Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2017

Open Access 01-12-2017 | Research

Separability of motor imagery of the self from interpretation of motor intentions of others at the single trial level: an EEG study

Authors: João Andrade, José Cecílio, Marco Simões, Francisco Sales, Miguel Castelo-Branco

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2017

Login to get access

Abstract

Background

We aimed to investigate the separability of the neural correlates of 2 types of motor imagery, self and third person (actions owned by the participant himself vs. another individual). If possible this would allow for the development of BCI interfaces to train disorders of action and intention understanding beyond simple imitation, such as autism.

Methods

We used EEG recordings from 20 healthy participants, as well as electrocorticography (ECoG) in one, based on a virtual reality setup. To test feasibility of discrimination between each type of imagery at the single trial level, time-frequency and source analysis were performed and further assessed by data-driven statistical classification using Support Vector Machines.

Results

The main observed differences between self-other imagery conditions in topographic maps were found in Frontal and Parieto-Occipital regions, in agreement with the presence of 2 independent non μ related contributions in the low alpha frequency range. ECOG corroborated such separability. Source analysis also showed differences near the temporo-parietal junction and single-trial average classification accuracy between both types of motor imagery was 67 ± 1%, and raised above 70% when 3 trials were used. The single-trial classification accuracy was significantly above chance level for all the participants of this study (p < 0.02).

