Skip to main content
Top
Published in: BMC Psychiatry 1/2020

Open Access 01-12-2020 | Schizophrenia | Research article

Medicinal cannabis for psychiatric disorders: a clinically-focused systematic review

Authors: Jerome Sarris, Justin Sinclair, Diana Karamacoska, Maggie Davidson, Joseph Firth

Published in: BMC Psychiatry | Issue 1/2020

Login to get access

Abstract

Background

Medicinal cannabis has received increased research attention over recent years due to loosening global regulatory changes. Medicinal cannabis has been reported to have potential efficacy in reducing pain, muscle spasticity, chemotherapy-induced nausea and vomiting, and intractable childhood epilepsy. Yet its potential application in the field of psychiatry is lesser known.

Methods

The first clinically-focused systematic review on the emerging medical application of cannabis across all major psychiatric disorders was conducted. Current evidence regarding whole plant formulations and plant-derived cannabinoid isolates in mood, anxiety, sleep, psychotic disorders and attention deficit/hyperactivity disorder (ADHD) is discussed; while also detailing clinical prescription considerations (including pharmacogenomics), occupational and public health elements, and future research recommendations. The systematic review of the literature was conducted during 2019, assessing the data from all case studies and clinical trials involving medicinal cannabis or plant-derived isolates for all major psychiatric disorders (neurological conditions and pain were omitted).

Results

The present evidence in the emerging field of cannabinoid therapeutics in psychiatry is nascent, and thereby it is currently premature to recommend cannabinoid-based interventions. Isolated positive studies have, however, revealed tentative support for cannabinoids (namely cannabidiol; CBD) for reducing social anxiety; with mixed (mainly positive) evidence for adjunctive use in schizophrenia. Case studies suggest that medicinal cannabis may be beneficial for improving sleep and post-traumatic stress disorder, however evidence is currently weak. Preliminary research findings indicate no benefit for depression from high delta-9 tetrahydrocannabinol (THC) therapeutics, or for CBD in mania. One isolated study indicates some potential efficacy for an oral cannabinoid/terpene combination in ADHD. Clinical prescriptive consideration involves caution in the use of high-THC formulations (avoidance in youth, and in people with anxiety or psychotic disorders), gradual titration, regular assessment, and caution in cardiovascular and respiratory disorders, pregnancy and breast-feeding.

