Skip to main content
Top
Published in: Journal of Translational Medicine 1/2024

Open Access 01-12-2024 | Schizophrenia | Research

Dissecting the shared genetic landscape of anxiety, depression, and schizophrenia

Authors: Yiming Tao, Rui Zhao, Bin Yang, Jie Han, Yongsheng Li

Published in: Journal of Translational Medicine | Issue 1/2024

Login to get access

Abstract

Background

Numerous studies highlight the genetic underpinnings of mental disorders comorbidity, particularly in anxiety, depression, and schizophrenia. However, their shared genetic loci are not well understood. Our study employs Mendelian randomization (MR) and colocalization analyses, alongside multi-omics data, to uncover potential genetic targets for these conditions, thereby informing therapeutic and drug development strategies.

Methods

We utilized the Consortium for Linkage Disequilibrium Score Regression (LDSC) and Mendelian Randomization (MR) analysis to investigate genetic correlations among anxiety, depression, and schizophrenia. Utilizing GTEx V8 eQTL and deCODE Genetics pQTL data, we performed a three-step summary-data-based Mendelian randomization (SMR) and protein–protein interaction analysis. This helped assess causal and comorbid loci for these disorders and determine if identified loci share coincidental variations with psychiatric diseases. Additionally, phenome-wide association studies, drug prediction, and molecular docking validated potential drug targets.

Results

We found genetic correlations between anxiety, depression, and schizophrenia, and under a meta-analysis of MR from multiple databases, the causal relationships among these disorders are supported. Based on this, three-step SMR and colocalization analyses identified ITIH3 and CCS as being related to the risk of developing depression, while CTSS and DNPH1 are related to the onset of schizophrenia. BTN3A1, PSMB4, and TIMP4 were identified as comorbidity loci for both disorders. Molecules that could not be determined through colocalization analysis were also presented. Drug prediction and molecular docking showed that some drugs and proteins have good binding affinity and available structural data.

