(6):561–5.CrossRef Peck MD, Babcock GF, Alexander JW. The role of protein and calorie restriction in outcome from Salmonella infection in mice. J Parenter Enter Nutr. 1992;16(6):561–5.CrossRef
52.
go back to reference Reyes L, Arvelo W, Estevez A, Gray J, Moir JC, Gordillo B, et al. Population-based surveillance for 2009 pandemic influenza A (H1N1) virus in Guatemala, 2009. Influenza Other Respir Viruses. 2010;4(3):129–40.PubMedPubMedCentralCrossRef Reyes L, Arvelo W, Estevez A, Gray J, Moir JC, Gordillo B, et al. Population-based surveillance for 2009 pandemic influenza A (H1N1) virus in Guatemala, 2009. Influenza Other Respir Viruses. 2010;4(3):129–40.PubMedPubMedCentralCrossRef
53.
go back to reference Short KR, Kedzierska K, Van de Sandt CE. Back to the future: lessons learned from the 1918 influenza pandemic. Front Cell Infect Microbiol. 2018;8:343.PubMedPubMedCentralCrossRef Short KR, Kedzierska K, Van de Sandt CE. Back to the future: lessons learned from the 1918 influenza pandemic. Front Cell Infect Microbiol. 2018;8:343.PubMedPubMedCentralCrossRef
54.
go back to reference Riesgo H, Castro A, Del Amo S, San Ceferino MJ, Izaola O, Primo D, et al. Prevalence of risk of malnutrition and risk of sarcopenia in a reference hospital for COVID-19: relationship with mortality. Ann Nutr Metab. 2021;77(6):324–9.PubMedCrossRef Riesgo H, Castro A, Del Amo S, San Ceferino MJ, Izaola O, Primo D, et al. Prevalence of risk of malnutrition and risk of sarcopenia in a reference hospital for COVID-19: relationship with mortality. Ann Nutr Metab. 2021;77(6):324–9.PubMedCrossRef
55.
go back to reference Karlsson EA, Sheridan PA, Beck MA. Diet-induced obesity impairs the T cell memory response to influenza virus infection. J Immunol. 2010;184(6):3127–33.PubMedCrossRef Karlsson EA, Sheridan PA, Beck MA. Diet-induced obesity impairs the T cell memory response to influenza virus infection. J Immunol. 2010;184(6):3127–33.PubMedCrossRef
56.
go back to reference Smith AG, Sheridan PA, Harp JB, Beck MA. Diet-induced obese mice have increased mortality and altered immune responses when infected with influenza virus. J Nutr. 2007;137(5):1236–43.PubMedCrossRef Smith AG, Sheridan PA, Harp JB, Beck MA. Diet-induced obese mice have increased mortality and altered immune responses when infected with influenza virus. J Nutr. 2007;137(5):1236–43.PubMedCrossRef
57.
go back to reference Hsu A, Aronoff D, Phipps J, Goel D, Mancuso P. Leptin improves pulmonary bacterial clearance and survival in ob/ob mice during pneumococcal pneumonia. Clin Exp Immunol. 2007;150(2):332–9.PubMedPubMedCentralCrossRef Hsu A, Aronoff D, Phipps J, Goel D, Mancuso P. Leptin improves pulmonary bacterial clearance and survival in ob/ob mice during pneumococcal pneumonia. Clin Exp Immunol. 2007;150(2):332–9.PubMedPubMedCentralCrossRef
58.
go back to reference Papathanassoglou E, El-Haschimi K, Li XC, Matarese G, Strom T, Mantzoros C. Leptin receptor expression and signaling in lymphocytes: kinetics during lymphocyte activation, role in lymphocyte survival, and response to high fat diet in mice. J Immunol. 2006;176(12):7745–52.PubMedCrossRef Papathanassoglou E, El-Haschimi K, Li XC, Matarese G, Strom T, Mantzoros C. Leptin receptor expression and signaling in lymphocytes: kinetics during lymphocyte activation, role in lymphocyte survival, and response to high fat diet in mice. J Immunol. 2006;176(12):7745–52.PubMedCrossRef
59.