Conclusions

There is currently encouraging, albeit embryonic, evidence for medicinal cannabis in the treatment of a range of psychiatric disorders. Supportive findings are emerging for some key isolates, however, clinicians need to be mindful of a range of prescriptive and occupational safety considerations, especially if initiating higher dose THC formulas.
Literature
1.
go back to reference Merlin M. Archaeological evidence for the tradition of psychoactive plant use in the old world. Econ Bot. 2003;57:295–323.CrossRef Merlin M. Archaeological evidence for the tradition of psychoactive plant use in the old world. Econ Bot. 2003;57:295–323.CrossRef
2.
go back to reference National Academies of Sciences E, Medicine. The health effects of cannabis and cannabinoids: the current state of evidence and recommendations for research. Washington, DC: The National Academies Press; 2017. 486 p National Academies of Sciences E, Medicine. The health effects of cannabis and cannabinoids: the current state of evidence and recommendations for research. Washington, DC: The National Academies Press; 2017. 486 p
3.
go back to reference Touwn M. The religious and medicinal uses of Cannabis in China, India and Tibet. J Psychoactive Drugs. 1981;13:23–34.CrossRef Touwn M. The religious and medicinal uses of Cannabis in China, India and Tibet. J Psychoactive Drugs. 1981;13:23–34.CrossRef
4.
5.
go back to reference Russo E. The pharmacological history of Cannabis. In: Pertwee R, editor. Handbook of cannabis. Oxford: Oxford University Press; 2016. p. 23–43. Russo E. The pharmacological history of Cannabis. In: Pertwee R, editor. Handbook of cannabis. Oxford: Oxford University Press; 2016. p. 23–43.
6.
go back to reference Thompson R. A dictionary of Assyrian botany. British Academy: London; 1949. Thompson R. A dictionary of Assyrian botany. British Academy: London; 1949.
7.
go back to reference Grierson G. The hemp plant in Sanskrit and hindi literature. Indian Antiqu. 1894;September:260–2. Grierson G. The hemp plant in Sanskrit and hindi literature. Indian Antiqu. 1894;September:260–2.
8.
go back to reference Da Orta G. Colloquies on the simples and drugs of India. London: Henry Sotheran; 1913. Da Orta G. Colloquies on the simples and drugs of India. London: Henry Sotheran; 1913.
9.
go back to reference Kosiba JD, Maisto SA, Joseph W. Patient-reported use of medical cannabis for pain, anxiety, and depression symptoms: systematic review and meta-analysis. Soc Sci Med. 2019; Kosiba JD, Maisto SA, Joseph W. Patient-reported use of medical cannabis for pain, anxiety, and depression symptoms: systematic review and meta-analysis. Soc Sci Med. 2019;
10.
go back to reference Whiting PF, Wolff RF, Deshpande S, Di Nisio M, Duffy S, Hernandez AV, et al. Cannabinoids for medical use: a systematic review and meta-analysis. JAMA. 2015;313(24):2456–73.PubMedCrossRef Whiting PF, Wolff RF, Deshpande S, Di Nisio M, Duffy S, Hernandez AV, et al. Cannabinoids for medical use: a systematic review and meta-analysis. JAMA. 2015;313(24):2456–73.PubMedCrossRef
11.
go back to reference Drysdale AJ, Platt B. Cannabinoids: mechanisms and therapeutic applications in the CNS. (0929–8673 (Print)). Drysdale AJ, Platt B. Cannabinoids: mechanisms and therapeutic applications in the CNS. (0929–8673 (Print)).
12.
go back to reference The National Institutes of Health. Marijuana and cannabinoids: a neuroscience research summit. Bethesda; 2016. The National Institutes of Health. Marijuana and cannabinoids: a neuroscience research summit. Bethesda; 2016.
13.
go back to reference Rong C, Lee Y, Carmona NE, Cha DS, Ragguett RM, Rosenblat JD, et al. Cannabidiol in medical marijuana: research vistas and potential opportunities. Pharmacol Res. 2017;121:213–8.PubMedCrossRef Rong C, Lee Y, Carmona NE, Cha DS, Ragguett RM, Rosenblat JD, et al. Cannabidiol in medical marijuana: research vistas and potential opportunities. Pharmacol Res. 2017;121:213–8.PubMedCrossRef
14.
go back to reference Abrahamov A, Abrahamov A, Mechoulam R. An efficient new cannabinoid antiemetic in pediatric oncology. Life Sci. 1995;56(23–24):2097–102.PubMedCrossRef Abrahamov A, Abrahamov A, Mechoulam R. An efficient new cannabinoid antiemetic in pediatric oncology. Life Sci. 1995;56(23–24):2097–102.PubMedCrossRef
15.
go back to reference ElSohly MA, Radwan MM, Gul W, Chandra S, Galal A. Phytochemistry of Cannabis sativa L. Prog Chem Org Nat Prod. 2017;103:1–36.PubMed ElSohly MA, Radwan MM, Gul W, Chandra S, Galal A. Phytochemistry of Cannabis sativa L. Prog Chem Org Nat Prod. 2017;103:1–36.PubMed
17.
go back to reference Hanus LO, Meyer SM, Munoz E, Taglialatela-Scafati O, Appendino G. Phytocannabinoids: a unified critical inventory. Nat Prod Rep. 2016;33(12):1357–92.PubMedCrossRef Hanus LO, Meyer SM, Munoz E, Taglialatela-Scafati O, Appendino G. Phytocannabinoids: a unified critical inventory. Nat Prod Rep. 2016;33(12):1357–92.PubMedCrossRef
18.
go back to reference Blasco-Benito S, Seijo-Vila M, Caro-Villalobos M, Tundidor I, Andradas C, Garcia-Taboada E, et al. Appraising the “entourage effect”: antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer. Biochem Pharmacol. 2018; Blasco-Benito S, Seijo-Vila M, Caro-Villalobos M, Tundidor I, Andradas C, Garcia-Taboada E, et al. Appraising the “entourage effect”: antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer. Biochem Pharmacol. 2018;
19.
go back to reference Khoury JM, Neves M, Roque MAV, Queiroz DAB, Correa de Freitas AA, de Fatima A, et al. Is there a role for cannabidiol in psychiatry? World J Biol Psychiatry. 2017:1–16. Khoury JM, Neves M, Roque MAV, Queiroz DAB, Correa de Freitas AA, de Fatima A, et al. Is there a role for cannabidiol in psychiatry? World J Biol Psychiatry. 2017:1–16.
20.
go back to reference Habib G, Artul S. Medical cannabis for the treatment of fibromyalgia. J Clin Rheumatol. 2018;14:14. Habib G, Artul S. Medical cannabis for the treatment of fibromyalgia. J Clin Rheumatol. 2018;14:14.
21.
go back to reference Miller RJ, Miller RE. Is cannabis an effective treatment for joint pain? Clin Exp Rheumatol. 2017;35 Suppl 107(5):59–67.PubMedCrossRef Miller RJ, Miller RE. Is cannabis an effective treatment for joint pain? Clin Exp Rheumatol. 2017;35 Suppl 107(5):59–67.PubMedCrossRef
22.
go back to reference Kim PS, Fishman MA. Cannabis for pain and headaches: primer. Curr Pain Headache Rep. 2017;21(4):19.PubMedCrossRef Kim PS, Fishman MA. Cannabis for pain and headaches: primer. Curr Pain Headache Rep. 2017;21(4):19.PubMedCrossRef