Conclusions

Our study indicates genetic correlations and shared risk loci between anxiety, depression, and schizophrenia. These findings offer insights into the underlying mechanisms of their comorbidities and aid in drug development.
Appendix
Available only for authorised users
Literature
3.
go back to reference COVID-19 Mental Disorders Collaborators. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet. 2021;398:1700–12.CrossRef COVID-19 Mental Disorders Collaborators. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet. 2021;398:1700–12.CrossRef
4.
go back to reference Caspi A, Moffitt TE. All for one and one for all: mental disorders in one dimension. AJP. 2018;175:831–44.CrossRef Caspi A, Moffitt TE. All for one and one for all: mental disorders in one dimension. AJP. 2018;175:831–44.CrossRef
5.
go back to reference Hertenstein E, Trinca E, Wunderlin M, Schneider CL, Züst MA, Fehér KD, et al. Cognitive behavioral therapy for insomnia in patients with mental disorders and comorbid insomnia: a systematic review and meta-analysis. Sleep Med Rev. 2022;62:101597.PubMedCrossRef Hertenstein E, Trinca E, Wunderlin M, Schneider CL, Züst MA, Fehér KD, et al. Cognitive behavioral therapy for insomnia in patients with mental disorders and comorbid insomnia: a systematic review and meta-analysis. Sleep Med Rev. 2022;62:101597.PubMedCrossRef
6.
go back to reference Duncan L, Deisseroth K. Are novel treatments for brain disorders hiding in plain sight? Neuropsychopharmacology. 2024;49:276–81.PubMedCrossRef Duncan L, Deisseroth K. Are novel treatments for brain disorders hiding in plain sight? Neuropsychopharmacology. 2024;49:276–81.PubMedCrossRef
7.
go back to reference Docherty AR, Mullins N, Ashley-Koch AE, Qin X, Coleman JRI, Shabalin A, et al. GWAS meta-analysis of suicide attempt: identification of 12 genome-wide significant loci and implication of genetic risks for specific health factors. Am J Psychiatry. 2023;180:723–38.PubMedPubMedCentralCrossRef Docherty AR, Mullins N, Ashley-Koch AE, Qin X, Coleman JRI, Shabalin A, et al. GWAS meta-analysis of suicide attempt: identification of 12 genome-wide significant loci and implication of genetic risks for specific health factors. Am J Psychiatry. 2023;180:723–38.PubMedPubMedCentralCrossRef
9.
go back to reference Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics Consortium, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.PubMedPubMedCentralCrossRef Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics Consortium, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.PubMedPubMedCentralCrossRef
10.
go back to reference Wu Y, Zeng J, Zhang F, Zhu Z, Qi T, Zheng Z, et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat Commun. 2018;9:918.PubMedPubMedCentralCrossRef Wu Y, Zeng J, Zhang F, Zhu Z, Qi T, Zheng Z, et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat Commun. 2018;9:918.PubMedPubMedCentralCrossRef
11.
go back to reference Hussain SJ, Hao Z, Nabi GZG, Chenhui M, Zhihao W, Dong D, et al. Advancements and prospects of genome-wide association studies (GWAS) in maize. Int J Mol Sci. 2024;25:1918.CrossRef Hussain SJ, Hao Z, Nabi GZG, Chenhui M, Zhihao W, Dong D, et al. Advancements and prospects of genome-wide association studies (GWAS) in maize. Int J Mol Sci. 2024;25:1918.CrossRef
12.
go back to reference Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48:481–7.PubMedCrossRef Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48:481–7.PubMedCrossRef
13.
go back to reference Zuber V, Grinberg NF, Gill D, Manipur I, Slob EAW, Patel A, et al. Combining evidence from Mendelian randomization and colocalization: review and comparison of approaches. Am J Hum Genet. 2022;109:767–82.PubMedPubMedCentralCrossRef Zuber V, Grinberg NF, Gill D, Manipur I, Slob EAW, Patel A, et al. Combining evidence from Mendelian randomization and colocalization: review and comparison of approaches. Am J Hum Genet. 2022;109:767–82.PubMedPubMedCentralCrossRef