Conclusions

The observed pattern of results show that Self and Third Person MI use distinct electrophysiological mechanisms detectable at the scalp (and ECOG) at the single trial level, with separable levels of involvement of the mirror neuron system in different regions.
These observations provide a promising step to develop new BCI training/rehabilitation paradigms for patients with neurodevelopmental disorders of action understanding beyond simple imitation, such as autism, who would benefit from training and anticipation of the perceived intention of others as opposed to own intentions in social contexts.
Literature
1.
go back to reference Decety J, Perani D, Jeannerod M, Bettinardi V, Tadary B, Woods R, et al. Mapping motor representations with positron emission tomography. Nature. 1994;371:600–2.CrossRefPubMed Decety J, Perani D, Jeannerod M, Bettinardi V, Tadary B, Woods R, et al. Mapping motor representations with positron emission tomography. Nature. 1994;371:600–2.CrossRefPubMed
3.
go back to reference Guillot A, Collet C, Nguyen VA, Malouin F, Richards C, Doyon J. Functional neuroanatomical networks associated with expertise in motor imagery. NeuroImage. 2008;41:1471–83.CrossRefPubMed Guillot A, Collet C, Nguyen VA, Malouin F, Richards C, Doyon J. Functional neuroanatomical networks associated with expertise in motor imagery. NeuroImage. 2008;41:1471–83.CrossRefPubMed
4.
go back to reference Hwang HJ, Kwon K, Im CH. Neurofeedback-based motor imagery training for brain-computer interface (BCI). J Neurosci Methods. 2009;179:150–6.CrossRefPubMed Hwang HJ, Kwon K, Im CH. Neurofeedback-based motor imagery training for brain-computer interface (BCI). J Neurosci Methods. 2009;179:150–6.CrossRefPubMed
5.
go back to reference Solodkin A, Hlustik P, Chen EE, Small SL. Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex. 2004;14:1246–55.CrossRefPubMed Solodkin A, Hlustik P, Chen EE, Small SL. Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex. 2004;14:1246–55.CrossRefPubMed
6.
go back to reference Porro CA, Cettolo V, Francescato MP, Baraldi P. Ipsilateral involvement of primary motor cortex during motor imagery. Eur J Neurosci. 2000;12:3059–63.CrossRefPubMed Porro CA, Cettolo V, Francescato MP, Baraldi P. Ipsilateral involvement of primary motor cortex during motor imagery. Eur J Neurosci. 2000;12:3059–63.CrossRefPubMed
7.
go back to reference Yi W, Qiu S, Wang K, Qi H, He F, Zhou P, et al. EEG oscillatory patterns and classification of sequential compound limb motor imagery. J. Neuroeng. Rehabil. 2016;13:1–12.CrossRef Yi W, Qiu S, Wang K, Qi H, He F, Zhou P, et al. EEG oscillatory patterns and classification of sequential compound limb motor imagery. J. Neuroeng. Rehabil. 2016;13:1–12.CrossRef
8.
go back to reference Yi W, Qiu S, Wang K, Qi H, Zhang L, Zhou P, et al. Evaluation of EEG oscillatory patterns and cognitive process during simple and compound limb motor imagery. PLoS One. 2014;9:1–12. Yi W, Qiu S, Wang K, Qi H, Zhang L, Zhou P, et al. Evaluation of EEG oscillatory patterns and cognitive process during simple and compound limb motor imagery. PLoS One. 2014;9:1–12.
9.
go back to reference Olsson CJ, Jonsson B, Nyberg L. Internal imagery training in active high jumpers: cognition and neurosciences. Scand J Psychol. 2008;49:133–40.CrossRefPubMed Olsson CJ, Jonsson B, Nyberg L. Internal imagery training in active high jumpers: cognition and neurosciences. Scand J Psychol. 2008;49:133–40.CrossRefPubMed
10.
go back to reference Ahn M, Lee M, Choi J, Jun SC. A review of brain-computer Interface games and an opinion survey from researchers, developers and users. Sensors (Basel). 2014;14:14601–33.CrossRef Ahn M, Lee M, Choi J, Jun SC. A review of brain-computer Interface games and an opinion survey from researchers, developers and users. Sensors (Basel). 2014;14:14601–33.CrossRef
11.
go back to reference Young BM, Nigogosyan Z, Nair VA, Walton LM, Song J, Tyler ME, et al. Case report: post-stroke interventional BCI rehabilitation in an individual with preexisting sensorineural disability. Front. Neuroeng. 2014;7:18.PubMedPubMedCentral Young BM, Nigogosyan Z, Nair VA, Walton LM, Song J, Tyler ME, et al. Case report: post-stroke interventional BCI rehabilitation in an individual with preexisting sensorineural disability. Front. Neuroeng. 2014;7:18.PubMedPubMedCentral