23.
go back to reference Reddy DS. The utility of cannabidiol in the treatment of refractory epilepsy. Clin Pharmacol Ther. 2017;101(2):182–4.PubMedCrossRef Reddy DS. The utility of cannabidiol in the treatment of refractory epilepsy. Clin Pharmacol Ther. 2017;101(2):182–4.PubMedCrossRef
24.
go back to reference O’Connell BK, Gloss D, Devinsky O. Cannabinoids in treatment-resistant epilepsy: a review. Epilepsy Behav E&B. 2017;70(Pt B):341–8.CrossRef O’Connell BK, Gloss D, Devinsky O. Cannabinoids in treatment-resistant epilepsy: a review. Epilepsy Behav E&B. 2017;70(Pt B):341–8.CrossRef
25.
go back to reference Landa L, Jurica J, Sliva J, Pechackova M, Demlova R. Medical cannabis in the treatment of cancer pain and spastic conditions and options of drug delivery in clinical practice. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2018;19:19. Landa L, Jurica J, Sliva J, Pechackova M, Demlova R. Medical cannabis in the treatment of cancer pain and spastic conditions and options of drug delivery in clinical practice. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2018;19:19.
26.
go back to reference Lintzeris N, Driels J, Elias N, Arnold JC, McGregor IS, Allsop DJ. Medicinal cannabis in Australia, 2016: the Cannabis as Medicine Survey (CAMS-16). Med J Aust. 2018;209(5):211–6.PubMedCrossRef Lintzeris N, Driels J, Elias N, Arnold JC, McGregor IS, Allsop DJ. Medicinal cannabis in Australia, 2016: the Cannabis as Medicine Survey (CAMS-16). Med J Aust. 2018;209(5):211–6.PubMedCrossRef
27.
go back to reference Lisboa SF, Gomes FV, Terzian AL, Aguiar DC, Moreira FA, Resstel LB, et al. The endocannabinoid system and anxiety. Vitam Horm. 2017;103:193–279.PubMedCrossRef Lisboa SF, Gomes FV, Terzian AL, Aguiar DC, Moreira FA, Resstel LB, et al. The endocannabinoid system and anxiety. Vitam Horm. 2017;103:193–279.PubMedCrossRef
28.
go back to reference Ruehle S, Rey AA, Remmers F, Lutz B. The endocannabinoid system in anxiety, fear memory and habituation. J Psychopharmacol (Oxford, UK). 2012;26(1):23–39.CrossRef Ruehle S, Rey AA, Remmers F, Lutz B. The endocannabinoid system in anxiety, fear memory and habituation. J Psychopharmacol (Oxford, UK). 2012;26(1):23–39.CrossRef
29.
go back to reference Russo EB, Burnett A, Hall B, Parker KK. Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem Res. 2005;30(8):1037–43.PubMedCrossRef Russo EB, Burnett A, Hall B, Parker KK. Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem Res. 2005;30(8):1037–43.PubMedCrossRef
31.
go back to reference Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol. 2008;153(2):199–215.PubMedCrossRef Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol. 2008;153(2):199–215.PubMedCrossRef
32.
go back to reference Bhattacharyya S, Morrison PD, Fusar-Poli P, Martin-Santos R, Borgwardt S, Winton-Brown T, et al. Opposite effects of delta-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology. 2010;35(3):764–74.PubMedCrossRef Bhattacharyya S, Morrison PD, Fusar-Poli P, Martin-Santos R, Borgwardt S, Winton-Brown T, et al. Opposite effects of delta-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology. 2010;35(3):764–74.PubMedCrossRef
33.
go back to reference Dalton WS, Martz R, Lemberger L, Rodda BE, Forney RB. Influence of cannabidiol on delta-9-tetrahydrocannabinol effects. Clin Pharmacol Ther. 1976;19(3):300–9.PubMedCrossRef Dalton WS, Martz R, Lemberger L, Rodda BE, Forney RB. Influence of cannabidiol on delta-9-tetrahydrocannabinol effects. Clin Pharmacol Ther. 1976;19(3):300–9.PubMedCrossRef
34.
go back to reference Englund A, Morrison PD, Nottage J, Hague D, Kane F, Bonaccorso S, et al. Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment. J Psychopharmacol. 2013;27(1):19–27.PubMedCrossRef Englund A, Morrison PD, Nottage J, Hague D, Kane F, Bonaccorso S, et al. Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment. J Psychopharmacol. 2013;27(1):19–27.PubMedCrossRef
35.
go back to reference Karniol IG, Shirakawa I, Kasinski N, Pfeferman A, Carlini EA. Cannabidiol interferes with the effects of delta 9 – tetrahydrocannabinol in man. Eur J Pharmacol. 1974;28(1):172–7.PubMedCrossRef Karniol IG, Shirakawa I, Kasinski N, Pfeferman A, Carlini EA. Cannabidiol interferes with the effects of delta 9 – tetrahydrocannabinol in man. Eur J Pharmacol. 1974;28(1):172–7.PubMedCrossRef
36.
go back to reference Kedzior KK, Laeber LT. A positive association between anxiety disorders and cannabis use or cannabis use disorders in the general population--a meta-analysis of 31 studies. BMC Psychiatry. 2014;14:136.PubMedPubMedCentralCrossRef Kedzior KK, Laeber LT. A positive association between anxiety disorders and cannabis use or cannabis use disorders in the general population--a meta-analysis of 31 studies. BMC Psychiatry. 2014;14:136.PubMedPubMedCentralCrossRef
37.
go back to reference Feingold D, Rehm J, Factor H, Redler A, Lev-Ran S. Clinical and functional outcomes of cannabis use among individuals with anxiety disorders: a 3-year population-based longitudinal study. Depress Anxiety. 2018;35(6):490–501.PubMedCrossRef Feingold D, Rehm J, Factor H, Redler A, Lev-Ran S. Clinical and functional outcomes of cannabis use among individuals with anxiety disorders: a 3-year population-based longitudinal study. Depress Anxiety. 2018;35(6):490–501.PubMedCrossRef
38.
go back to reference Bergamaschi MM, Queiroz RH, Chagas MH, de Oliveira DC, De Martinis BS, Kapczinski F, et al. Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naive social phobia patients. Neuropsychopharmacology. 2011;36(6):1219–26.PubMedPubMedCentralCrossRef Bergamaschi MM, Queiroz RH, Chagas MH, de Oliveira DC, De Martinis BS, Kapczinski F, et al. Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naive social phobia patients. Neuropsychopharmacology. 2011;36(6):1219–26.PubMedPubMedCentralCrossRef
39.
go back to reference Crippa JA, Derenusson GN, Ferrari TB, Wichert-Ana L, Duran FL, Martin-Santos R, et al. Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder: a preliminary report. J Psychopharmacol (Oxford, UK). 2011;25(1):121–30.CrossRef Crippa JA, Derenusson GN, Ferrari TB, Wichert-Ana L, Duran FL, Martin-Santos R, et al. Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder: a preliminary report. J Psychopharmacol (Oxford, UK). 2011;25(1):121–30.CrossRef
40.