14.
go back to reference Pendergrass SA, Brown-Gentry K, Dudek SM, Torstenson ES, Ambite JL, Avery CL, et al. The use of phenome-wide association studies (PheWAS) for exploration of novel genotype-phenotype relationships and pleiotropy discovery. Genet Epidemiol. 2011;35:410–22.PubMedPubMedCentralCrossRef Pendergrass SA, Brown-Gentry K, Dudek SM, Torstenson ES, Ambite JL, Avery CL, et al. The use of phenome-wide association studies (PheWAS) for exploration of novel genotype-phenotype relationships and pleiotropy discovery. Genet Epidemiol. 2011;35:410–22.PubMedPubMedCentralCrossRef
15.
go back to reference Shoichet BK, McGovern SL, Wei B, Irwin JJ. Lead discovery using molecular docking. Curr Opin Chem Biol. 2002;6:439–46.PubMedCrossRef Shoichet BK, McGovern SL, Wei B, Irwin JJ. Lead discovery using molecular docking. Curr Opin Chem Biol. 2002;6:439–46.PubMedCrossRef
16.
go back to reference Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613:508–18.PubMedPubMedCentralCrossRef Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613:508–18.PubMedPubMedCentralCrossRef
17.
go back to reference Glynn P, Greenland P. Contributions of the UK biobank high impact papers in the era of precision medicine. Eur J Epidemiol. 2020;35:5–10.PubMedCrossRef Glynn P, Greenland P. Contributions of the UK biobank high impact papers in the era of precision medicine. Eur J Epidemiol. 2020;35:5–10.PubMedCrossRef
19.
go back to reference Otowa T, Hek K, Lee M, Byrne EM, Mirza SS, Nivard MG, et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol Psychiatry. 2016;21:1391–9.PubMedPubMedCentralCrossRef Otowa T, Hek K, Lee M, Byrne EM, Mirza SS, Nivard MG, et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol Psychiatry. 2016;21:1391–9.PubMedPubMedCentralCrossRef
20.
go back to reference Howard DM, Adams MJ, Clarke T-K, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22:343–52.PubMedPubMedCentralCrossRef Howard DM, Adams MJ, Clarke T-K, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22:343–52.PubMedPubMedCentralCrossRef
21.
go back to reference Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8.PubMedPubMedCentralCrossRef Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8.PubMedPubMedCentralCrossRef
23.
go back to reference The GTEx Consortium, Aguet F, Anand S, Ardlie KG, Gabriel S, Getz GA, et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–30.PubMedCentralCrossRef The GTEx Consortium, Aguet F, Anand S, Ardlie KG, Gabriel S, Getz GA, et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–30.PubMedCentralCrossRef
24.
go back to reference Melzer D, Perry JRB, Hernandez D, Corsi A-M, Stevens K, Rafferty I, et al. A genome-wide association study identifies protein quantitative trait loci (pQTLs). PLoS Genet. 2008;4:e1000072.PubMedPubMedCentralCrossRef Melzer D, Perry JRB, Hernandez D, Corsi A-M, Stevens K, Rafferty I, et al. A genome-wide association study identifies protein quantitative trait loci (pQTLs). PLoS Genet. 2008;4:e1000072.PubMedPubMedCentralCrossRef
25.
go back to reference Ferkingstad E, Sulem P, Atlason BA, Sveinbjornsson G, Magnusson MI, Styrmisdottir EL, et al. Large-scale integration of the plasma proteome with genetics and disease. Nat Genet. 2021;53:1712–21.PubMedCrossRef Ferkingstad E, Sulem P, Atlason BA, Sveinbjornsson G, Magnusson MI, Styrmisdottir EL, et al. Large-scale integration of the plasma proteome with genetics and disease. Nat Genet. 2021;53:1712–21.PubMedCrossRef
26.
go back to reference Hartwig FP, Davies NM, Hemani G, Davey SG. Two-sample mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int J Epidemiol. 2016;45:1717–26.PubMedCrossRef Hartwig FP, Davies NM, Hemani G, Davey SG. Two-sample mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int J Epidemiol. 2016;45:1717–26.PubMedCrossRef