go back to reference Las Heras V, Clooney AG, Ryan FJ, Cabrera-Rubio R, Casey PG, Hueston CM, et al. Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection. Microbiome. 2019;7:1–12.CrossRef Las Heras V, Clooney AG, Ryan FJ, Cabrera-Rubio R, Casey PG, Hueston CM, et al. Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection. Microbiome. 2019;7:1–12.CrossRef
60.
go back to reference McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). JPEN J Parenter Enteral Nutr. 2016;40(2):159–211.PubMedCrossRef McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). JPEN J Parenter Enteral Nutr. 2016;40(2):159–211.PubMedCrossRef
61.
go back to reference Preiser J-C, Arabi YM, Berger MM, Casaer M, McClave S, Montejo-González JC, et al. A guide to enteral nutrition in intensive care units: 10 expert tips for the daily practice. Crit Care. 2021;25(1):1–13.CrossRef Preiser J-C, Arabi YM, Berger MM, Casaer M, McClave S, Montejo-González JC, et al. A guide to enteral nutrition in intensive care units: 10 expert tips for the daily practice. Crit Care. 2021;25(1):1–13.CrossRef
62.
go back to reference Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48–79.PubMedCrossRef Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48–79.PubMedCrossRef
63.
go back to reference Marik PE, Hooper MH. Normocaloric versus hypocaloric feeding on the outcomes of ICU patients: a systematic review and meta-analysis. Intensive Care Med. 2016;42:316–23.PubMedCrossRef Marik PE, Hooper MH. Normocaloric versus hypocaloric feeding on the outcomes of ICU patients: a systematic review and meta-analysis. Intensive Care Med. 2016;42:316–23.PubMedCrossRef
64.
go back to reference TARGET Investigators, for the ANZICS Clinical Trials Group, Chapman M, Peake SL, Bellomo R, Davies A, Deane A, Horowitz M, et al. Energy-dense versus routine enteral nutrition in the critically ill. N Engl J Med. 2018;379(19):1823–34.CrossRef TARGET Investigators, for the ANZICS Clinical Trials Group, Chapman M, Peake SL, Bellomo R, Davies A, Deane A, Horowitz M, et al. Energy-dense versus routine enteral nutrition in the critically ill. N Engl J Med. 2018;379(19):1823–34.CrossRef
65.
go back to reference Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med. 2021;49(11):e1063–143.PubMedCrossRef Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med. 2021;49(11):e1063–143.PubMedCrossRef
66.
go back to reference Sun J-K, Nie S, Chen Y-M, Zhou J, Wang X, Zhou S-M, et al. Effects of permissive hypocaloric vs standard enteral feeding on gastrointestinal function and outcomes in sepsis. World J Gastroenterol. 2021;27(29):4900.PubMedPubMedCentralCrossRef Sun J-K, Nie S, Chen Y-M, Zhou J, Wang X, Zhou S-M, et al. Effects of permissive hypocaloric vs standard enteral feeding on gastrointestinal function and outcomes in sepsis. World J Gastroenterol. 2021;27(29):4900.PubMedPubMedCentralCrossRef
67.
go back to reference de Betue CT, van Waardenburg DA, Deutz NE, van Eijk HM, van Goudoever JB, Luiking YC, et al. Increased protein-energy intake promotes anabolism in critically ill infants with viral bronchiolitis: a double-blind randomised controlled trial. Arch Dis Child. 2011;96(9):817–22.PubMedCrossRef de Betue CT, van Waardenburg DA, Deutz NE, van Eijk HM, van Goudoever JB, Luiking YC, et al. Increased protein-energy intake promotes anabolism in critically ill infants with viral bronchiolitis: a double-blind randomised controlled trial. Arch Dis Child. 2011;96(9):817–22.PubMedCrossRef
69.
go back to reference Rao S, Schieber AMP, O’Connor CP, Leblanc M, Michel D, Ayres JS. Pathogen-mediated inhibition of anorexia promotes host survival and transmission. Cell. 2017;168(3):503-16. e12.PubMedPubMedCentralCrossRef Rao S, Schieber AMP, O’Connor CP, Leblanc M, Michel D, Ayres JS. Pathogen-mediated inhibition of anorexia promotes host survival and transmission. Cell. 2017;168(3):503-16. e12.PubMedPubMedCentralCrossRef
70.