go back to reference Buckner JD, Heimberg RG, Ecker AH, Vinci C. A biopsychosocial model of social anxiety and substance use. Depress Anxiety. 2013;30(3):276–84.PubMedCrossRef Buckner JD, Heimberg RG, Ecker AH, Vinci C. A biopsychosocial model of social anxiety and substance use. Depress Anxiety. 2013;30(3):276–84.PubMedCrossRef
41.
go back to reference Blessing EM, Steenkamp MM, Manzanares J, Marmar CR. Cannabidiol as a potential treatment for anxiety disorders. Neurotherapeutics. 2015;12(4):825–36.PubMedPubMedCentralCrossRef Blessing EM, Steenkamp MM, Manzanares J, Marmar CR. Cannabidiol as a potential treatment for anxiety disorders. Neurotherapeutics. 2015;12(4):825–36.PubMedPubMedCentralCrossRef
43.
go back to reference ACTRN12617000825358. The cannabidiol youth anxiety pilot study (CAPS): a 12-week open- label pilot study of the safety, tolerability and efficacy of cannabidiol for anxiety disorders. ACTRN12617000825358. The cannabidiol youth anxiety pilot study (CAPS): a 12-week open- label pilot study of the safety, tolerability and efficacy of cannabidiol for anxiety disorders.
44.
go back to reference Yarnell S. The use of medicinal marijuana for posttraumatic stress disorder: a review of the current literature. Prim Care Companion CNS Disord. 2015;17(3) Yarnell S. The use of medicinal marijuana for posttraumatic stress disorder: a review of the current literature. Prim Care Companion CNS Disord. 2015;17(3)
45.
go back to reference Betthauser K, Pilz J, Vollmer LE. Use and effects of cannabinoids in military veterans with posttraumatic stress disorder. Am J Health-Syst Pharm. 2015;72(15):1279–84.PubMedCrossRef Betthauser K, Pilz J, Vollmer LE. Use and effects of cannabinoids in military veterans with posttraumatic stress disorder. Am J Health-Syst Pharm. 2015;72(15):1279–84.PubMedCrossRef
46.
go back to reference Glass M, Dragunow M, Faull RL. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience. 1997;77(2):299–318.PubMedCrossRef Glass M, Dragunow M, Faull RL. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience. 1997;77(2):299–318.PubMedCrossRef
47.
go back to reference Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology. 2008;33(1):56–72.PubMedCrossRef Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology. 2008;33(1):56–72.PubMedCrossRef
48.
go back to reference Papini S, Sullivan GM, Hien DA, Shvil E, Neria Y. Toward a translational approach to targeting the endocannabinoid system in posttraumatic stress disorder: a critical review of preclinical research. Biol Psychol. 2015;104:8–18.PubMedCrossRef Papini S, Sullivan GM, Hien DA, Shvil E, Neria Y. Toward a translational approach to targeting the endocannabinoid system in posttraumatic stress disorder: a critical review of preclinical research. Biol Psychol. 2015;104:8–18.PubMedCrossRef
49.
go back to reference Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature. 2002;418(6897):530–4.PubMedCrossRef Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature. 2002;418(6897):530–4.PubMedCrossRef
50.
go back to reference Cannich A, Wotjak CT, Kamprath K, Hermann H, Lutz B, Marsicano G. CB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice. Learn Mem. 2004;11(5):625–32.PubMedPubMedCentralCrossRef Cannich A, Wotjak CT, Kamprath K, Hermann H, Lutz B, Marsicano G. CB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice. Learn Mem. 2004;11(5):625–32.PubMedPubMedCentralCrossRef
51.
go back to reference Bonn-Miller MO, Babson KA, Vandrey R. Using cannabis to help you sleep: heightened frequency of medical cannabis use among those with PTSD. Drug Alcohol Depend. 2014;136:162–5.PubMedCrossRef Bonn-Miller MO, Babson KA, Vandrey R. Using cannabis to help you sleep: heightened frequency of medical cannabis use among those with PTSD. Drug Alcohol Depend. 2014;136:162–5.PubMedCrossRef
52.
go back to reference Johnson MJ, Pierce JD, Mavandadi S, Klaus J, Defelice D, Ingram E, et al. Mental health symptom severity in cannabis using and non-using Veterans with probable PTSD. J Affect Disord. 2016;190:439–42.PubMedCrossRef Johnson MJ, Pierce JD, Mavandadi S, Klaus J, Defelice D, Ingram E, et al. Mental health symptom severity in cannabis using and non-using Veterans with probable PTSD. J Affect Disord. 2016;190:439–42.PubMedCrossRef
53.
go back to reference Elms L, Shannon S, Hughes S, Lewis N. Cannabidiol in the treatment of post-traumatic stress disorder: a case series. J Altern Complement Med. 2019;25(4):392–7.PubMedPubMedCentralCrossRef Elms L, Shannon S, Hughes S, Lewis N. Cannabidiol in the treatment of post-traumatic stress disorder: a case series. J Altern Complement Med. 2019;25(4):392–7.PubMedPubMedCentralCrossRef
54.
go back to reference Greer GR, Grob CS, Halberstadt AL. PTSD symptom reports of patients evaluated for the New Mexico Medical cannabis Program. J Psychoactive Drugs. 2014;46(1):73–7.PubMedCrossRef Greer GR, Grob CS, Halberstadt AL. PTSD symptom reports of patients evaluated for the New Mexico Medical cannabis Program. J Psychoactive Drugs. 2014;46(1):73–7.PubMedCrossRef
55.
go back to reference NCT02517424. Placebo-Controlled, Triple-Blind, Crossover study of the safety and efficacy of three different potencies of vaporized Cannabis in 42 participants with chronic, Treatment-Resistant Posttraumatic Stress Disorder (PTSD). NCT02517424. Placebo-Controlled, Triple-Blind, Crossover study of the safety and efficacy of three different potencies of vaporized Cannabis in 42 participants with chronic, Treatment-Resistant Posttraumatic Stress Disorder (PTSD).
56.
go back to reference NCT02759185. Placebo-Controlled, Triple-Blind, Randomized Crossover Pilot Study of the Safety and Efficacy of Four Different Potencies of Smoked Marijuana in 76 Veterans With Posttraumatic Stress Disorder (PTSD). NCT02759185. Placebo-Controlled, Triple-Blind, Randomized Crossover Pilot Study of the Safety and Efficacy of Four Different Potencies of Smoked Marijuana in 76 Veterans With Posttraumatic Stress Disorder (PTSD).
57.
go back to reference Allsop DJ, Copeland J, Lintzeris N, Dunlop AJ, Montebello M, Sadler C, et al. Nabiximols as an agonist replacement therapy during cannabis withdrawal: a randomized clinical trial. JAMA Psychiatry. 2014;71(3):281–91.PubMedCrossRef Allsop DJ, Copeland J, Lintzeris N, Dunlop AJ, Montebello M, Sadler C, et al. Nabiximols as an agonist replacement therapy during cannabis withdrawal: a randomized clinical trial. JAMA Psychiatry. 2014;71(3):281–91.PubMedCrossRef
58.