27.
go back to reference Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 2019;35:4851–3.PubMedPubMedCentralCrossRef Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 2019;35:4851–3.PubMedPubMedCentralCrossRef
28.
go back to reference Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013;178:1177–84.PubMedPubMedCentralCrossRef Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013;178:1177–84.PubMedPubMedCentralCrossRef
29.
go back to reference Tao Y, Zhao R, Han J, Li Y. Assessing the causal relationship between COVID-19 and post-COVID-19 syndrome: a Mendelian randomisation study. J Glob Health. 2023;13:06054.PubMedPubMedCentralCrossRef Tao Y, Zhao R, Han J, Li Y. Assessing the causal relationship between COVID-19 and post-COVID-19 syndrome: a Mendelian randomisation study. J Glob Health. 2023;13:06054.PubMedPubMedCentralCrossRef
30.
go back to reference Cohen JF, Chalumeau M, Cohen R, Korevaar DA, Khoshnood B, Bossuyt PMM. Cochran’s Q test was useful to assess heterogeneity in likelihood ratios in studies of diagnostic accuracy. J Clin Epidemiol. 2015;68:299–306.PubMedCrossRef Cohen JF, Chalumeau M, Cohen R, Korevaar DA, Khoshnood B, Bossuyt PMM. Cochran’s Q test was useful to assess heterogeneity in likelihood ratios in studies of diagnostic accuracy. J Clin Epidemiol. 2015;68:299–306.PubMedCrossRef
31.
go back to reference Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.PubMedPubMedCentralCrossRef Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.PubMedPubMedCentralCrossRef
32.
go back to reference Dudbridge F. Polygenic mendelian randomization. Cold Spring Harbor Perspect Med. 2021;11(2):a039586.CrossRef Dudbridge F. Polygenic mendelian randomization. Cold Spring Harbor Perspect Med. 2021;11(2):a039586.CrossRef
33.
go back to reference Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh P-R, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47:1236–41.PubMedPubMedCentralCrossRef Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh P-R, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47:1236–41.PubMedPubMedCentralCrossRef
34.
go back to reference Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. 2017;33:272–9.PubMedCrossRef Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. 2017;33:272–9.PubMedCrossRef
35.
go back to reference Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.PubMedCrossRef Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.PubMedCrossRef
36.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.PubMedPubMedCentralCrossRef Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.PubMedPubMedCentralCrossRef
37.
go back to reference Gacesa R, Kurilshikov A, Vich Vila A, Sinha T, Klaassen MAY, Bolte LA, et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature. 2022;604:732–9.PubMedCrossRef Gacesa R, Kurilshikov A, Vich Vila A, Sinha T, Klaassen MAY, Bolte LA, et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature. 2022;604:732–9.PubMedCrossRef
38.
go back to reference Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555:210–5.PubMedCrossRef Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555:210–5.PubMedCrossRef
39.
go back to reference Arvanitis M, Tayeb K, Strober BJ, Battle A. Redefining tissue specificity of genetic regulation of gene expression in the presence of allelic heterogeneity. Am J Human Genetics. 2022;109:223–39.CrossRef Arvanitis M, Tayeb K, Strober BJ, Battle A. Redefining tissue specificity of genetic regulation of gene expression in the presence of allelic heterogeneity. Am J Human Genetics. 2022;109:223–39.CrossRef
40.
go back to reference Huang Y, Shan Y, Zhang W, Lee AM, Li F, Stranger BE, et al. Deciphering genetic causes for sex differences in human health through drug metabolism and transporter genes. Nat Commun. 2023;14:175.PubMedPubMedCentralCrossRef Huang Y, Shan Y, Zhang W, Lee AM, Li F, Stranger BE, et al. Deciphering genetic causes for sex differences in human health through drug metabolism and transporter genes. Nat Commun. 2023;14:175.PubMedPubMedCentralCrossRef
