Skip to main content
Top
Published in: Critical Care 1/2021

01-12-2021 | Septicemia | Research

Association of inflammatory biomarkers with subsequent clinical course in suspected late onset sepsis in preterm neonates

Authors: Şerife Kurul, Sinno H. P. Simons, Christian R. B. Ramakers, Yolanda B. De Rijke, René F. Kornelisse, Irwin K. M. Reiss, H. Rob Taal

Published in: Critical Care | Issue 1/2021

Login to get access

Abstract

Background

Sepsis is a major health issue in preterm infants. Biomarkers are used to diagnose and monitor patients with sepsis, but C-reactive protein (CRP) is proven not predictive at onset of late onset neonatal sepsis (LONS) diagnosis. The aim of this study was to evaluate the association of interleukin-6(IL-6), procalcitonin (PCT) and CRP with subsequent sepsis severity and mortality in preterm infants suspected of late onset neonatal sepsis.

Methods

The study was conducted at the Erasmus University Medical Center–Sophia Children’s Hospital Rotterdam. Patient data from January 2018 until October 2019 were reviewed for all preterm neonates born with a gestational age below 32 weeks with signs and symptoms suggestive of systemic infection, in whom blood was taken for blood culture and for inflammatory biomarkers determinations. Plasma IL-6 and PCT were assessed next to CRP at the moment of suspicion. We assessed the association with 7-day mortality and sepsis severity (neonatal sequential organ failure assessment (nSOFA) score, need for inotropic support, invasive ventilation and thrombocytopenia).

Results

A total of 480 suspected late onset neonatal sepsis episodes in 208 preterm neonates (gestational age < 32 weeks) were retrospectively analyzed, of which 143 episodes were classified as sepsis (29.8%), with 56 (11.7%) cases of culture negative, 63 (13.1%) cases of gram-positive and 24(5.0%) cases of gram-negative sepsis. A total of 24 (5.0%) sepsis episodes resulted in death within 7 days after suspicion of LONS. Both IL-6 (adjusted hazard ratio (aHR): 2.28; 95% CI 1.64–3.16; p < 0.001) and PCT (aHR: 2.91; 95% CI 1.70–5.00; p < 0.001) levels were associated with 7-day mortality; however, CRP levels were not significantly correlated with 7-day mortality (aHR: 1.16; 95% CI (0.68–2.00; p = 0.56). Log IL-6, log PCT and log CRP levels were all significantly correlated with the need for inotropic support.