go back to reference Podda G, Constantinescu CS. Nabiximols in the treatment of spasticity, pain and urinary symptoms due to multiple sclerosis. Expert Opin Biol Ther. 2012;12(11):1517–31.PubMedCrossRef Podda G, Constantinescu CS. Nabiximols in the treatment of spasticity, pain and urinary symptoms due to multiple sclerosis. Expert Opin Biol Ther. 2012;12(11):1517–31.PubMedCrossRef
59.
go back to reference Trigo JM, Soliman A, Quilty LC, Fischer B, Rehm J, Selby P, et al. Nabiximols combined with motivational enhancement/cognitive behavioral therapy for the treatment of cannabis dependence: a pilot randomized clinical trial. PloS One. 2018;13(1)PubMedPubMedCentralCrossRef Trigo JM, Soliman A, Quilty LC, Fischer B, Rehm J, Selby P, et al. Nabiximols combined with motivational enhancement/cognitive behavioral therapy for the treatment of cannabis dependence: a pilot randomized clinical trial. PloS One. 2018;13(1)PubMedPubMedCentralCrossRef
60.
go back to reference Portenoy RK, Ganae-Motan ED, Allende S, Yanagihara R, Shaiova L, Weinstein S, et al. Nabiximols for opioid-treated cancer patients with poorly-controlled chronic pain: a randomized, placebo-controlled, graded-dose trial. J Pain. 2012;13(5):438–49.PubMedCrossRef Portenoy RK, Ganae-Motan ED, Allende S, Yanagihara R, Shaiova L, Weinstein S, et al. Nabiximols for opioid-treated cancer patients with poorly-controlled chronic pain: a randomized, placebo-controlled, graded-dose trial. J Pain. 2012;13(5):438–49.PubMedCrossRef
61.
go back to reference Lev-Ran S, Roerecke M, Le Foll B, George TP, McKenzie K, Rehm J. The association between cannabis use and depression: a systematic review and meta-analysis of longitudinal studies. Psychol Med. 2014;44(4):797–810.PubMedCrossRef Lev-Ran S, Roerecke M, Le Foll B, George TP, McKenzie K, Rehm J. The association between cannabis use and depression: a systematic review and meta-analysis of longitudinal studies. Psychol Med. 2014;44(4):797–810.PubMedCrossRef
62.
go back to reference Sexton M, Cuttler C, Finnell JS, Mischley LK. A cross-sectional survey of medical cannabis users: patterns of use and perceived efficacy. (2378–8763 (Print)). Sexton M, Cuttler C, Finnell JS, Mischley LK. A cross-sectional survey of medical cannabis users: patterns of use and perceived efficacy. (2378–8763 (Print)).
63.
go back to reference Russo EB, Guy GW, Robson PJ. Cannabis, pain, and sleep: lessons from therapeutic clinical trials of Sativex, a cannabis-based medicine. Chem Biodivers. 2007;4(8):1729–43.PubMedCrossRef Russo EB, Guy GW, Robson PJ. Cannabis, pain, and sleep: lessons from therapeutic clinical trials of Sativex, a cannabis-based medicine. Chem Biodivers. 2007;4(8):1729–43.PubMedCrossRef
64.
go back to reference Gruber SA, Sagar KA, Dahlgren MK, Racine MT, Smith RT, Lukas SE. Splendor in the grass? A pilot study assessing the impact of medical marijuana on executive function. Front Pharmacol. 2016;7 Gruber SA, Sagar KA, Dahlgren MK, Racine MT, Smith RT, Lukas SE. Splendor in the grass? A pilot study assessing the impact of medical marijuana on executive function. Front Pharmacol. 2016;7
65.
go back to reference Webb CW, Webb SM. Therapeutic benefits of cannabis: a patient survey. Hawai’i J Med Public Health. 2014;73(4):109–11. Webb CW, Webb SM. Therapeutic benefits of cannabis: a patient survey. Hawai’i J Med Public Health. 2014;73(4):109–11.
66.
go back to reference Ostadhadi S, Rahmatollahi M, Dehpour AR, Rahimian R. Therapeutic potential of cannabinoids in counteracting chemotherapy-induced adverse effects: an exploratory review. Phytother Res PTR. 2015;29(3):332–8.PubMedCrossRef Ostadhadi S, Rahmatollahi M, Dehpour AR, Rahimian R. Therapeutic potential of cannabinoids in counteracting chemotherapy-induced adverse effects: an exploratory review. Phytother Res PTR. 2015;29(3):332–8.PubMedCrossRef
67.
go back to reference Cameron C, Watson D, Robinson J. Use of a synthetic cannabinoid in a correctional population for posttraumatic stress disorder–related insomnia and nightmares, chronic pain, harm reduction, and other indications: a retrospective evaluation. J Clin Psychopharmacol. 2014;34(5):559–64.PubMedPubMedCentralCrossRef Cameron C, Watson D, Robinson J. Use of a synthetic cannabinoid in a correctional population for posttraumatic stress disorder–related insomnia and nightmares, chronic pain, harm reduction, and other indications: a retrospective evaluation. J Clin Psychopharmacol. 2014;34(5):559–64.PubMedPubMedCentralCrossRef
68.
go back to reference Reinarman C, Nunberg H, Lanthier F, Heddleston T. Who are medical marijuana patients? Population characteristics from nine California assessment clinics. J Psychoactive Drugs. 2011;43(2):128–35.PubMedCrossRef Reinarman C, Nunberg H, Lanthier F, Heddleston T. Who are medical marijuana patients? Population characteristics from nine California assessment clinics. J Psychoactive Drugs. 2011;43(2):128–35.PubMedCrossRef
69.
go back to reference Shannon S, Opila-Lehman J. Effectiveness of cannabidiol oil for pediatric anxiety and insomnia as part of posttraumatic stress disorder: a case report. Perm J. 2016;20(4):108–11. Shannon S, Opila-Lehman J. Effectiveness of cannabidiol oil for pediatric anxiety and insomnia as part of posttraumatic stress disorder: a case report. Perm J. 2016;20(4):108–11.
70.
71.
go back to reference Johnson JR, Lossignol D, Burnell-Nugent M, Fallon MT. An open-label extension study to investigate the long-term safety and tolerability of THC/CBD oromucosal spray and oromucosal THC spray in patients with terminal cancer-related pain refractory to strong opioid analgesics. J Pain Symptom Manag. 2013;46(2):207–18.CrossRef Johnson JR, Lossignol D, Burnell-Nugent M, Fallon MT. An open-label extension study to investigate the long-term safety and tolerability of THC/CBD oromucosal spray and oromucosal THC spray in patients with terminal cancer-related pain refractory to strong opioid analgesics. J Pain Symptom Manag. 2013;46(2):207–18.CrossRef
72.
go back to reference ACTRN12618000078257. A study to evaluate the efficacy of sublingual cannabinoid based medicine extract compared with placebo for the treatment of Insomnia. ACTRN12618000078257. A study to evaluate the efficacy of sublingual cannabinoid based medicine extract compared with placebo for the treatment of Insomnia.
73.
75.