41.
go back to reference Liu X, Tian D, Li C, Tang B, Wang Z, Zhang R, et al. GWAS Atlas: an updated knowledgebase integrating more curated associations in plants and animals. Nucleic Acids Res. 2023;51:D969–76.PubMedCrossRef Liu X, Tian D, Li C, Tang B, Wang Z, Zhang R, et al. GWAS Atlas: an updated knowledgebase integrating more curated associations in plants and animals. Nucleic Acids Res. 2023;51:D969–76.PubMedCrossRef
42.
go back to reference Tian D, Wang P, Tang B, Teng X, Li C, Liu X, et al. GWAS Atlas: a curated resource of genome-wide variant-trait associations in plants and animals. Nucleic Acids Res. 2020;48:D927–32.PubMedCrossRef Tian D, Wang P, Tang B, Teng X, Li C, Liu X, et al. GWAS Atlas: a curated resource of genome-wide variant-trait associations in plants and animals. Nucleic Acids Res. 2020;48:D927–32.PubMedCrossRef
43.
go back to reference Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations. Bioinformatics. 2010;26:1205–10.PubMedPubMedCentralCrossRef Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations. Bioinformatics. 2010;26:1205–10.PubMedPubMedCentralCrossRef
44.
go back to reference Pendergrass SA, Dudek SM, Crawford DC, Ritchie MD. Visually integrating and exploring high throughput phenome-wide association study (PheWAS) results using PheWAS-View. BioData Mining. 2012;5:5.PubMedPubMedCentralCrossRef Pendergrass SA, Dudek SM, Crawford DC, Ritchie MD. Visually integrating and exploring high throughput phenome-wide association study (PheWAS) results using PheWAS-View. BioData Mining. 2012;5:5.PubMedPubMedCentralCrossRef
46.
go back to reference Knox C, Wilson M, Klinger CM, Franklin M, Oler E, Wilson A, et al. DrugBank 6.0: the DrugBank knowledgebase for 2024. Nucleic Acids Res. 2024;52:D1265–75.PubMedCrossRef Knox C, Wilson M, Klinger CM, Franklin M, Oler E, Wilson A, et al. DrugBank 6.0: the DrugBank knowledgebase for 2024. Nucleic Acids Res. 2024;52:D1265–75.PubMedCrossRef
47.
go back to reference Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, et al. TTD: therapeutic target database describing target druggability information. Nucleic Acids Res. 2024;52:D1465–77.PubMedCrossRef Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, et al. TTD: therapeutic target database describing target druggability information. Nucleic Acids Res. 2024;52:D1465–77.PubMedCrossRef
48.
go back to reference Zdrazil B, Felix E, Hunter F, Manners EJ, Blackshaw J, Corbett S, et al. The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic Acids Res. 2024;52:D1180–92.PubMedCrossRef Zdrazil B, Felix E, Hunter F, Manners EJ, Blackshaw J, Corbett S, et al. The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic Acids Res. 2024;52:D1180–92.PubMedCrossRef
49.
go back to reference Cannon M, Stevenson J, Stahl K, Basu R, Coffman A, Kiwala S, et al. DGIdb 5.0: rebuilding the drug–gene interaction database for precision medicine and drug discovery platforms. Nucleic Acids Res. 2024;52:D1227–35.PubMedCrossRef Cannon M, Stevenson J, Stahl K, Basu R, Coffman A, Kiwala S, et al. DGIdb 5.0: rebuilding the drug–gene interaction database for precision medicine and drug discovery platforms. Nucleic Acids Res. 2024;52:D1227–35.PubMedCrossRef
50.
go back to reference Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016;11:905–19.PubMedPubMedCentralCrossRef Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016;11:905–19.PubMedPubMedCentralCrossRef
51.
go back to reference Wang Y, Bryant SH, Cheng T, Wang J, Gindulyte A, Shoemaker BA, et al. PubChem BioAssay: 2017 update. Nucleic Acids Res. 2017;45:D955–63.PubMedCrossRef Wang Y, Bryant SH, Cheng T, Wang J, Gindulyte A, Shoemaker BA, et al. PubChem BioAssay: 2017 update. Nucleic Acids Res. 2017;45:D955–63.PubMedCrossRef
