Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2017

Open Access 01-12-2017 | Research

SoftHand at the CYBATHLON: a user’s experience

Authors: Sasha Blue Godfrey, Matteo Rossi, Cristina Piazza, Manuel Giuseppe Catalano, Matteo Bianchi, Giorgio Grioli, Kristin D. Zhao, Antonio Bicchi

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2017

Login to get access

Abstract

Background

Roughly one-quarter of upper limb prosthesis users reject their prosthesis. Reasons for rejection range from comfort, to cost, aesthetics, function, and more. This paper follows a single user from training with and testing of a novel upper-limb myoelectric prosthesis (the SoftHand Pro) for participation in the CYBATHLON rehearsal to training for and competing in the CYBATHLON 2016 with a figure-of-nine harness controlled powered prosthesis (SoftHand Pro-H) to explore the feasibility and usability of a flexible anthropomorphic prosthetic hand.

Methods

The CYBATHLON pilot took part in multiple in-lab training sessions with the SoftHand Pro and SoftHand Pro-H; these sessions focused on basic control and use of the prosthetic devices and direct training of the tasks in the CYBATHLON. He used these devices in competition in the Powered Arm Prosthesis Race in the CYBATHLON rehearsal and 2016 events.

Results

In training for the CYBATHLON rehearsal, the subject was able to quickly improve performance with the myoelectric SHP despite typically using a body-powered prosthetic hook. The subject improved further with additional training using the figure-of-nine harness-controlled SHPH in preparation for the CYBATHLON. The Pilot placed 3rd (out of 4) in the rehearsal. In the CYBATHLON, he placed 5th (out of 12) and was one of only two pilots who successfully completed all tasks in the competition, having the second-highest score overall.