Conclusions

Our findings show that serum IL-6 and PCT levels at moment of suspected late onset neonatal sepsis offer valuable information about sepsis severity and mortality risk in infants born below 32 weeks of gestation. The discriminative value was superior to that of CRP. Determining these biomarkers in suspected sepsis may help identify patients with imminent severe sepsis, who may require more intensive monitoring and therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ganatra HA, Stoll BJ, Zaidi AK. International perspective on early-onset neonatal sepsis. Clin Perinatol. 2010;37(2):501–23.PubMedCrossRef Ganatra HA, Stoll BJ, Zaidi AK. International perspective on early-onset neonatal sepsis. Clin Perinatol. 2010;37(2):501–23.PubMedCrossRef
2.
go back to reference Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics. 2002;110(2):285–91.PubMedCrossRef Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics. 2002;110(2):285–91.PubMedCrossRef
3.
go back to reference Lawn JE, Wilczynska-Ketende K, Cousens SN. Estimating the causes of 4 million neonatal deaths in the year 2000. Int J Epidemiol. 2006;35(3):706–18.PubMedCrossRef Lawn JE, Wilczynska-Ketende K, Cousens SN. Estimating the causes of 4 million neonatal deaths in the year 2000. Int J Epidemiol. 2006;35(3):706–18.PubMedCrossRef
4.
go back to reference Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, Vohr B, et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA. 2004;292(19):2357–65.PubMedCrossRef Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, Vohr B, et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA. 2004;292(19):2357–65.PubMedCrossRef
5.
go back to reference Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395(10219):200–11.PubMedPubMedCentralCrossRef Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395(10219):200–11.PubMedPubMedCentralCrossRef
6.
go back to reference Hornik CP, Fort P, Clark RH, Watt K, Benjamin DK, Smith PB, et al. Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units. Early Human Dev. 2012;88:S69–74.CrossRef Hornik CP, Fort P, Clark RH, Watt K, Benjamin DK, Smith PB, et al. Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units. Early Human Dev. 2012;88:S69–74.CrossRef
7.
go back to reference Ng PC. Diagnostic markers of infection in neonates. Arch Dis Childh Fetal Neonatal Ed. 2004;89(3):F229–35.CrossRef Ng PC. Diagnostic markers of infection in neonates. Arch Dis Childh Fetal Neonatal Ed. 2004;89(3):F229–35.CrossRef
8.
go back to reference Ng PC, Cheng SH, Chui KM, Fok TF, Wong MY, Wong W, et al. Diagnosis of late onset neonatal sepsis with cytokines, adhesion molecule, and C-reactive protein in preterm very low birthweight infants. Arch Dis Childh Fetal Neonatal Ed. 1997;77(3):F221–7.CrossRef Ng PC, Cheng SH, Chui KM, Fok TF, Wong MY, Wong W, et al. Diagnosis of late onset neonatal sepsis with cytokines, adhesion molecule, and C-reactive protein in preterm very low birthweight infants. Arch Dis Childh Fetal Neonatal Ed. 1997;77(3):F221–7.CrossRef
9.
go back to reference Meem M, Modak JK, Mortuza R, Morshed M, Islam MS, Saha SK. Biomarkers for diagnosis of neonatal infections: a systematic analysis of their potential as a point-of-care diagnostics. J Global Health. 2011;1(2):201–9. Meem M, Modak JK, Mortuza R, Morshed M, Islam MS, Saha SK. Biomarkers for diagnosis of neonatal infections: a systematic analysis of their potential as a point-of-care diagnostics. J Global Health. 2011;1(2):201–9.
10.
go back to reference Hofer N, Zacharias E, Müller W, Resch B. An update on the use of C-reactive protein in early-onset neonatal sepsis: current insights and new tasks. Neonatology. 2012;102(1):25–36.PubMedCrossRef Hofer N, Zacharias E, Müller W, Resch B. An update on the use of C-reactive protein in early-onset neonatal sepsis: current insights and new tasks. Neonatology. 2012;102(1):25–36.PubMedCrossRef
11.
go back to reference Brown JVE, Meader N, Wright K, Cleminson J, McGuire W. Assessment of C-reactive protein diagnostic test accuracy for late-onset infection in newborn infants: a systematic review and meta-analysis. JAMA Pediatrics. 2020;174(3):260–8.PubMedCrossRefPubMedCentral Brown JVE, Meader N, Wright K, Cleminson J, McGuire W. Assessment of C-reactive protein diagnostic test accuracy for late-onset infection in newborn infants: a systematic review and meta-analysis. JAMA Pediatrics. 2020;174(3):260–8.PubMedCrossRefPubMedCentral