go back to reference Agwunobi AO, Reid C, Maycock P, Little RA, Carlson GL. Insulin resistance and substrate utilization in human endotoxemia. J Clin Endocrinol Metab. 2000;85(10):3770–8.PubMedCrossRef Agwunobi AO, Reid C, Maycock P, Little RA, Carlson GL. Insulin resistance and substrate utilization in human endotoxemia. J Clin Endocrinol Metab. 2000;85(10):3770–8.PubMedCrossRef
72.
go back to reference Zheng Z, Ma H, Zhang X, Tu F, Wang X, Ha T, et al. Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis. J Infect Dis. 2017;215(9):1396–406.PubMedPubMedCentralCrossRef Zheng Z, Ma H, Zhang X, Tu F, Wang X, Ha T, et al. Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis. J Infect Dis. 2017;215(9):1396–406.PubMedPubMedCentralCrossRef
73.
go back to reference Lubbers T, De Haan J-J, Hadfoune MH, Zhang Y, Luyer MD, Grundy D, et al. Lipid-enriched enteral nutrition controls the inflammatory response in murine Gram-negative sepsis. Crit Care Med. 2010;38(10):1996–2002.PubMedCrossRef Lubbers T, De Haan J-J, Hadfoune MH, Zhang Y, Luyer MD, Grundy D, et al. Lipid-enriched enteral nutrition controls the inflammatory response in murine Gram-negative sepsis. Crit Care Med. 2010;38(10):1996–2002.PubMedCrossRef
74.
go back to reference Svahn SL, Ulleryd MA, Grahnemo L, Ståhlman M, Borén J, Nilsson S, et al. Dietary omega-3 fatty acids increase survival and decrease bacterial load in mice subjected to Staphylococcus aureus-induced sepsis. Infect Immun. 2016;84(4):1205–13.PubMedPubMedCentralCrossRef Svahn SL, Ulleryd MA, Grahnemo L, Ståhlman M, Borén J, Nilsson S, et al. Dietary omega-3 fatty acids increase survival and decrease bacterial load in mice subjected to Staphylococcus aureus-induced sepsis. Infect Immun. 2016;84(4):1205–13.PubMedPubMedCentralCrossRef
75.
go back to reference Husson M-O, Ley D, Portal C, Gottrand M, Hueso T, Desseyn J-L, et al. Modulation of host defence against bacterial and viral infections by omega-3 polyunsaturated fatty acids. J Infect. 2016;73(6):523–35.PubMedCrossRef Husson M-O, Ley D, Portal C, Gottrand M, Hueso T, Desseyn J-L, et al. Modulation of host defence against bacterial and viral infections by omega-3 polyunsaturated fatty acids. J Infect. 2016;73(6):523–35.PubMedCrossRef
76.
go back to reference Sungurtekin H, Değirmenci S, Sungurtekin U, Oguz BE, Sabir N, Kaptanoglu B. Comparison of the effects of different intravenous fat emulsions in patients with systemic inflammatory response syndrome and sepsis. Nutr Clin Pract. 2011;26(6):665–71.PubMedCrossRef Sungurtekin H, Değirmenci S, Sungurtekin U, Oguz BE, Sabir N, Kaptanoglu B. Comparison of the effects of different intravenous fat emulsions in patients with systemic inflammatory response syndrome and sepsis. Nutr Clin Pract. 2011;26(6):665–71.PubMedCrossRef
77.
go back to reference Djoko KY, Cheryl-lynn YO, Walker MJ, McEwan AG. The role of copper and zinc toxicity in innate immune defense against bacterial pathogens. J Biol Chem. 2015;290(31):18954–61.PubMedPubMedCentralCrossRef Djoko KY, Cheryl-lynn YO, Walker MJ, McEwan AG. The role of copper and zinc toxicity in innate immune defense against bacterial pathogens. J Biol Chem. 2015;290(31):18954–61.PubMedPubMedCentralCrossRef
78.