go back to reference Moore THM, Zammit S, Lingford-Hughes A, Barnes TRE, Jones PB, Burke M, et al. Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. Lancet. 2007;370(9584):319–28.PubMedCrossRef Moore THM, Zammit S, Lingford-Hughes A, Barnes TRE, Jones PB, Burke M, et al. Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. Lancet. 2007;370(9584):319–28.PubMedCrossRef
76.
go back to reference Carney R, Cotter J, Firth J, Bradshaw T, Yung AR. Cannabis use and symptom severity in individuals at ultra high risk for psychosis: a meta-analysis. Acta Psychiatr Scand. 2017;136(1):5–15.PubMedPubMedCentralCrossRef Carney R, Cotter J, Firth J, Bradshaw T, Yung AR. Cannabis use and symptom severity in individuals at ultra high risk for psychosis: a meta-analysis. Acta Psychiatr Scand. 2017;136(1):5–15.PubMedPubMedCentralCrossRef
77.
go back to reference Gage SH, Hickman M, Zammit S. Association between cannabis and psychosis: epidemiologic evidence. Biol Psychiatry. 2016;79(7):549–56.PubMedCrossRef Gage SH, Hickman M, Zammit S. Association between cannabis and psychosis: epidemiologic evidence. Biol Psychiatry. 2016;79(7):549–56.PubMedCrossRef
78.
go back to reference van Winkel R, Kuepper R. Epidemiological, neurobiological, and genetic clues to the mechanisms linking cannabis use to risk for nonaffective psychosis. Annu Rev Clin Psychol. 2014;10:767–91.PubMedCrossRef van Winkel R, Kuepper R. Epidemiological, neurobiological, and genetic clues to the mechanisms linking cannabis use to risk for nonaffective psychosis. Annu Rev Clin Psychol. 2014;10:767–91.PubMedCrossRef
79.
go back to reference Zammit S, Moore TH, Lingford-Hughes A, Barnes TR, Jones PB, Burke M, et al. Effects of cannabis use on outcomes of psychotic disorders: systematic review. Br J Psychiatry. 2008;193(5):357–63.PubMedCrossRef Zammit S, Moore TH, Lingford-Hughes A, Barnes TR, Jones PB, Burke M, et al. Effects of cannabis use on outcomes of psychotic disorders: systematic review. Br J Psychiatry. 2008;193(5):357–63.PubMedCrossRef
80.
go back to reference Kraan T, Velthorst E, Koenders L, Zwaart K, Ising HK, van den Berg D, et al. Cannabis use and transition to psychosis in individuals at ultra-high risk: review and meta-analysis. Psychol Med. 2016;46(4):673–81.PubMedCrossRef Kraan T, Velthorst E, Koenders L, Zwaart K, Ising HK, van den Berg D, et al. Cannabis use and transition to psychosis in individuals at ultra-high risk: review and meta-analysis. Psychol Med. 2016;46(4):673–81.PubMedCrossRef
81.
go back to reference Di Forti M, Quattrone D, Freeman TP, Tripoli G, Gayer-Anderson C, Quigley H, et al. The contribution of cannabis use to variation in the incidence of psychotic disorder across Europe (EU-GEI): a multicentre case-control study. Lancet Psychiatry. 2019;6(5):427–36.PubMedCrossRefPubMedCentral Di Forti M, Quattrone D, Freeman TP, Tripoli G, Gayer-Anderson C, Quigley H, et al. The contribution of cannabis use to variation in the incidence of psychotic disorder across Europe (EU-GEI): a multicentre case-control study. Lancet Psychiatry. 2019;6(5):427–36.PubMedCrossRefPubMedCentral
82.
go back to reference Gage SHJTLP. Cannabis and psychosis: triangulating the evidence. 2019;6(5):364–5. Gage SHJTLP. Cannabis and psychosis: triangulating the evidence. 2019;6(5):364–5.
83.
go back to reference Sommer IE, van den Brink WIM. High-potency cannabis and incident psychosis: correcting the causal assumption. 2019;6(6):464–5. Sommer IE, van den Brink WIM. High-potency cannabis and incident psychosis: correcting the causal assumption. 2019;6(6):464–5.
84.
go back to reference Linnman CJTLP. High-potency cannabis and incident psychosis: correcting the causal assumption. 2019;6(6):465–6. Linnman CJTLP. High-potency cannabis and incident psychosis: correcting the causal assumption. 2019;6(6):465–6.
85.
go back to reference Clark CSJTLP. High-potency cannabis and incident psychosis: correcting the causal assumption. 2019;6(6):e14. Clark CSJTLP. High-potency cannabis and incident psychosis: correcting the causal assumption. 2019;6(6):e14.
86.
go back to reference Gillespie N, Pasman J, Treur J, Derks EM, Verweij K, Vink JJLP. High-potency cannabis and incident psychosis: correcting the causal assumption (vol 6, pg 464, 2019). 2019;6(8):E19-E.PubMedCrossRef Gillespie N, Pasman J, Treur J, Derks EM, Verweij K, Vink JJLP. High-potency cannabis and incident psychosis: correcting the causal assumption (vol 6, pg 464, 2019). 2019;6(8):E19-E.PubMedCrossRef
87.
go back to reference Di Forti M, Morgan C, Selten JP, Lynskey M, Murray RM. High-potency cannabis and incident psychosis: correcting the causal assumption – Authors’ reply. Lancet Psychiatry. 2019;6(6):466–7.PubMedCrossRef Di Forti M, Morgan C, Selten JP, Lynskey M, Murray RM. High-potency cannabis and incident psychosis: correcting the causal assumption – Authors’ reply. Lancet Psychiatry. 2019;6(6):466–7.PubMedCrossRef
88.
go back to reference Weiser M, Noy S. Interpreting the association between cannabis use and increased risk for schizophrenia. Dialogues Clin Neurosci. 2005;7(1):81–5.PubMedPubMedCentral Weiser M, Noy S. Interpreting the association between cannabis use and increased risk for schizophrenia. Dialogues Clin Neurosci. 2005;7(1):81–5.PubMedPubMedCentral
89.
go back to reference Colizzi M, Iyegbe C, Powell J, Ursini G, Porcelli A, Bonvino A, et al. Interaction between functional genetic variation of DRD2 and cannabis use on risk of psychosis. Schizophr Bull. 2015;41(5):1171–82.PubMedPubMedCentralCrossRef Colizzi M, Iyegbe C, Powell J, Ursini G, Porcelli A, Bonvino A, et al. Interaction between functional genetic variation of DRD2 and cannabis use on risk of psychosis. Schizophr Bull. 2015;41(5):1171–82.PubMedPubMedCentralCrossRef
90.
go back to reference Di Forti M, Morgan C, Dazzan P, Pariante C, Mondelli V, Marques TR, et al. High-potency cannabis and the risk of psychosis. Br J Psychiatry. 2009;195(6):488–91.PubMedPubMedCentralCrossRef Di Forti M, Morgan C, Dazzan P, Pariante C, Mondelli V, Marques TR, et al. High-potency cannabis and the risk of psychosis. Br J Psychiatry. 2009;195(6):488–91.PubMedPubMedCentralCrossRef
91.
go back to reference Henquet C, Di Forti M, Morrison P, Kuepper R, Murray RM. Gene-environment interplay between cannabis and psychosis. Schizophr Bull. 2008;34(6):1111–21.PubMedPubMedCentralCrossRef Henquet C, Di Forti M, Morrison P, Kuepper R, Murray RM. Gene-environment interplay between cannabis and psychosis. Schizophr Bull. 2008;34(6):1111–21.PubMedPubMedCentralCrossRef
92.