13.
go back to reference Stocker M, Hop WCJ, van Rossum AMC. Neonatal procalcitonin intervention study (NeoPInS): effect of Procalcitonin-guided decision making on duration of antibiotic therapy in suspected neonatal early-onset sepsis—a multi-centre randomized superiority and non-inferiority Intervention Study. BMC Pediatrics. 2010;10(1):89.PubMedPubMedCentralCrossRef Stocker M, Hop WCJ, van Rossum AMC. Neonatal procalcitonin intervention study (NeoPInS): effect of Procalcitonin-guided decision making on duration of antibiotic therapy in suspected neonatal early-onset sepsis—a multi-centre randomized superiority and non-inferiority Intervention Study. BMC Pediatrics. 2010;10(1):89.PubMedPubMedCentralCrossRef
14.
go back to reference Wynn JL, Polin RA. A neonatal sequential organ failure assessment score predicts mortality to late-onset sepsis in preterm very low birth weight infants. Pediatric Res. 2019;88:85.CrossRef Wynn JL, Polin RA. A neonatal sequential organ failure assessment score predicts mortality to late-onset sepsis in preterm very low birth weight infants. Pediatric Res. 2019;88:85.CrossRef
15.
go back to reference Ng PC, Li K, Leung TF, Wong RPO, Li G, Chui KM, et al. Early prediction of sepsis-induced disseminated intravascular coagulation with interleukin-10, interleukin-6, and RANTES in preterm infants. Clin Chem. 2006;52(6):1181–9.PubMedCrossRef Ng PC, Li K, Leung TF, Wong RPO, Li G, Chui KM, et al. Early prediction of sepsis-induced disseminated intravascular coagulation with interleukin-10, interleukin-6, and RANTES in preterm infants. Clin Chem. 2006;52(6):1181–9.PubMedCrossRef
16.
go back to reference Ng PC, Li K, Wong RPO, Chui K, Wong E, Li G, et al. Proinflammatory and anti-inflammatory cytokine responses in preterm infants with systemic infections. Arch Dis Childh Fetal Neonatal Ed. 2003;88(3):F209–13.CrossRef Ng PC, Li K, Wong RPO, Chui K, Wong E, Li G, et al. Proinflammatory and anti-inflammatory cytokine responses in preterm infants with systemic infections. Arch Dis Childh Fetal Neonatal Ed. 2003;88(3):F209–13.CrossRef
17.
go back to reference Boghossian NS, Page GP, Bell EF, Stoll BJ, Murray JC, Cotten CM, et al. Late-onset sepsis in very low birth weight infants from singleton and multiple-gestation births. J Pediatrics. 2013;162(6):1120–4.CrossRef Boghossian NS, Page GP, Bell EF, Stoll BJ, Murray JC, Cotten CM, et al. Late-onset sepsis in very low birth weight infants from singleton and multiple-gestation births. J Pediatrics. 2013;162(6):1120–4.CrossRef
18.
go back to reference Moorman JR, Carlo WA, Kattwinkel J, Schelonka RL, Porcelli PJ, Navarrete CT, et al. Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial. J Pediatrics. 2011;159(6):900–6.CrossRef Moorman JR, Carlo WA, Kattwinkel J, Schelonka RL, Porcelli PJ, Navarrete CT, et al. Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial. J Pediatrics. 2011;159(6):900–6.CrossRef
20.
go back to reference Schüller SS, Kempf K, Unterasinger L, Strunk T, Berger A. Intravenous pentoxifylline is well tolerated in critically ill preterm infants with sepsis or necrotizing enterocolitis. Eur J Pediatrics. 2020;2020:1–6. Schüller SS, Kempf K, Unterasinger L, Strunk T, Berger A. Intravenous pentoxifylline is well tolerated in critically ill preterm infants with sepsis or necrotizing enterocolitis. Eur J Pediatrics. 2020;2020:1–6.
21.
go back to reference Ismail AQT, Gandhi A. Using CRP in neonatal practice. J Maternal Fetal Neonatal Med. 2015;28(1):3–6.CrossRef Ismail AQT, Gandhi A. Using CRP in neonatal practice. J Maternal Fetal Neonatal Med. 2015;28(1):3–6.CrossRef
22.
go back to reference Hedegaard SS, Wisborg K, Hvas A-M. Diagnostic utility of biomarkers for neonatal sepsis: a systematic review. Inf Dis. 2015;47(3):117–24.CrossRef Hedegaard SS, Wisborg K, Hvas A-M. Diagnostic utility of biomarkers for neonatal sepsis: a systematic review. Inf Dis. 2015;47(3):117–24.CrossRef
23.
go back to reference Benitz WE, Han MY, Madan A, Ramachandra P. Serial serum C-reactive protein levels in the diagnosis of neonatal infection. Pediatrics. 1998;102(4):e41-e.CrossRef Benitz WE, Han MY, Madan A, Ramachandra P. Serial serum C-reactive protein levels in the diagnosis of neonatal infection. Pediatrics. 1998;102(4):e41-e.CrossRef
24.