52.
go back to reference Plana-Ripoll O, Pedersen CB, Holtz Y, Benros ME, Dalsgaard S, De Jonge P, et al. Exploring comorbidity within mental disorders among a danish national population. JAMA Psychiat. 2019;76:259.CrossRef Plana-Ripoll O, Pedersen CB, Holtz Y, Benros ME, Dalsgaard S, De Jonge P, et al. Exploring comorbidity within mental disorders among a danish national population. JAMA Psychiat. 2019;76:259.CrossRef
53.
go back to reference Huang J, Perlis RH, Lee PH, Rush AJ, Fava M, Sachs GS, et al. Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and depression. AJP. 2010;167:1254–63.CrossRef Huang J, Perlis RH, Lee PH, Rush AJ, Fava M, Sachs GS, et al. Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and depression. AJP. 2010;167:1254–63.CrossRef
54.
55.
go back to reference Taylor JJ, Lin C, Talmasov D, Ferguson MA, Schaper FLWVJ, Jiang J, et al. A transdiagnostic network for psychiatric illness derived from atrophy and lesions. Nat Hum Behav. 2023;7:420–9.PubMedPubMedCentralCrossRef Taylor JJ, Lin C, Talmasov D, Ferguson MA, Schaper FLWVJ, Jiang J, et al. A transdiagnostic network for psychiatric illness derived from atrophy and lesions. Nat Hum Behav. 2023;7:420–9.PubMedPubMedCentralCrossRef
56.
go back to reference Brown T, Campbell L, Lehman C, Grisham J, Mancill R. Current and lifetime comorbidity of the DSM-IV anxiety and mood disorders in a large clinical sample. J Abnorm Psychol. 2001;107:179–92.CrossRef Brown T, Campbell L, Lehman C, Grisham J, Mancill R. Current and lifetime comorbidity of the DSM-IV anxiety and mood disorders in a large clinical sample. J Abnorm Psychol. 2001;107:179–92.CrossRef
57.
go back to reference Temmingh H, Stein DJ. Anxiety in patients with schizophrenia: epidemiology and management. CNS Drugs. 2015;29:819–32.PubMedCrossRef Temmingh H, Stein DJ. Anxiety in patients with schizophrenia: epidemiology and management. CNS Drugs. 2015;29:819–32.PubMedCrossRef
58.
go back to reference Ceskova E. Pharmacological strategies for the management of comorbid depression and schizophrenia. Expert Opin Pharmacother. 2020;21:459–65.PubMedCrossRef Ceskova E. Pharmacological strategies for the management of comorbid depression and schizophrenia. Expert Opin Pharmacother. 2020;21:459–65.PubMedCrossRef
59.
go back to reference Mulugeta A, Zhou A, King C, Hyppönen E. Association between major depressive disorder and multiple disease outcomes: a phenome-wide Mendelian randomisation study in the UK Biobank. Mol Psychiatry. 2020;25:1469–76.PubMedCrossRef Mulugeta A, Zhou A, King C, Hyppönen E. Association between major depressive disorder and multiple disease outcomes: a phenome-wide Mendelian randomisation study in the UK Biobank. Mol Psychiatry. 2020;25:1469–76.PubMedCrossRef
60.
go back to reference Xu Q, Cai M, Ji Y, Ma J, Liu J, Zhao Q, et al. Identifying the mediating role of socioeconomic status on the relationship between schizophrenia and major depressive disorder: a Mendelian randomisation analysis. Schizophr. 2023;9:53.CrossRef Xu Q, Cai M, Ji Y, Ma J, Liu J, Zhao Q, et al. Identifying the mediating role of socioeconomic status on the relationship between schizophrenia and major depressive disorder: a Mendelian randomisation analysis. Schizophr. 2023;9:53.CrossRef
61.
go back to reference Jones HJ, Martin D, Lewis SJ, Davey Smith G, O’Donovan MC, Owen MJ, et al. A mendelian randomization study of the causal association between anxiety phenotypes and schizophrenia. Am J Med Genetics Pt B. 2020;183:360–9.CrossRef Jones HJ, Martin D, Lewis SJ, Davey Smith G, O’Donovan MC, Owen MJ, et al. A mendelian randomization study of the causal association between anxiety phenotypes and schizophrenia. Am J Med Genetics Pt B. 2020;183:360–9.CrossRef
63.