go back to reference Marconi A, Di Forti M, Lewis CM, Murray RM, Vassos E. Meta-analysis of the association between the level of cannabis use and risk of psychosis. Schizophr Bull. 2016;42(5):1262–9.PubMedPubMedCentralCrossRef Marconi A, Di Forti M, Lewis CM, Murray RM, Vassos E. Meta-analysis of the association between the level of cannabis use and risk of psychosis. Schizophr Bull. 2016;42(5):1262–9.PubMedPubMedCentralCrossRef
93.
go back to reference Pistis M, Ferraro L, Pira L, Flore G, Tanganelli S, Gessa GL, et al. Δ9-Tetrahydrocannabinol decreases extracellular GABA and increases extracellular glutamate and dopamine levels in the rat prefrontal cortex: an in vivo microdialysis study. Brain Res. 2002;948(1):155–8.PubMedCrossRef Pistis M, Ferraro L, Pira L, Flore G, Tanganelli S, Gessa GL, et al. Δ9-Tetrahydrocannabinol decreases extracellular GABA and increases extracellular glutamate and dopamine levels in the rat prefrontal cortex: an in vivo microdialysis study. Brain Res. 2002;948(1):155–8.PubMedCrossRef
94.
go back to reference Colizzi M, Weltens N, McGuire P, Lythgoe D, Williams S, Van Oudenhove L, et al. Delta-9-tetrahydrocannabinol increases striatal glutamate levels in healthy individuals: implications for psychosis. Mol Psychiatry. 2019; Colizzi M, Weltens N, McGuire P, Lythgoe D, Williams S, Van Oudenhove L, et al. Delta-9-tetrahydrocannabinol increases striatal glutamate levels in healthy individuals: implications for psychosis. Mol Psychiatry. 2019;
95.
go back to reference D’Souza DC, Perry E, MacDougall L, Ammerman Y, Cooper T, Wu YT, et al. The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: implications for psychosis. Neuropsychopharmacology. 2004;29(8):1558–72.PubMedCrossRef D’Souza DC, Perry E, MacDougall L, Ammerman Y, Cooper T, Wu YT, et al. The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: implications for psychosis. Neuropsychopharmacology. 2004;29(8):1558–72.PubMedCrossRef
96.
go back to reference D’Souza DC, Abi-Saab Wm Fau – Madonick S, Madonick S Fau – Forselius-Bielen K, Forselius-Bielen K Fau – Doersch A, Doersch A Fau – Braley G, Braley G Fau – Gueorguieva R, et al. Delta-9-tetrahydrocannabinol effects in schizophrenia: implications for cognition, psychosis, and addiction. (0006–3223 (Print)). D’Souza DC, Abi-Saab Wm Fau – Madonick S, Madonick S Fau – Forselius-Bielen K, Forselius-Bielen K Fau – Doersch A, Doersch A Fau – Braley G, Braley G Fau – Gueorguieva R, et al. Delta-9-tetrahydrocannabinol effects in schizophrenia: implications for cognition, psychosis, and addiction. (0006–3223 (Print)).
97.
go back to reference Rohleder C, Müller JK, Lange B, Leweke FM. Cannabidiol as a potential new type of an antipsychotic. A critical review of the evidence. Front Pharmacol. 2016;7 Rohleder C, Müller JK, Lange B, Leweke FM. Cannabidiol as a potential new type of an antipsychotic. A critical review of the evidence. Front Pharmacol. 2016;7
98.
go back to reference Leweke FM, Mueller JK, Lange B, Rohleder C. Therapeutic potential of cannabinoids in psychosis. Biol Psychiatry. 2016;79(7):604–12.PubMedCrossRef Leweke FM, Mueller JK, Lange B, Rohleder C. Therapeutic potential of cannabinoids in psychosis. Biol Psychiatry. 2016;79(7):604–12.PubMedCrossRef
99.
go back to reference Leweke FM, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C, et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry. 2012;2(3):e94.PubMedPubMedCentralCrossRef Leweke FM, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C, et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry. 2012;2(3):e94.PubMedPubMedCentralCrossRef
100.
go back to reference Zuardi AW, Morais SL, Guimarães FS, Mechoulam R. Antipsychotic effect of cannabidiol. J Clin Psychiatry. 1995;56(10):485–6.PubMed Zuardi AW, Morais SL, Guimarães FS, Mechoulam R. Antipsychotic effect of cannabidiol. J Clin Psychiatry. 1995;56(10):485–6.PubMed
101.
go back to reference McGuire P, Robson P, Cubala WJ, Vasile D, Morrison PD, Barron R, et al. Cannabidiol (CBD) as an adjunctive therapy in schizophrenia: a multicenter randomized controlled trial. Am J Psychiatry. 2018;175(3):225–31.PubMedCrossRef McGuire P, Robson P, Cubala WJ, Vasile D, Morrison PD, Barron R, et al. Cannabidiol (CBD) as an adjunctive therapy in schizophrenia: a multicenter randomized controlled trial. Am J Psychiatry. 2018;175(3):225–31.PubMedCrossRef
102.
go back to reference Boggs DL, Surti T, Gupta A, Gupta S, Niciu M, Pittman B, et al. The effects of cannabidiol (CBD) on cognition and symptoms in outpatients with chronic schizophrenia a randomized placebo controlled trial. Psychopharmacology. 2018; Boggs DL, Surti T, Gupta A, Gupta S, Niciu M, Pittman B, et al. The effects of cannabidiol (CBD) on cognition and symptoms in outpatients with chronic schizophrenia a randomized placebo controlled trial. Psychopharmacology. 2018;
103.
go back to reference Bhattacharyya S, Wilson R, Appiah-Kusi E, O’Neill A, Brammer M, Perez J, et al. Effect of cannabidiol on medial temporal, midbrain, and striatal dysfunction in people at clinical high risk of psychosis: a randomized clinical trial. JAMA Psychiatry. 2018; Bhattacharyya S, Wilson R, Appiah-Kusi E, O’Neill A, Brammer M, Perez J, et al. Effect of cannabidiol on medial temporal, midbrain, and striatal dysfunction in people at clinical high risk of psychosis: a randomized clinical trial. JAMA Psychiatry. 2018;
104.
go back to reference ISRCTN10334895. Cannabidiol for the treatment of patients at a high-risk of psychosis. ISRCTN10334895. Cannabidiol for the treatment of patients at a high-risk of psychosis.
105.
go back to reference Zuardi A, Crippa J, Dursun S, Morais S, Vilela J, Sanches R, et al. Cannabidiol was ineffective for manic episode of bipolar affective disorder. J Psychopharmacol. 2010;24:135–7.PubMedCrossRef Zuardi A, Crippa J, Dursun S, Morais S, Vilela J, Sanches R, et al. Cannabidiol was ineffective for manic episode of bipolar affective disorder. J Psychopharmacol. 2010;24:135–7.PubMedCrossRef
106.
go back to reference Mitchell JT, Sweitzer MM, Tunno AM, Kollins SH, McClernon FJ. “I use weed for my ADHD”: a qualitative analysis of online forum discussions on cannabis use and ADHD. PloS one. 2016;11(5):e0156614.PubMedPubMedCentralCrossRef Mitchell JT, Sweitzer MM, Tunno AM, Kollins SH, McClernon FJ. “I use weed for my ADHD”: a qualitative analysis of online forum discussions on cannabis use and ADHD. PloS one. 2016;11(5):e0156614.PubMedPubMedCentralCrossRef
107.