Conclusions

Results with the SoftHand Pro and Pro-H suggest it to be a viable alternative to existing anthropomorphic hands and show that the unique flexibility of the hand is easily learned and exploited.
Literature
1.
go back to reference Behnke S. Robot competitions-ideal benchmarks for robotics research. In: Proc. of IROS-2006 Workshop on Benchmarks in Robotics Research. New Jersey: Institute of Electrical and Electronics Engineers (IEEE): 2006. Behnke S. Robot competitions-ideal benchmarks for robotics research. In: Proc. of IROS-2006 Workshop on Benchmarks in Robotics Research. New Jersey: Institute of Electrical and Electronics Engineers (IEEE): 2006.
2.
3.
go back to reference Jain AS, Robinson PH. Synopsis of causation: amputation of the upper limb. MOD compensation and occupational pension schemes: synopses of causation. 2008. Jain AS, Robinson PH. Synopsis of causation: amputation of the upper limb. MOD compensation and occupational pension schemes: synopses of causation. 2008.
5.
go back to reference Millstein S, Heger H, Hunter G. Prosthetic use in adult upper limb amputees: a comparison of the body powered and electrically powered prostheses. Prosthetics and orthotics international. 1986; 10(1):27–34.PubMed Millstein S, Heger H, Hunter G. Prosthetic use in adult upper limb amputees: a comparison of the body powered and electrically powered prostheses. Prosthetics and orthotics international. 1986; 10(1):27–34.PubMed
6.
go back to reference McFarland LV, Winkler SLH, Heinemann AW, Jones M, Esquenazi A. Unilateral upper-limb loss: satisfaction and prosthetic-device use in veterans and servicemembers from vietnam and oif/oef conflicts. J Rehabil Res Dev. 2010; 47(4):299.CrossRefPubMed McFarland LV, Winkler SLH, Heinemann AW, Jones M, Esquenazi A. Unilateral upper-limb loss: satisfaction and prosthetic-device use in veterans and servicemembers from vietnam and oif/oef conflicts. J Rehabil Res Dev. 2010; 47(4):299.CrossRefPubMed
7.
go back to reference Carey SL, Lura DJ, Highsmith MJ. Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review. J Rehabil Res Dev. 2015; 52(3):247–262.CrossRefPubMed Carey SL, Lura DJ, Highsmith MJ. Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review. J Rehabil Res Dev. 2015; 52(3):247–262.CrossRefPubMed
8.
go back to reference Huang ME, Levy CE, Webster JB. Acquired limb deficiencies. 3. prosthetic components, prescriptions, and indications. Arch Phys Med Rehabil. 2001; 82(3):17–24.CrossRef Huang ME, Levy CE, Webster JB. Acquired limb deficiencies. 3. prosthetic components, prescriptions, and indications. Arch Phys Med Rehabil. 2001; 82(3):17–24.CrossRef
9.
go back to reference Carey SL, Highsmith MJ, Maitland ME, Dubey RV. Compensatory movements of transradial prosthesis users during common tasks. Clin Biomech. 2008; 23(9):1128–35.CrossRef Carey SL, Highsmith MJ, Maitland ME, Dubey RV. Compensatory movements of transradial prosthesis users during common tasks. Clin Biomech. 2008; 23(9):1128–35.CrossRef
10.
go back to reference Highsmith MJ, Carey SL, Koelsch KW, Lusk CP, Maitland ME. Design and fabrication of a passive-function, cylindrical grasp terminal device. Prosthetics Orthot Int. 2009; 33(4):391–8.CrossRef Highsmith MJ, Carey SL, Koelsch KW, Lusk CP, Maitland ME. Design and fabrication of a passive-function, cylindrical grasp terminal device. Prosthetics Orthot Int. 2009; 33(4):391–8.CrossRef
11.
go back to reference Silcox DH, Rooks MD, Vogel RR, Fleming LL. Myoelectric prostheses. a long-term follow-up and a study of the use of alternate prostheses. J Bone Joint Surg Am. 1993; 75(12):1781–9.CrossRefPubMed Silcox DH, Rooks MD, Vogel RR, Fleming LL. Myoelectric prostheses. a long-term follow-up and a study of the use of alternate prostheses. J Bone Joint Surg Am. 1993; 75(12):1781–9.CrossRefPubMed
12.
go back to reference Kejlaa G. Consumer concerns and the functional value of prostheses to upper limb amputees. Prosthetics Orthot Int. 1993; 17(3):157–63. Kejlaa G. Consumer concerns and the functional value of prostheses to upper limb amputees. Prosthetics Orthot Int. 1993; 17(3):157–63.
13.
go back to reference Datta D, Selvarajah K, Davey N. Functional outcome of patients with proximal upper limb deficiency -acquired and congenital. Clin Rehabil. 2004; 18(2):172–7.CrossRefPubMed Datta D, Selvarajah K, Davey N. Functional outcome of patients with proximal upper limb deficiency -acquired and congenital. Clin Rehabil. 2004; 18(2):172–7.CrossRefPubMed
14.
go back to reference Biddiss EA, Chau TT. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthetics Orthot Int. 2007; 31(3):236–57.CrossRef Biddiss EA, Chau TT. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthetics Orthot Int. 2007; 31(3):236–57.CrossRef
15.
go back to reference Catalano MG, Grioli G, Farnioli E, Serio A, Piazza C, Bicchi A. Adaptive synergies for the design and control of the pisa/iit softhand. IJRR. 2014; 33(5):768–82. Catalano MG, Grioli G, Farnioli E, Serio A, Piazza C, Bicchi A. Adaptive synergies for the design and control of the pisa/iit softhand. IJRR. 2014; 33(5):768–82.
16.
go back to reference Godfrey SB, Bianchi M, Zhao K, Catalano M, Breighner R, Theuer A, Andrews K, Grioli G, Santello M, Bicchi A. The softhand pro: Translation from robotic hand to prosthetic prototype In: Smith Y, editor. International Conference on Neurorehabilitation (ICNR). Stoneham: Butterworth-Heinemann: 2016. p. 16–27. Godfrey SB, Bianchi M, Zhao K, Catalano M, Breighner R, Theuer A, Andrews K, Grioli G, Santello M, Bicchi A. The softhand pro: Translation from robotic hand to prosthetic prototype In: Smith Y, editor. International Conference on Neurorehabilitation (ICNR). Stoneham: Butterworth-Heinemann: 2016. p. 16–27.
Metadata
Title
SoftHand at the CYBATHLON: a user’s experience
Authors
Sasha Blue Godfrey
Matteo Rossi
Cristina Piazza
Manuel Giuseppe Catalano
Matteo Bianchi
Giorgio Grioli
Kristin D. Zhao
Antonio Bicchi
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2017
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-017-0334-y

Other articles of this Issue 1/2017

Journal of NeuroEngineering and Rehabilitation 1/2017 Go to the issue