Skip to main content
Top
Published in: BMC Endocrine Disorders 1/2020

Open Access 01-12-2020 | SARS-CoV-2 | Correspondence

Repurposing existing drugs for COVID-19: an endocrinology perspective

Author: Flavio A. Cadegiani

Published in: BMC Endocrine Disorders | Issue 1/2020

Login to get access

Abstract

Background

Coronavirus Disease 2019 (COVID-19) is a multi-systemic infection caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), that has become a pandemic. Although its prevailing symptoms include anosmia, ageusia, dry couch, fever, shortness of brief, arthralgia, myalgia, and fatigue, regional and methodological assessments vary, leading to heterogeneous clinical descriptions of COVID-19. Aging, uncontrolled diabetes, hypertension, obesity, and exposure to androgens have been correlated with worse prognosis in COVID-19. Abnormalities in the renin-angiotensin-aldosterone system (RAAS), angiotensin-converting enzyme-2 (ACE2) and the androgen-driven transmembrane serine protease 2 (TMPRSS2) have been elicited as key modulators of SARS-CoV-2.

Main text

While safe and effective therapies for COVID-19 lack, the current moment of pandemic urges for therapeutic options. Existing drugs should be preferred over novel ones for clinical testing due to four inherent characteristics: 1. Well-established long-term safety profile, known risks and contraindications; 2. More accurate predictions of clinical effects; 3. Familiarity of clinical management; and 4. Affordable costs for public health systems. In the context of the key modulators of SARS-CoV-2 infectivity, endocrine targets have become central as candidates for COVID-19.
The only endocrine or endocrine-related drug class with already existing emerging evidence for COVID-19 is the glucocorticoids, particularly for the use of dexamethasone for severely affected patients. Other drugs that are more likely to present clinical effects despite the lack of specific evidence for COVID-19 include anti-androgens (spironolactone, eplerenone, finasteride and dutasteride), statins, N-acetyl cysteine (NAC), ACE inhibitors (ACEi), angiotensin receptor blockers (ARB), and direct TMPRSS-2 inhibitors (nafamostat and camostat). Several other candidates show less consistent plausibility. In common, except for dexamethasone, all candidates have no evidence for COVID-19, and clinical trials are needed.