12.
go back to reference Zimmermann-Schlatter A, Schuster C, Puhan M. A., Siekierka E, Steurer J. Efficacy of motor imagery in post-stroke rehabilitation: a systematic review. J Neuroeng Rehabil. 2008;5:8.CrossRefPubMedPubMedCentral Zimmermann-Schlatter A, Schuster C, Puhan M. A., Siekierka E, Steurer J. Efficacy of motor imagery in post-stroke rehabilitation: a systematic review. J Neuroeng Rehabil. 2008;5:8.CrossRefPubMedPubMedCentral
13.
14.
go back to reference Iacoboni M, Dapretto M. The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci. 2006;7:942–51.CrossRefPubMed Iacoboni M, Dapretto M. The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci. 2006;7:942–51.CrossRefPubMed
15.
go back to reference Hari R, Bourguignon M, Piitulainen H, Smeds E, De Tiège X, Jousmäki V. Human primary motor cortex is both activated and stabilized during observation of other person’s phasic motor actions. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369:20130171.CrossRef Hari R, Bourguignon M, Piitulainen H, Smeds E, De Tiège X, Jousmäki V. Human primary motor cortex is both activated and stabilized during observation of other person’s phasic motor actions. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369:20130171.CrossRef
16.
go back to reference Iacoboni M. Cortical mechanisms of human imitation. Science (80- ). 1999;286:2526–8. Iacoboni M. Cortical mechanisms of human imitation. Science (80- ). 1999;286:2526–8.
17.
go back to reference Hadjikhani N. Mirror neuron system and autism. In: Paul C Carlisle, editors. Progress in Autism Research. Nova Science Publishers; 2007. p. 151–66. Hadjikhani N. Mirror neuron system and autism. In: Paul C Carlisle, editors. Progress in Autism Research. Nova Science Publishers; 2007. p. 151–66.
18.
go back to reference Libero LE, Maximo JO, Deshpande HD, Klinger LG, Klinger MR, Kana RK. The role of mirroring and mentalizing networks in mediating action intentions in autism. Mol Autism. 2014;5:50.CrossRefPubMedPubMedCentral Libero LE, Maximo JO, Deshpande HD, Klinger LG, Klinger MR, Kana RK. The role of mirroring and mentalizing networks in mediating action intentions in autism. Mol Autism. 2014;5:50.CrossRefPubMedPubMedCentral
19.
go back to reference Bakeman R, Adamson LB. Coordinating attention to people and objects in mother-infant and peer-infant interaction. Child Dev. 1984;55:1278–89.CrossRefPubMed Bakeman R, Adamson LB. Coordinating attention to people and objects in mother-infant and peer-infant interaction. Child Dev. 1984;55:1278–89.CrossRefPubMed
20.
go back to reference Baron-Cohen S. Perceptual role taking and protodeclarative pointing in autism. Br J Dev Psychol. 1989;7:113–27. Baron-Cohen S. Perceptual role taking and protodeclarative pointing in autism. Br J Dev Psychol. 1989;7:113–27.
21.
go back to reference Baron-Cohen S, Baldwin DA, Crowson M. Do children with autism use the Speaker’s direction of gaze strategy to crack the code of language? Child Dev. 1997;68:48–58.CrossRefPubMed Baron-Cohen S, Baldwin DA, Crowson M. Do children with autism use the Speaker’s direction of gaze strategy to crack the code of language? Child Dev. 1997;68:48–58.CrossRefPubMed
22.
go back to reference Filimon F, Nelson JD, Hagler DJ, Sereno MI. Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. NeuroImage. 2007;37:1315–28.CrossRefPubMedPubMedCentral Filimon F, Nelson JD, Hagler DJ, Sereno MI. Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. NeuroImage. 2007;37:1315–28.CrossRefPubMedPubMedCentral
23.
go back to reference Taube W, Mouthon M, Leukel C, Hoogewoud H-M, Annoni J-M, Keller M. Brain activity during observation and motor imagery of different balance tasks: an fMRI study. Cortex. 2015;64:102–14.CrossRefPubMed Taube W, Mouthon M, Leukel C, Hoogewoud H-M, Annoni J-M, Keller M. Brain activity during observation and motor imagery of different balance tasks: an fMRI study. Cortex. 2015;64:102–14.CrossRefPubMed
24.
go back to reference Neuper C, Scherer R, Reiner M, Pfurtscheller G. Imagery of motor actions: Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Cogn Brain Res. 2005;25:668–77.CrossRef Neuper C, Scherer R, Reiner M, Pfurtscheller G. Imagery of motor actions: Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Cogn Brain Res. 2005;25:668–77.CrossRef