go back to reference Romagnoli C, Frezza S, Cingolani A, De Luca A, Puopolo M, De Carolis MP, et al. Plasma levels of interleukin-6 and interleukin-10 in preterm neonates evaluated for sepsis. Eur J Pediatr. 2001;160(6):345–50.PubMedCrossRef Romagnoli C, Frezza S, Cingolani A, De Luca A, Puopolo M, De Carolis MP, et al. Plasma levels of interleukin-6 and interleukin-10 in preterm neonates evaluated for sepsis. Eur J Pediatr. 2001;160(6):345–50.PubMedCrossRef
25.
go back to reference Boskabadi H, Maamouri G, Tavakol Afshari J, Mafinejad S, Hosseini G, Mostafavi-Toroghi H, et al. Evaluation of serum interleukins-6, 8 and 10 levels as diagnostic markers of neonatal infection and possibility of mortality. Iran J Basic Med Sci. 2013;16(12):1232–7.PubMedPubMedCentral Boskabadi H, Maamouri G, Tavakol Afshari J, Mafinejad S, Hosseini G, Mostafavi-Toroghi H, et al. Evaluation of serum interleukins-6, 8 and 10 levels as diagnostic markers of neonatal infection and possibility of mortality. Iran J Basic Med Sci. 2013;16(12):1232–7.PubMedPubMedCentral
26.
go back to reference Patel RT, Deen KI, Youngs D, Warwick J, Keighley MRB. Interleukin 6 is a prognostic indicator of outcome in severe intra-abdominal sepsis. Bjs. 1994;81(9):1306–8.CrossRef Patel RT, Deen KI, Youngs D, Warwick J, Keighley MRB. Interleukin 6 is a prognostic indicator of outcome in severe intra-abdominal sepsis. Bjs. 1994;81(9):1306–8.CrossRef
27.
go back to reference Damas P, Ledoux D, Nys M, Vrindts Y, De Groote D, Franchimont P, et al. Cytokine serum level during severe sepsis in human IL-6 as a marker of severity. Ann Surg. 1992;215(4):356–62.PubMedPubMedCentralCrossRef Damas P, Ledoux D, Nys M, Vrindts Y, De Groote D, Franchimont P, et al. Cytokine serum level during severe sepsis in human IL-6 as a marker of severity. Ann Surg. 1992;215(4):356–62.PubMedPubMedCentralCrossRef
28.
go back to reference Sullivan JS, Kilpatrick L, Costarino AT, Lee SC, Harris MC. Correlation of plasma cytokine elevations with mortality rate in children with sepsis. J Pediatrics. 1992;120(4, Part 1):510–5.CrossRef Sullivan JS, Kilpatrick L, Costarino AT, Lee SC, Harris MC. Correlation of plasma cytokine elevations with mortality rate in children with sepsis. J Pediatrics. 1992;120(4, Part 1):510–5.CrossRef
29.
go back to reference Vouloumanou EK, Plessa E, Karageorgopoulos DE, Mantadakis E, Falagas ME. Serum procalcitonin as a diagnostic marker for neonatal sepsis: a systematic review and meta-analysis. Intensive Care Med. 2011;37(5):747–62.PubMedCrossRef Vouloumanou EK, Plessa E, Karageorgopoulos DE, Mantadakis E, Falagas ME. Serum procalcitonin as a diagnostic marker for neonatal sepsis: a systematic review and meta-analysis. Intensive Care Med. 2011;37(5):747–62.PubMedCrossRef
30.
go back to reference van Rossum AMC, Wulkan RW, Oudesluys-Murphy AM. Procalcitonin as an early marker of infection in neonates and children. Lancet Infect Dis. 2004;4(10):620–30.PubMedCrossRef van Rossum AMC, Wulkan RW, Oudesluys-Murphy AM. Procalcitonin as an early marker of infection in neonates and children. Lancet Infect Dis. 2004;4(10):620–30.PubMedCrossRef
31.
go back to reference Hahn WH, Song JH, Park IS, Kim H, Park S, Oh MH. Reference intervals of serum procalcitonin are affected by postnatal age in very low birth weight infants during the first 60 days after birth. Neonatology. 2015;108(1):60–4.PubMedCrossRef Hahn WH, Song JH, Park IS, Kim H, Park S, Oh MH. Reference intervals of serum procalcitonin are affected by postnatal age in very low birth weight infants during the first 60 days after birth. Neonatology. 2015;108(1):60–4.PubMedCrossRef
32.
go back to reference Griffin MP, Moorman JR. Toward the early diagnosis of neonatal sepsis and sepsis-like illness using novel heart rate analysis. Pediatrics. 2001;107(1):97–104.PubMedCrossRef Griffin MP, Moorman JR. Toward the early diagnosis of neonatal sepsis and sepsis-like illness using novel heart rate analysis. Pediatrics. 2001;107(1):97–104.PubMedCrossRef
Metadata
Title
Association of inflammatory biomarkers with subsequent clinical course in suspected late onset sepsis in preterm neonates
Authors
Şerife Kurul
Sinno H. P. Simons
Christian R. B. Ramakers
Yolanda B. De Rijke
René F. Kornelisse
Irwin K. M. Reiss
H. Rob Taal
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2021
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03423-2

Other articles of this Issue 1/2021

Critical Care 1/2021 Go to the issue