Skip to main content
Top
Published in: Antimicrobial Resistance & Infection Control 1/2020

Open Access 01-12-2020 | SARS-CoV-2 | Letter to the Editor

Scientific evidence supports aerosol transmission of SARS-COV-2

Authors: C. Raina MacIntyre, Michelle R. Ananda-Rajah

Published in: Antimicrobial Resistance & Infection Control | Issue 1/2020

Login to get access

Excerpt

We question the evidence cited by Conly et al. [1] to justify recommending masks for routine care of COVID-19 patients. As evidence, the authors cite the R0 and include several references that are not primary research, and only two primary studies. One of these is a study of hospital contamination which found evidence of surface contamination within a hospital but was negative for air samples [2]. This same study is used as evidence supporting contact and fomite transmission, but other studies which did find virus in air samples were disregarded [36] Ong et al. found evidence of virus on hospital air vents, but this is disregarded, and the meaning of finding viral RNA in air samples is questioned by Conly et al. This represents shifting goalposts for proving airborne transmission of SARS-COV-2, which was initially denied altogether, then changed to questioning the infectious potential of air in which viral RNA is found, to later questioning the infectious dose required in air, after viable virus was demonstrated in the air [6]. In fact, viable SARS-COV-2 has been found in the air in hospital rooms in the absence of aerosol generating procedures [6]. …
Literature
1.
go back to reference Conly J, Seto WH, Pittet D, Holmes A, Chu M, Hunter PR. Use of medical face masks versus particulate respirators as a component of personal protective equipment for health care workers in the context of the COVID-19 pandemic. Antimicrob Resist Infect Control. 2020;9(1):126.CrossRef Conly J, Seto WH, Pittet D, Holmes A, Chu M, Hunter PR. Use of medical face masks versus particulate respirators as a component of personal protective equipment for health care workers in the context of the COVID-19 pandemic. Antimicrob Resist Infect Control. 2020;9(1):126.CrossRef
2.
go back to reference Ong SWT, Y.K., Chia, P.Y., , et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 2020;323:1610–2.CrossRef Ong SWT, Y.K., Chia, P.Y., , et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 2020;323:1610–2.CrossRef
4.
go back to reference Santarpia JL, Rivera DN, Herrera VL, Morwitzer MJ, Creager HM, Santarpia GW, et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Nat Sci Rep. 2020;10(1):12732.CrossRef Santarpia JL, Rivera DN, Herrera VL, Morwitzer MJ, Creager HM, Santarpia GW, et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Nat Sci Rep. 2020;10(1):12732.CrossRef
5.
go back to reference Chia PY, Coleman KK, Tan YK, et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat Commun. 2020;11:2800.CrossRef Chia PY, Coleman KK, Tan YK, et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat Commun. 2020;11:2800.CrossRef
6.
go back to reference Lednicky JA, Lauzardo M, Fan ZH, Jutla AS, Tilly TB, Gangwar M, et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int J Infect Dis. 2020;100:476–82.CrossRef Lednicky JA, Lauzardo M, Fan ZH, Jutla AS, Tilly TB, Gangwar M, et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int J Infect Dis. 2020;100:476–82.CrossRef
7.
go back to reference Glauser W. Communication, transparency key as Canada faces new coronavirus threat. Can Med Assoc J. 2020;192(7):E171.CrossRef Glauser W. Communication, transparency key as Canada faces new coronavirus threat. Can Med Assoc J. 2020;192(7):E171.CrossRef
8.
go back to reference He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26:672–5.CrossRef He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26:672–5.CrossRef
9.
go back to reference Khanh NC, Thai PQ, Quach HL, Thi NH, Dinh PC, Duong TN, et al. Transmission of severe acute respiratory syndrome coronavirus 2 during long flight. Emerg Infect Dis. 2020;26(11):2617–24.CrossRef Khanh NC, Thai PQ, Quach HL, Thi NH, Dinh PC, Duong TN, et al. Transmission of severe acute respiratory syndrome coronavirus 2 during long flight. Emerg Infect Dis. 2020;26(11):2617–24.CrossRef
10.
go back to reference Shen Y, Li C, Dong H, Wang Z, Martinez L, Sun Z, et al. Community outbreak investigation of SARS-CoV-2 transmission among bus riders in Eastern China. JAMA Intern Med. 2020;180:1665–71.CrossRef Shen Y, Li C, Dong H, Wang Z, Martinez L, Sun Z, et al. Community outbreak investigation of SARS-CoV-2 transmission among bus riders in Eastern China. JAMA Intern Med. 2020;180:1665–71.CrossRef