25.
go back to reference Guillot A, Collet C. Nguyen V a., Malouin F, Richards C, Doyon J. Brain activity during visual versus kinesthetic imagery: an fMRI study. Hum Brain Mapp. 2009;30:2157–72.CrossRefPubMed Guillot A, Collet C. Nguyen V a., Malouin F, Richards C, Doyon J. Brain activity during visual versus kinesthetic imagery: an fMRI study. Hum Brain Mapp. 2009;30:2157–72.CrossRefPubMed
26.
go back to reference Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. J Neurosci Methods. 2004;134 Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. J Neurosci Methods. 2004;134
27.
go back to reference Hu L, Xiao P, Zhang ZG, Mouraux A, Iannetti GD. Single-trial time-frequency analysis of electrocortical signals: baseline correction and beyond. NeuroImage. 2014;84:876–87.CrossRefPubMed Hu L, Xiao P, Zhang ZG, Mouraux A, Iannetti GD. Single-trial time-frequency analysis of electrocortical signals: baseline correction and beyond. NeuroImage. 2014;84:876–87.CrossRefPubMed
28.
go back to reference Keren AS, Yuval-Greenberg S, Deouell LY. Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression. NeuroImage. 2010;49:2248–63.CrossRefPubMed Keren AS, Yuval-Greenberg S, Deouell LY. Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression. NeuroImage. 2010;49:2248–63.CrossRefPubMed
29.
go back to reference Nair AK, Sasidharan A, John JP, Mehrotra S. Assessing Neurocognition via Gamified Experimental Logic : A Novel Approach to Simultaneous Acquisition of Multiple ERPs. Frontiers in Neuroscience. 2016;10:1–14. Nair AK, Sasidharan A, John JP, Mehrotra S. Assessing Neurocognition via Gamified Experimental Logic : A Novel Approach to Simultaneous Acquisition of Multiple ERPs. Frontiers in Neuroscience. 2016;10:1–14.
30.
go back to reference Pfurtscheller G, Lopes Da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110:1842–57. Pfurtscheller G, Lopes Da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110:1842–57.
31.
go back to reference H Il S, Lee SW. Subject and class specific frequency bands selection for multiclass motor imagery classification. Int J Imaging Syst Technol. 2011;21:123–30.CrossRef H Il S, Lee SW. Subject and class specific frequency bands selection for multiclass motor imagery classification. Int J Imaging Syst Technol. 2011;21:123–30.CrossRef
32.
go back to reference Blankertz B, Tomioka R, Lemm S, Kawanabe M. M??Ller KR. Optimizing spatial filters for robust EEG single-trial analysis. IEEE signal process. Mag. 2008;25:41–56. Blankertz B, Tomioka R, Lemm S, Kawanabe M. M??Ller KR. Optimizing spatial filters for robust EEG single-trial analysis. IEEE signal process. Mag. 2008;25:41–56.
33.
go back to reference Good P. Permutation tests: a practical guide to resampling methods for testing hypotheses. 2nd ed. Springer New York, editor. 2000. Good P. Permutation tests: a practical guide to resampling methods for testing hypotheses. 2nd ed. Springer New York, editor. 2000.
34.
go back to reference Nichols TE, Holmes AP. Nonparametric permutation tests for functional Neuroimaging experiments: a primer with examples. Hum Brain Mapp. 2001;15:1–25.CrossRef Nichols TE, Holmes AP. Nonparametric permutation tests for functional Neuroimaging experiments: a primer with examples. Hum Brain Mapp. 2001;15:1–25.CrossRef
35.
go back to reference Combrisson E, Jerbi K. Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. J. Neurosci. Methods. 2015;250;1–11. Combrisson E, Jerbi K. Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. J. Neurosci. Methods. 2015;250;1–11.
36.
go back to reference Hollander M, A. Wolfe D, Chicken E. Nonparametric Statistical Methods. 3rd edition. Hoboken: Wiley; 2015. Hollander M, A. Wolfe D, Chicken E. Nonparametric Statistical Methods. 3rd edition. Hoboken: Wiley; 2015.
37.
go back to reference Gibbons JD, Chakraborti S. Nonparametric Statistical Inference. Technometrics. 2003;15;421. Gibbons JD, Chakraborti S. Nonparametric Statistical Inference. Technometrics. 2003;15;421.
38.