go back to reference Mu Q, Chen L, Gao X, Shen S, Sheng W, Min J, et al. The role of iron homeostasis in remodeling immune function and regulating inflammatory disease. Sci Bull. 2021;66(17):1806–16.CrossRef Mu Q, Chen L, Gao X, Shen S, Sheng W, Min J, et al. The role of iron homeostasis in remodeling immune function and regulating inflammatory disease. Sci Bull. 2021;66(17):1806–16.CrossRef
79.
go back to reference Yang F, Yang Y, Zeng L, Chen Y, Zeng G. Nutrition metabolism and infections. Infect Microbes Dis. 2021;3(3):134–41.CrossRef Yang F, Yang Y, Zeng L, Chen Y, Zeng G. Nutrition metabolism and infections. Infect Microbes Dis. 2021;3(3):134–41.CrossRef
80.
go back to reference Donabedian H. Nutritional therapy and infectious diseases: a two-edged sword. Nutr J. 2006;5(1):1–10.CrossRef Donabedian H. Nutritional therapy and infectious diseases: a two-edged sword. Nutr J. 2006;5(1):1–10.CrossRef
82.
go back to reference Ceccarelli G, Borrazzo C, Pinacchio C, Santinelli L, Innocenti GP, Cavallari EN, et al. Oral bacteriotherapy in patients with COVID-19: a retrospective cohort study. Front Nutr. 2021;7: 613928.PubMedPubMedCentralCrossRef Ceccarelli G, Borrazzo C, Pinacchio C, Santinelli L, Innocenti GP, Cavallari EN, et al. Oral bacteriotherapy in patients with COVID-19: a retrospective cohort study. Front Nutr. 2021;7: 613928.PubMedPubMedCentralCrossRef
83.
go back to reference Tulic M, Piche T, Verhasselt V. Lung–gut cross-talk: evidence, mechanisms and implications for the mucosal inflammatory diseases. Clin Exp Allergy. 2016;46(4):519–28.PubMedCrossRef Tulic M, Piche T, Verhasselt V. Lung–gut cross-talk: evidence, mechanisms and implications for the mucosal inflammatory diseases. Clin Exp Allergy. 2016;46(4):519–28.PubMedCrossRef
84.
go back to reference Santinelli L, Laghi L, Innocenti GP, Pinacchio C, Vassalini P, Celani L, et al. Oral bacteriotherapy reduces the occurrence of chronic fatigue in COVID-19 patients. Front Nutr. 2022;8:1139.CrossRef Santinelli L, Laghi L, Innocenti GP, Pinacchio C, Vassalini P, Celani L, et al. Oral bacteriotherapy reduces the occurrence of chronic fatigue in COVID-19 patients. Front Nutr. 2022;8:1139.CrossRef
85.
go back to reference Xu L, Yang CS, Liu Y, Zhang X. Effective regulation of gut microbiota with probiotics and prebiotics may prevent or alleviate COVID-19 through the gut-lung axis. Front Pharmacol. 2022;13:895193.PubMedPubMedCentralCrossRef Xu L, Yang CS, Liu Y, Zhang X. Effective regulation of gut microbiota with probiotics and prebiotics may prevent or alleviate COVID-19 through the gut-lung axis. Front Pharmacol. 2022;13:895193.PubMedPubMedCentralCrossRef
86.
go back to reference d’Ettorre G, Ceccarelli G, Marazzato M, Campagna G, Pinacchio C, Alessandri F, et al. Challenges in the management of SARS-CoV2 infection: the role of oral bacteriotherapy as complementary therapeutic strategy to avoid the progression of COVID-19. Front Med. 2020;7:389.CrossRef d’Ettorre G, Ceccarelli G, Marazzato M, Campagna G, Pinacchio C, Alessandri F, et al. Challenges in the management of SARS-CoV2 infection: the role of oral bacteriotherapy as complementary therapeutic strategy to avoid the progression of COVID-19. Front Med. 2020;7:389.CrossRef
87.