13.
go back to reference Ives AR, Bozzuto C. State-by-State estimates of R0 at the start of COVID-19 outbreaks in the USA. medRxiv. 2020:2020.05.17.20104653. Ives AR, Bozzuto C. State-by-State estimates of R0 at the start of COVID-19 outbreaks in the USA. medRxiv. 2020:2020.05.17.20104653.
14.
go back to reference Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2020;26(7):1470–7.CrossRef Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2020;26(7):1470–7.CrossRef
15.
go back to reference Ma Y, Horsburgh CR, White LF, Jenkins HE. Quantifying TB transmission: a systematic review of reproduction number and serial interval estimates for tuberculosis. Epidemiol Infect. 2018;146(12):1478–94.CrossRef Ma Y, Horsburgh CR, White LF, Jenkins HE. Quantifying TB transmission: a systematic review of reproduction number and serial interval estimates for tuberculosis. Epidemiol Infect. 2018;146(12):1478–94.CrossRef
16.
go back to reference Blachere FM, Lindsley WG, Pearce TA, Anderson SE, Fisher M, Khakoo R, et al. Measurement of airborne influenza virus in a hospital emergency department. Clin Infect Dis. 2009;48(4):438–40.CrossRef Blachere FM, Lindsley WG, Pearce TA, Anderson SE, Fisher M, Khakoo R, et al. Measurement of airborne influenza virus in a hospital emergency department. Clin Infect Dis. 2009;48(4):438–40.CrossRef
17.
go back to reference Yan J, Grantham M, Pantelic J, Bueno de Mesquita PJ, Albert B, Liu F, et al. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proc Natl Acad Sci. 2018;115(5):1081.CrossRef Yan J, Grantham M, Pantelic J, Bueno de Mesquita PJ, Albert B, Liu F, et al. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proc Natl Acad Sci. 2018;115(5):1081.CrossRef
18.
go back to reference Nikbakht R, Baneshi MR, Bahrampour A. Estimation of the basic reproduction number and vaccination coverage of influenza in the United States (2017–18). J Res Health Sci. 2018;18(4):e00427-e. Nikbakht R, Baneshi MR, Bahrampour A. Estimation of the basic reproduction number and vaccination coverage of influenza in the United States (2017–18). J Res Health Sci. 2018;18(4):e00427-e.
19.
go back to reference Anderson RMM, May RM. Directly transmitted infections diseases: control by vaccination. Science. 1982;215:1053–60.CrossRef Anderson RMM, May RM. Directly transmitted infections diseases: control by vaccination. Science. 1982;215:1053–60.CrossRef
20.
go back to reference Bischoff WE, McNall RJ, Blevins MW, Turner J, Lopareva EN, Rota PA, et al. Detection of measles virus RNA in air and surface specimens in a hospital setting. J Infect Dis. 2016;213(4):600–3.CrossRef Bischoff WE, McNall RJ, Blevins MW, Turner J, Lopareva EN, Rota PA, et al. Detection of measles virus RNA in air and surface specimens in a hospital setting. J Infect Dis. 2016;213(4):600–3.CrossRef
21.
go back to reference Yates TA, Khan PY, Knight GM, Taylor JG, McHugh TD, Lipman M, et al. The transmission of Mycobacterium tuberculosis in high burden settings. Lancet Infect Dis. 2016;16(2):227–38.CrossRef Yates TA, Khan PY, Knight GM, Taylor JG, McHugh TD, Lipman M, et al. The transmission of Mycobacterium tuberculosis in high burden settings. Lancet Infect Dis. 2016;16(2):227–38.CrossRef
22.
go back to reference Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet.
23.
go back to reference MacIntyre CRC, Chughtai AA, Seale H, Richards GA, Davidson PM. Respiratory protection for healthcare workers treating Ebola virus disease (EVD): are facemasks sufficient to meet occupational health and safety obligations? Int J Nurs Stud. 2014;50(11):1421–6.CrossRef MacIntyre CRC, Chughtai AA, Seale H, Richards GA, Davidson PM. Respiratory protection for healthcare workers treating Ebola virus disease (EVD): are facemasks sufficient to meet occupational health and safety obligations? Int J Nurs Stud. 2014;50(11):1421–6.CrossRef
24.
go back to reference Campell A. SARS commission final report: spring of fear. Toronto: Government of Ontario; 2006. Campell A. SARS commission final report: spring of fear. Toronto: Government of Ontario; 2006.
Metadata
Title
Scientific evidence supports aerosol transmission of SARS-COV-2
Authors
C. Raina MacIntyre
Michelle R. Ananda-Rajah
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
SARS-CoV-2
Published in
Antimicrobial Resistance & Infection Control / Issue 1/2020
Electronic ISSN: 2047-2994
DOI
https://doi.org/10.1186/s13756-020-00868-6

Other articles of this Issue 1/2020

Antimicrobial Resistance & Infection Control 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.