go back to reference Alachkar A, Lee J, Asthana K, Vakil Monfared R, Chen J, Alhassen S, et al. The hidden link between circadian entropy and mental health disorders. Transl Psychiatry. 2022;12:281.PubMedPubMedCentralCrossRef Alachkar A, Lee J, Asthana K, Vakil Monfared R, Chen J, Alhassen S, et al. The hidden link between circadian entropy and mental health disorders. Transl Psychiatry. 2022;12:281.PubMedPubMedCentralCrossRef
64.
go back to reference Miyake Y, Tanaka K, Arakawa M. ITIH3 and ITIH4 polymorphisms and depressive symptoms during pregnancy in Japan: the kyushu okinawa maternal and child health study. J Neural Transm. 2018;125:1503–9.PubMedCrossRef Miyake Y, Tanaka K, Arakawa M. ITIH3 and ITIH4 polymorphisms and depressive symptoms during pregnancy in Japan: the kyushu okinawa maternal and child health study. J Neural Transm. 2018;125:1503–9.PubMedCrossRef
65.
go back to reference Amare AT, Vaez A, Hsu Y-H, Direk N, Kamali Z, Howard DM, et al. Bivariate genome-wide association analyses of the broad depression phenotype combined with major depressive disorder, bipolar disorder or schizophrenia reveal eight novel genetic loci for depression. Mol Psychiatry. 2020;25:1420–9.PubMedCrossRef Amare AT, Vaez A, Hsu Y-H, Direk N, Kamali Z, Howard DM, et al. Bivariate genome-wide association analyses of the broad depression phenotype combined with major depressive disorder, bipolar disorder or schizophrenia reveal eight novel genetic loci for depression. Mol Psychiatry. 2020;25:1420–9.PubMedCrossRef
66.
go back to reference He K, Wang Q, Chen J, Li T, Li Z, Li W, et al. ITIH family genes confer risk to schizophrenia and major depressive disorder in the Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry. 2014;51:34–8.PubMedCrossRef He K, Wang Q, Chen J, Li T, Li Z, Li W, et al. ITIH family genes confer risk to schizophrenia and major depressive disorder in the Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry. 2014;51:34–8.PubMedCrossRef
67.
go back to reference Brandl EJ, Lett TA, Chowdhury NI, Tiwari AK, Bakanidze G, Meltzer HY, et al. The role of the ITIH3 rs2535629 variant in antipsychotic response. Schizophr Res. 2016;176:131–5.PubMedCrossRef Brandl EJ, Lett TA, Chowdhury NI, Tiwari AK, Bakanidze G, Meltzer HY, et al. The role of the ITIH3 rs2535629 variant in antipsychotic response. Schizophr Res. 2016;176:131–5.PubMedCrossRef
68.
go back to reference Ge Y, Wang L, Li D, Zhao C, Li J, Liu T. Exploring the extended biological functions of the human copper chaperone of superoxide dismutase 1. Protein J. 2019;38:463–71.PubMedCrossRef Ge Y, Wang L, Li D, Zhao C, Li J, Liu T. Exploring the extended biological functions of the human copper chaperone of superoxide dismutase 1. Protein J. 2019;38:463–71.PubMedCrossRef
70.
go back to reference Furukawa Y, Matsumoto K, Nakagome K, Shintani A, Sue K. Zinc-mediated interaction of copper chaperones through their heavy-metal associated domains. J Trace Elem Med Biol. 2023;75:127111.PubMedCrossRef Furukawa Y, Matsumoto K, Nakagome K, Shintani A, Sue K. Zinc-mediated interaction of copper chaperones through their heavy-metal associated domains. J Trace Elem Med Biol. 2023;75:127111.PubMedCrossRef
71.
go back to reference Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F, et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci USA. 2007;104:10655–60.PubMedPubMedCentralCrossRef Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F, et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci USA. 2007;104:10655–60.PubMedPubMedCentralCrossRef
72.
go back to reference Xie L, Zhang S, Huang L, Peng Z, Lu H, He Q, et al. Single-cell RNA sequencing of peripheral blood reveals that monocytes with high cathepsin S expression aggravate cerebral ischemia-reperfusion injury. Brain Behav Immun. 2023;107:330–44.PubMedCrossRef Xie L, Zhang S, Huang L, Peng Z, Lu H, He Q, et al. Single-cell RNA sequencing of peripheral blood reveals that monocytes with high cathepsin S expression aggravate cerebral ischemia-reperfusion injury. Brain Behav Immun. 2023;107:330–44.PubMedCrossRef