88.
go back to reference Hajipour A, Afsharfar M, Jonoush M, Ahmadzadeh M, Gholamalizadeh M, Hassanpour Ardekanizadeh N, et al. The effects of dietary fiber on common complications in critically ill patients; with a special focus on viral infections; a systematic reveiw. Immun Inflamm Dis. 2022;10(5): e613.PubMedPubMedCentralCrossRef Hajipour A, Afsharfar M, Jonoush M, Ahmadzadeh M, Gholamalizadeh M, Hassanpour Ardekanizadeh N, et al. The effects of dietary fiber on common complications in critically ill patients; with a special focus on viral infections; a systematic reveiw. Immun Inflamm Dis. 2022;10(5): e613.PubMedPubMedCentralCrossRef
89.
go back to reference Coconnier M-H, Lievin V, Hemery E, Servin AL. Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB. Appl Environ Microbiol. 1998;64(11):4573–80.PubMedPubMedCentralCrossRef Coconnier M-H, Lievin V, Hemery E, Servin AL. Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB. Appl Environ Microbiol. 1998;64(11):4573–80.PubMedPubMedCentralCrossRef
91.
go back to reference Asgari B, Kermanian F, Yaghoobi MH, Vaezi A, Soleimanifar F, Yaslianifard S. The anti-Helicobacter pylori effects of Lactobacillus acidophilus, L. plantarum, and L. rhamnosus in stomach tissue of C57BL/6 Mice. Visceral Med. 2020;36(2):137–43.CrossRef Asgari B, Kermanian F, Yaghoobi MH, Vaezi A, Soleimanifar F, Yaslianifard S. The anti-Helicobacter pylori effects of Lactobacillus acidophilus, L. plantarum, and L. rhamnosus in stomach tissue of C57BL/6 Mice. Visceral Med. 2020;36(2):137–43.CrossRef
92.
go back to reference Goldenberg JZ, Yap C, Lytvyn L, Lo CKF, Beardsley J, Mertz D, et al. Probiotics for the prevention of Clostridium difficile‐associated diarrhea in adults and children. Cochrane Database Syst Rev. 2017(12):CD006095. https://doi.org/10.1002/14651858.CD006095.pub4. Accessed 03 Apr 2024. Goldenberg JZ, Yap C, Lytvyn L, Lo CKF, Beardsley J, Mertz D, et al. Probiotics for the prevention of Clostridium difficile‐associated diarrhea in adults and children. Cochrane Database Syst Rev. 2017(12):CD006095. https://​doi.​org/​10.​1002/​14651858.​CD006095.pub4. Accessed 03 Apr 2024.
93.
go back to reference Carstensen JW, Chehri M, Schønning K, Rasmussen SC, Anhøj J, Godtfredsen NS, et al. Use of prophylactic Saccharomyces boulardii to prevent Clostridium difficile infection in hospitalized patients: a controlled prospective intervention study. Eur J Clin Microbiol Infect Dis. 2018;37:1431–9.PubMedCrossRef Carstensen JW, Chehri M, Schønning K, Rasmussen SC, Anhøj J, Godtfredsen NS, et al. Use of prophylactic Saccharomyces boulardii to prevent Clostridium difficile infection in hospitalized patients: a controlled prospective intervention study. Eur J Clin Microbiol Infect Dis. 2018;37:1431–9.PubMedCrossRef
94.
go back to reference Mazkour S, Shekarforoush SS, Basiri S, Nazifi S, Yektaseresht A, Honarmand M. Effects of two probiotic spores of Bacillus species on hematological, biochemical, and inflammatory parameters in Salmonella Typhimurium infected rats. Sci Rep. 2020;10(1):8035.PubMedPubMedCentralCrossRef Mazkour S, Shekarforoush SS, Basiri S, Nazifi S, Yektaseresht A, Honarmand M. Effects of two probiotic spores of Bacillus species on hematological, biochemical, and inflammatory parameters in Salmonella Typhimurium infected rats. Sci Rep. 2020;10(1):8035.PubMedPubMedCentralCrossRef
Metadata
Title
“Feed a Cold, Starve a Fever?” A Review of Nutritional Strategies in the Setting of Bacterial Versus Viral Infections
Authors
Senthilkumar Sankararaman
Carla Venegas
Sonia Seth
Sonali Palchaudhuri
Publication date
08-04-2024
Publisher
Springer US
Published in
Current Nutrition Reports
Electronic ISSN: 2161-3311
DOI
https://doi.org/10.1007/s13668-024-00536-w
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.