go back to reference Mooney CZ, Duval RD. Bootstrapping. A nonparametric approach to statistical inference. London: Sage Publications; 1993. Mooney CZ, Duval RD. Bootstrapping. A nonparametric approach to statistical inference. London: Sage Publications; 1993.
39.
go back to reference Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol. 2002;24(Suppl D):5–12.PubMed Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol. 2002;24(Suppl D):5–12.PubMed
40.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289–300.
41.
go back to reference Schnitzler A, Schnitzler A, Salenius S, Salenius S, Salmelin R, Salmelin R, et al. Involvement of primary motor cortex in motor imagery: a neuromagnetic study. NeuroImage. 1997;6:201–8.CrossRefPubMed Schnitzler A, Schnitzler A, Salenius S, Salenius S, Salmelin R, Salmelin R, et al. Involvement of primary motor cortex in motor imagery: a neuromagnetic study. NeuroImage. 1997;6:201–8.CrossRefPubMed
42.
go back to reference Brust JCM. The Human Frontal Lobes: Functions and Disorders. Neurologist. 2007;13: 389–90. Brust JCM. The Human Frontal Lobes: Functions and Disorders. Neurologist. 2007;13: 389–90.
43.
go back to reference Charron S, Koechlin E. Divided representation of concurrent goals in the human frontal lobes. Science. 2010;328:360–3.CrossRefPubMed Charron S, Koechlin E. Divided representation of concurrent goals in the human frontal lobes. Science. 2010;328:360–3.CrossRefPubMed
44.
go back to reference Matelli M, Luppino G. Parietofrontal circuits for action and space perception in the macaque monkey. NeuroImage. 2001;14:S27–32.CrossRefPubMed Matelli M, Luppino G. Parietofrontal circuits for action and space perception in the macaque monkey. NeuroImage. 2001;14:S27–32.CrossRefPubMed
45.
46.
go back to reference Evangeliou MN, Raos V, Galletti C, Savaki HE. Functional imaging of the parietal cortex during action execution and observation. Cereb Cortex. 2009;19:624–39.CrossRefPubMed Evangeliou MN, Raos V, Galletti C, Savaki HE. Functional imaging of the parietal cortex during action execution and observation. Cereb Cortex. 2009;19:624–39.CrossRefPubMed
47.
go back to reference Culham JC, Cavina-Pratesi C, Singhal A. The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? Neuropsychologia. 2006;44:2668–84.CrossRefPubMed Culham JC, Cavina-Pratesi C, Singhal A. The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? Neuropsychologia. 2006;44:2668–84.CrossRefPubMed
48.
go back to reference Slotnick SD, Schacter DL. A sensory signature that distinguishes true from false memories. Nat Neurosci. 2004;7:664–72.CrossRefPubMed Slotnick SD, Schacter DL. A sensory signature that distinguishes true from false memories. Nat Neurosci. 2004;7:664–72.CrossRefPubMed
49.
go back to reference Slotnick SD, Schacter DL. The nature of memory related activity in early visual areas. Neuropsychologia. 2006;44:2874–86.CrossRefPubMed Slotnick SD, Schacter DL. The nature of memory related activity in early visual areas. Neuropsychologia. 2006;44:2874–86.CrossRefPubMed
50.
go back to reference Knauff M, Mulack T, Kassubek J, Salih HR, Greenlee MW. Spatial imagery in deductive reasoning: a functional MRI study. Cogn Brain Res. 2002;13:203–12.CrossRef Knauff M, Mulack T, Kassubek J, Salih HR, Greenlee MW. Spatial imagery in deductive reasoning: a functional MRI study. Cogn Brain Res. 2002;13:203–12.CrossRef
51.
go back to reference Malouin F, Richards CL, Jackson PL, Dumas F, Doyon J. Brain activations during motor imagery of locomotor-related tasks: a PET study. Hum Brain Mapp. 2003;19:47–62.CrossRefPubMed Malouin F, Richards CL, Jackson PL, Dumas F, Doyon J. Brain activations during motor imagery of locomotor-related tasks: a PET study. Hum Brain Mapp. 2003;19:47–62.CrossRefPubMed
52.
go back to reference Inoue K, Kawashima R, Satoh K, Kinomura S, Sugiura M, Goto R, et al. A PET study of visuomotor learning under optical rotation. NeuroImage. 2000;11:505–16.CrossRefPubMed Inoue K, Kawashima R, Satoh K, Kinomura S, Sugiura M, Goto R, et al. A PET study of visuomotor learning under optical rotation. NeuroImage. 2000;11:505–16.CrossRefPubMed
53.