73.
go back to reference Gu X, Dou M, Su W, Jiang Z, Duan Q, Cao B, et al. Identifying novel proteins underlying schizophrenia via integrating pQTLs of the plasma, CSF, and brain with GWAS summary data. BMC Med. 2022;20:474.PubMedPubMedCentralCrossRef Gu X, Dou M, Su W, Jiang Z, Duan Q, Cao B, et al. Identifying novel proteins underlying schizophrenia via integrating pQTLs of the plasma, CSF, and brain with GWAS summary data. BMC Med. 2022;20:474.PubMedPubMedCentralCrossRef
74.
go back to reference Cheng W, Frei O, van der Meer D, Wang Y, O’Connell KS, Chu Y, et al. Genetic association between schizophrenia and cortical brain surface area and thickness. JAMA Psychiat. 2021;78:1–11.CrossRef Cheng W, Frei O, van der Meer D, Wang Y, O’Connell KS, Chu Y, et al. Genetic association between schizophrenia and cortical brain surface area and thickness. JAMA Psychiat. 2021;78:1–11.CrossRef
75.
go back to reference Chen C, Zhang C, Cheng L, Reilly JL, Bishop JR, Sweeney JA, et al. Correlation between DNA methylation and gene expression in the brains of patients with bipolar disorder and schizophrenia. Bipolar Disord. 2014;16:790–9.PubMedPubMedCentralCrossRef Chen C, Zhang C, Cheng L, Reilly JL, Bishop JR, Sweeney JA, et al. Correlation between DNA methylation and gene expression in the brains of patients with bipolar disorder and schizophrenia. Bipolar Disord. 2014;16:790–9.PubMedPubMedCentralCrossRef
76.
go back to reference Matutino Santos P, Pereira Campos G, Nascimento C. Endo-lysosomal and autophagy pathway and ubiquitin-proteasome system in mood disorders: a review article. NDT. 2023;19:133–51.CrossRef Matutino Santos P, Pereira Campos G, Nascimento C. Endo-lysosomal and autophagy pathway and ubiquitin-proteasome system in mood disorders: a review article. NDT. 2023;19:133–51.CrossRef
77.
go back to reference Luza S, Opazo CM, Bousman CA, Pantelis C, Bush AI, Everall IP. The ubiquitin proteasome system and schizophrenia. Lancet Psychiatry. 2020;7:528–37.PubMedCrossRef Luza S, Opazo CM, Bousman CA, Pantelis C, Bush AI, Everall IP. The ubiquitin proteasome system and schizophrenia. Lancet Psychiatry. 2020;7:528–37.PubMedCrossRef
78.
go back to reference Wong M-L, Dong C, Maestre-Mesa J, Licinio J. Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol Psychiatry. 2008;13:800–12.PubMedPubMedCentralCrossRef Wong M-L, Dong C, Maestre-Mesa J, Licinio J. Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol Psychiatry. 2008;13:800–12.PubMedPubMedCentralCrossRef
79.
go back to reference Liu YE, Wang M, Greene J, Su J, Ullrich S, Li H, et al. Preparation and characterization of recombinant tissue inhibitor of metalloproteinase 4 (TIMP-4). J Biol Chem. 1997;272:20479–83.PubMedCrossRef Liu YE, Wang M, Greene J, Su J, Ullrich S, Li H, et al. Preparation and characterization of recombinant tissue inhibitor of metalloproteinase 4 (TIMP-4). J Biol Chem. 1997;272:20479–83.PubMedCrossRef
80.
81.
go back to reference Yim S-V, Kim SK, Park HJ, Jeon HS, Jo BC, Kang WS, et al. Assessment of the correlation between TIMP4 SNPs and schizophrenia and autism spectrum disorders. Mol Med Rep. 2013;7:489–94.PubMedCrossRef Yim S-V, Kim SK, Park HJ, Jeon HS, Jo BC, Kang WS, et al. Assessment of the correlation between TIMP4 SNPs and schizophrenia and autism spectrum disorders. Mol Med Rep. 2013;7:489–94.PubMedCrossRef
Metadata
Title
Dissecting the shared genetic landscape of anxiety, depression, and schizophrenia
Authors
Yiming Tao
Rui Zhao
Bin Yang
Jie Han
Yongsheng Li
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2024
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-024-05153-3

Other articles of this Issue 1/2024

Journal of Translational Medicine 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.