go back to reference Marijuana and Medicine: The Need for a Science-Based Approach: Hearing before the Subcommittee on Criminal Justice, Drug Policy and Human Resources, U.S. House of Representatives, Second Sess. (April 1, 2004). Marijuana and Medicine: The Need for a Science-Based Approach: Hearing before the Subcommittee on Criminal Justice, Drug Policy and Human Resources, U.S. House of Representatives, Second Sess. (April 1, 2004).
108.
go back to reference Cooper RE, Williams E, Seegobin S, Tye C, Kuntsi J, Asherson P. Cannabinoids in attention-deficit/hyperactivity disorder: a randomised-controlled trial. Eur Neuropsychopharmacol. 2017;27(8):795–808.PubMedCrossRef Cooper RE, Williams E, Seegobin S, Tye C, Kuntsi J, Asherson P. Cannabinoids in attention-deficit/hyperactivity disorder: a randomised-controlled trial. Eur Neuropsychopharmacol. 2017;27(8):795–808.PubMedCrossRef
109.
go back to reference Beaulieu P, Boulanger A, Desroches J, Clark AJ. Medical cannabis: considerations for the anesthesiologist and pain physician. Canadian journal of anaesthesia =. J Can d’anesthesie. 2016;63(5):608–24.CrossRef Beaulieu P, Boulanger A, Desroches J, Clark AJ. Medical cannabis: considerations for the anesthesiologist and pain physician. Canadian journal of anaesthesia =. J Can d’anesthesie. 2016;63(5):608–24.CrossRef
110.
go back to reference HelloMD. Medical marijuana: patient survey results. 2016. HelloMD. Medical marijuana: patient survey results. 2016.
111.
go back to reference Millar S, Stone N, Bellman Z, Yates A, England T, O’Sullivan S. A systematic review of cannabidiol dosing in clinical populations. Br J Clin Pharmacol. 2019; Millar S, Stone N, Bellman Z, Yates A, England T, O’Sullivan S. A systematic review of cannabidiol dosing in clinical populations. Br J Clin Pharmacol. 2019;
112.
go back to reference MacCallum CA, Russo EB. Practical considerations in medical cannabis administration and dosing. Eur J Intern Med. 2018;49:12–9.PubMedCrossRef MacCallum CA, Russo EB. Practical considerations in medical cannabis administration and dosing. Eur J Intern Med. 2018;49:12–9.PubMedCrossRef
113.
go back to reference Kamal BS, Kamal F, Lantela DE. Cannabis and the anxiety of fragmentation-a systems approach for finding an anxiolytic cannabis chemotype. Front Neurosci. 2018;12:730.PubMedPubMedCentralCrossRef Kamal BS, Kamal F, Lantela DE. Cannabis and the anxiety of fragmentation-a systems approach for finding an anxiolytic cannabis chemotype. Front Neurosci. 2018;12:730.PubMedPubMedCentralCrossRef
114.
go back to reference Hryhorowicz S, Walczak M, Zakerska-Banaszak O, Slomski R, Skrzypczak-Zielinska M. Pharmacogenetics of cannabinoids. Eur J Drug Metab Pharmacokinet. 2018;43(1):1–12.PubMedCrossRef Hryhorowicz S, Walczak M, Zakerska-Banaszak O, Slomski R, Skrzypczak-Zielinska M. Pharmacogenetics of cannabinoids. Eur J Drug Metab Pharmacokinet. 2018;43(1):1–12.PubMedCrossRef
115.
go back to reference Goldsmith RS, Hartenbaum NP, Martin DW. Medical marijuana in the workforce. J Occup Environ Med. 2015;57(11):e139.PubMedCrossRef Goldsmith RS, Hartenbaum NP, Martin DW. Medical marijuana in the workforce. J Occup Environ Med. 2015;57(11):e139.PubMedCrossRef
116.
117.
go back to reference Allen JG, Prichard J, Griggs L. A workplace drug testing act for Australia. Univ Qld Law J. 2013;32(2):219–37. Allen JG, Prichard J, Griggs L. A workplace drug testing act for Australia. Univ Qld Law J. 2013;32(2):219–37.
119.
go back to reference WorkCover NSW. Alcohol and other drugs in the workplace: guide to developing a workplace alcohol and other drugs policy. Perth: WorkCover NSW; 2006. WorkCover NSW. Alcohol and other drugs in the workplace: guide to developing a workplace alcohol and other drugs policy. Perth: WorkCover NSW; 2006.
120.
go back to reference Stringham C, Allard I, Knapp S, Minor M. Medical marijuana in the work place: keeping small business informed. Small Bus Inst J. 2017;13(1):16. Stringham C, Allard I, Knapp S, Minor M. Medical marijuana in the work place: keeping small business informed. Small Bus Inst J. 2017;13(1):16.
121.
go back to reference Goldsmith RS, Targino MC, Fanciullo GJ, Martin DW, Hartenbaum NP, White JM, et al. Medical marijuana in the workplace: challenges and management options for occupational physicians. J Occup Environ Med. 2015;57(5):518.PubMedPubMedCentralCrossRef Goldsmith RS, Targino MC, Fanciullo GJ, Martin DW, Hartenbaum NP, White JM, et al. Medical marijuana in the workplace: challenges and management options for occupational physicians. J Occup Environ Med. 2015;57(5):518.PubMedPubMedCentralCrossRef
122.
go back to reference CCOHS. Workplace strategies: risk of impairment from cannabis. In: Safety CCfOHa. Ontario: Candian Centre for Occupational Health and Safety; 2018. CCOHS. Workplace strategies: risk of impairment from cannabis. In: Safety CCfOHa. Ontario: Candian Centre for Occupational Health and Safety; 2018.
123.
go back to reference Phillips JA, Holland MG, Baldwin DD, Gifford-Meuleveld L, Mueller KL, Perkison B, et al. Marijuana in the workplace: guidance for occupational health professionals and employers: joint guidance statement of the American Association of Occupational Health Nurses and the American College of Occupational and Environmental Medicine. Workplace Health Saf. 2015;63(4):139–64.PubMedCrossRef Phillips JA, Holland MG, Baldwin DD, Gifford-Meuleveld L, Mueller KL, Perkison B, et al. Marijuana in the workplace: guidance for occupational health professionals and employers: joint guidance statement of the American Association of Occupational Health Nurses and the American College of Occupational and Environmental Medicine. Workplace Health Saf. 2015;63(4):139–64.PubMedCrossRef
124.
go back to reference Casarett D. The achilles heel of medical cannabis research—inadequate blinding of placebo-controlled trials. JAMA Intern Med. 2018;178(1):9–10.PubMedCrossRef Casarett D. The achilles heel of medical cannabis research—inadequate blinding of placebo-controlled trials. JAMA Intern Med. 2018;178(1):9–10.PubMedCrossRef
Metadata
Title
Medicinal cannabis for psychiatric disorders: a clinically-focused systematic review
Authors
Jerome Sarris
Justin Sinclair
Diana Karamacoska
Maggie Davidson
Joseph Firth
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Psychiatry / Issue 1/2020
Electronic ISSN: 1471-244X
DOI
https://doi.org/10.1186/s12888-019-2409-8

Other articles of this Issue 1/2020

BMC Psychiatry 1/2020 Go to the issue