go back to reference Buccino G, Vogt S, Ritzl A, Fink GR, Zilles K, Freund H, et al. Neural circuits underlying imitation learning of hand actions: an Event-related fMRI study. Neuron. 2004;42:323–34.CrossRefPubMed Buccino G, Vogt S, Ritzl A, Fink GR, Zilles K, Freund H, et al. Neural circuits underlying imitation learning of hand actions: an Event-related fMRI study. Neuron. 2004;42:323–34.CrossRefPubMed
54.
go back to reference Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Paulesu E, Perani D, et al. Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res. 1996;111:246–52.CrossRefPubMed Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Paulesu E, Perani D, et al. Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res. 1996;111:246–52.CrossRefPubMed
55.
go back to reference Lotze M, Heymans U, Birbaumer N, Veit R, Erb M, Flor H, et al. Differential cerebral activation during observation of expressive gestures and motor acts. Neuropsychologia. 2006;44:1787–95.CrossRefPubMed Lotze M, Heymans U, Birbaumer N, Veit R, Erb M, Flor H, et al. Differential cerebral activation during observation of expressive gestures and motor acts. Neuropsychologia. 2006;44:1787–95.CrossRefPubMed
56.
go back to reference Brunet E, Sarfati Y, Hardy-Baylé MC, Decety J. A PET investigation of the attribution of intentions with a nonverbal task. NeuroImage. 2000;11:157–66.CrossRefPubMed Brunet E, Sarfati Y, Hardy-Baylé MC, Decety J. A PET investigation of the attribution of intentions with a nonverbal task. NeuroImage. 2000;11:157–66.CrossRefPubMed
57.
go back to reference Lawrence EJ, Shaw P, Giampietro VP, Surguladze S, Brammer MJ, David AS. The role of “shared representations” in social perception and empathy: an fMRI study. NeuroImage. 2006;29:1173–84.CrossRefPubMed Lawrence EJ, Shaw P, Giampietro VP, Surguladze S, Brammer MJ, David AS. The role of “shared representations” in social perception and empathy: an fMRI study. NeuroImage. 2006;29:1173–84.CrossRefPubMed
58.
go back to reference Platek SM, Loughead JW, Gur RC, Busch S, Ruparel K, Phend N, et al. Neural substrates for functionally discriminating self-face from personally familiar faces. Hum Brain Mapp. 2006;27:91–8.CrossRefPubMed Platek SM, Loughead JW, Gur RC, Busch S, Ruparel K, Phend N, et al. Neural substrates for functionally discriminating self-face from personally familiar faces. Hum Brain Mapp. 2006;27:91–8.CrossRefPubMed
59.
go back to reference Gonzalez-Rosa JJ, Natali F, Tettamanti A, Cursi M, Velikova S, Comi G, et al. Action observation and motor imagery in performance of complex movements: evidence from EEG and kinematics analysis. Behav Brain Res. 2014;281C:290–300. Gonzalez-Rosa JJ, Natali F, Tettamanti A, Cursi M, Velikova S, Comi G, et al. Action observation and motor imagery in performance of complex movements: evidence from EEG and kinematics analysis. Behav Brain Res. 2014;281C:290–300.
60.
go back to reference Neuper C, Wörtz M, Pfurtscheller G. ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog Brain Res. 2006;159:211–22.CrossRefPubMed Neuper C, Wörtz M, Pfurtscheller G. ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog Brain Res. 2006;159:211–22.CrossRefPubMed
61.
62.
go back to reference Begliomini C, Wall MB, Smith AT, Castiello U. Differential cortical activity for precision and whole-hand visually guided grasping in humans. Eur J Neurosci. 2007;25:1245–52.CrossRefPubMed Begliomini C, Wall MB, Smith AT, Castiello U. Differential cortical activity for precision and whole-hand visually guided grasping in humans. Eur J Neurosci. 2007;25:1245–52.CrossRefPubMed
63.
64.
go back to reference Monfardini E, Brovelli A, Boussaoud D, Takerkart S, Wicker B. I learned from what you did: retrieving visuomotor associations learned by observation. NeuroImage. 2008;42:1207–13.CrossRefPubMed Monfardini E, Brovelli A, Boussaoud D, Takerkart S, Wicker B. I learned from what you did: retrieving visuomotor associations learned by observation. NeuroImage. 2008;42:1207–13.CrossRefPubMed
65.
go back to reference Shmuelof L, Zohary E. A mirror representation of others’ actions in the human anterior parietal cortex. J Neurosci. 2006;26:9736–42.CrossRefPubMed Shmuelof L, Zohary E. A mirror representation of others’ actions in the human anterior parietal cortex. J Neurosci. 2006;26:9736–42.CrossRefPubMed
66.
go back to reference Van Der Werf J, Jensen O, Fries P, Medendorp WP. Neuronal synchronization in human posterior parietal cortex during reach planning. J Neurosci. 2010;30:1402–12.CrossRef Van Der Werf J, Jensen O, Fries P, Medendorp WP. Neuronal synchronization in human posterior parietal cortex during reach planning. J Neurosci. 2010;30:1402–12.CrossRef
67.
go back to reference Bien N, Roebroeck A, Goebel R, Sack AT. The Brain’s intention to imitate: the neurobiology of intentional versus automatic imitation. Cereb Cortex. 2009;19:2338–51.CrossRefPubMed Bien N, Roebroeck A, Goebel R, Sack AT. The Brain’s intention to imitate: the neurobiology of intentional versus automatic imitation. Cereb Cortex. 2009;19:2338–51.CrossRefPubMed
68.
go back to reference Benedek M, Bergner S, Könen T, Fink A, Neubauer AC. EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia. 2011;49:3505–11.CrossRefPubMedPubMedCentral Benedek M, Bergner S, Könen T, Fink A, Neubauer AC. EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia. 2011;49:3505–11.CrossRefPubMedPubMedCentral
69.
go back to reference Karch S, Loy F, Krause D, Schwarz S, Kiesewetter J, Segmiller F, et al. Increased Event-related potentials and alpha-, Beta-, and gamma-activity associated with intentional actions. Front Psychol. 2016;7:1–14.CrossRef Karch S, Loy F, Krause D, Schwarz S, Kiesewetter J, Segmiller F, et al. Increased Event-related potentials and alpha-, Beta-, and gamma-activity associated with intentional actions. Front Psychol. 2016;7:1–14.CrossRef
70.
go back to reference Sauseng P, Klimesch W, Doppelmayr M, Pecherstorfer T, Freunberger R, Hanslmayr S. EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Hum Brain Mapp. 2005;26:148–55.CrossRefPubMed Sauseng P, Klimesch W, Doppelmayr M, Pecherstorfer T, Freunberger R, Hanslmayr S. EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Hum Brain Mapp. 2005;26:148–55.CrossRefPubMed
71.
go back to reference Ebisch SJH, Mantini D, Northoff G, Salone A, De Berardis D, Ferri F, et al. Altered brain long-range functional interactions underlying the link between aberrant self-experience and self-other relationship in first-episode schizophrenia. Schizophr Bull. 2014;40:1072–82.CrossRefPubMed Ebisch SJH, Mantini D, Northoff G, Salone A, De Berardis D, Ferri F, et al. Altered brain long-range functional interactions underlying the link between aberrant self-experience and self-other relationship in first-episode schizophrenia. Schizophr Bull. 2014;40:1072–82.CrossRefPubMed
72.
go back to reference Nelson B, Fornito A, Harrison BJ, Yücel M, Sass LA, Yung AR, et al. A disturbed sense of self in the psychosis prodrome: linking phenomenology and neurobiology. Neurosci Biobehav Rev. 2009;33:807–17.CrossRefPubMed Nelson B, Fornito A, Harrison BJ, Yücel M, Sass LA, Yung AR, et al. A disturbed sense of self in the psychosis prodrome: linking phenomenology and neurobiology. Neurosci Biobehav Rev. 2009;33:807–17.CrossRefPubMed
73.
go back to reference Rozado D, Duenser A, Howell B. Improving the performance of an EEG-based motor imagery brain computer Interface using task evoked changes in pupil diameter; 2015. p. 1–21. Rozado D, Duenser A, Howell B. Improving the performance of an EEG-based motor imagery brain computer Interface using task evoked changes in pupil diameter; 2015. p. 1–21.
74.
go back to reference Friedrich EVC, Suttie N, Sivanathan A, Lim T, Louchart S, Pineda JA. Brain-computer interface game applications for combined neurofeedback and biofeedback treatment for children on the autism spectrum. Front Neuroeng. 2014;7:21.CrossRefPubMedPubMedCentral Friedrich EVC, Suttie N, Sivanathan A, Lim T, Louchart S, Pineda JA. Brain-computer interface game applications for combined neurofeedback and biofeedback treatment for children on the autism spectrum. Front Neuroeng. 2014;7:21.CrossRefPubMedPubMedCentral
Metadata
Title
Separability of motor imagery of the self from interpretation of motor intentions of others at the single trial level: an EEG study
Authors
João Andrade
José Cecílio
Marco Simões
Francisco Sales
Miguel Castelo-Branco
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2017
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-017-0276-4

Other articles of this Issue 1/2017

Journal of NeuroEngineering and Rehabilitation 1/2017 Go to the issue