Conclusion

While dexamethasone may reduce mortality in severely ill patients with COVID-19, in the absence of evidence of any specific drug for mild-to-moderate COVID-19, researchers should consider testing existing drugs due to their favorable safety, familiarity, and cost profile. However, except for dexamethasone in severe COVID-19, drug treatments for COVID-19 patients must be restricted to clinical research studies until efficacy has been extensively proven, with favorable outcomes in terms of reduction in hospitalization, mechanical ventilation, and death.
Literature
1.
go back to reference Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study [published online ahead of print, 2020 Mar 11] [published correction appears in Lancet. 2020 Mar 12;:]. Lancet. 2020;S0140-6736(20)30566-3. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study [published online ahead of print, 2020 Mar 11] [published correction appears in Lancet. 2020 Mar 12;:]. Lancet. 2020;S0140-6736(20)30566-3.
2.
go back to reference Lauer SA, Grantz KH, Bi Q, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application [published online ahead of print, 2020 Mar 10]. Ann Intern Med. 2020;https://doi.org/10.7326/M20-0504. Lauer SA, Grantz KH, Bi Q, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application [published online ahead of print, 2020 Mar 10]. Ann Intern Med. 2020;https://​doi.​org/​10.​7326/​M20-0504.
4.
go back to reference Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020.
5.
go back to reference Hajifathalian K, Kumar S, Newberry C, et al. Obesity is associated with worse outcomes in COVID-19: Analysis of Early Data From New York City [published online ahead of print, 2020 May 29]. Obesity (Silver Spring). 2020;https://doi.org/10.1002/oby.22923. Hajifathalian K, Kumar S, Newberry C, et al. Obesity is associated with worse outcomes in COVID-19: Analysis of Early Data From New York City [published online ahead of print, 2020 May 29]. Obesity (Silver Spring). 2020;https://​doi.​org/​10.​1002/​oby.​22923.
7.
go back to reference Palaiodimos L, Kokkinidis DG, Li W, et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York [published online ahead of print, 2020 May 16]. Metabolism. 2020;108:154262. Palaiodimos L, Kokkinidis DG, Li W, et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York [published online ahead of print, 2020 May 16]. Metabolism. 2020;108:154262.
8.
go back to reference Goren A, Vano-Galvan S, Wambier CG, et al. A preliminary observation: male pattern hair loss among hospitalized COVID-19 patients in Spain - A potential clue to the role of androgens in COVID-19 severity [published online ahead of print, 2020 Apr 16]. J Cosmet Dermatol. 2020;https://doi.org/10.1111/jocd.13443. Goren A, Vano-Galvan S, Wambier CG, et al. A preliminary observation: male pattern hair loss among hospitalized COVID-19 patients in Spain - A potential clue to the role of androgens in COVID-19 severity [published online ahead of print, 2020 Apr 16]. J Cosmet Dermatol. 2020;https://​doi.​org/​10.​1111/​jocd.​13443.
9.
go back to reference Goren A, McCoy J, Wambier CG, et al. What does androgenetic alopecia have to do with COVID-19? An insight into a potential new therapy [published online ahead of print, 2020 Apr 1]. Dermatol Ther. 2020;e13365. Goren A, McCoy J, Wambier CG, et al. What does androgenetic alopecia have to do with COVID-19? An insight into a potential new therapy [published online ahead of print, 2020 Apr 1]. Dermatol Ther. 2020;e13365.
10.
go back to reference Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV [published online ahead of print, 2020 Feb 17]. Biochem Biophys Res Commun. 2020;S0006-291X(20)30339-9. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV [published online ahead of print, 2020 Feb 17]. Biochem Biophys Res Commun. 2020;S0006-291X(20)30339-9.
11.
go back to reference Hoffmann M, Kleine-Wever H, Kruger N, Muller M, Drotsten C, Pholhlmann S. The novel coronavirus 2019 (2019-nCoV) uses the SARS coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry in target cells. Cell. 2020;181:1–10.CrossRef Hoffmann M, Kleine-Wever H, Kruger N, Muller M, Drotsten C, Pholhlmann S. The novel coronavirus 2019 (2019-nCoV) uses the SARS coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry in target cells. Cell. 2020;181:1–10.CrossRef
12.
go back to reference Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell MC, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature Med. 2005;11:875–9.PubMedCrossRef Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell MC, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature Med. 2005;11:875–9.PubMedCrossRef
13.
go back to reference Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T, Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Science. 2020;12:8–15.CrossRef Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T, Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Science. 2020;12:8–15.CrossRef
14.
go back to reference Ortega JT, Serrano ML, Pujol FH, Rangel HR. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI J. 2020;19:410–417. Published 2020 Mar 18. Ortega JT, Serrano ML, Pujol FH, Rangel HR. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI J. 2020;19:410–417. Published 2020 Mar 18.
15.
go back to reference Yan T, Xiao R, Lin G. Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronavirus and SARS-CoV-2: A double-edged sword? FASEB J. 2020;34(5):6017–26.PubMedCrossRef Yan T, Xiao R, Lin G. Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronavirus and SARS-CoV-2: A double-edged sword? FASEB J. 2020;34(5):6017–26.PubMedCrossRef
16.
go back to reference Zou Z, Yan Y, Shu Y, et al. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat Commun. 2014;5:3594.PubMedCrossRef Zou Z, Yan Y, Shu Y, et al. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat Commun. 2014;5:3594.PubMedCrossRef
17.
18.
go back to reference Khan A, Benthin C, Zeno B, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21:234.PubMedPubMedCentralCrossRef Khan A, Benthin C, Zeno B, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21:234.PubMedPubMedCentralCrossRef
19.
go back to reference Batlle D, Wysocki SK. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Clinical Science. 2020;134:543–5.PubMedCrossRef Batlle D, Wysocki SK. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Clinical Science. 2020;134:543–5.PubMedCrossRef
20.
go back to reference Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA 2020 (Epub ahead of print). Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA 2020 (Epub ahead of print).
22.
25.
go back to reference Helms J, Kremer S, Merdji H, et al. Neurologic Features in Severe SARS-CoV-2 Infection [published online ahead of print, 2020 Apr 15]. N Engl J Med. 2020;NEJMc2008597. Helms J, Kremer S, Merdji H, et al. Neurologic Features in Severe SARS-CoV-2 Infection [published online ahead of print, 2020 Apr 15]. N Engl J Med. 2020;NEJMc2008597.
26.
go back to reference Lin L, Jiang X, Zhang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection [published online ahead of print, 2020 Apr 2]. Gut. 2020;gutjnl-2020-321013. Lin L, Jiang X, Zhang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection [published online ahead of print, 2020 Apr 2]. Gut. 2020;gutjnl-2020-321013.
27.
go back to reference Cheung KS, Hung IF, Chan PP, et al. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples from the Hong Kong Cohort and Systematic Review and Meta-analysis [published online ahead of print, 2020 Apr 3]. Gastroenterology. 2020;S0016-5085(20)30448-0. Cheung KS, Hung IF, Chan PP, et al. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples from the Hong Kong Cohort and Systematic Review and Meta-analysis [published online ahead of print, 2020 Apr 3]. Gastroenterology. 2020;S0016-5085(20)30448-0.
31.
go back to reference Zhu H, Rhee JW, Cheng P, et al. Cardiovascular Complications in Patients with COVID-19: Consequences of Viral Toxicities and Host Immune Response. Curr Cardiol Rep. 2020;22(5):32. Published 2020 Apr 21. Zhu H, Rhee JW, Cheng P, et al. Cardiovascular Complications in Patients with COVID-19: Consequences of Viral Toxicities and Host Immune Response. Curr Cardiol Rep. 2020;22(5):32. Published 2020 Apr 21.
32.
go back to reference Kim IC, Kim JY, Kim HA, Han S. COVID-19-related myocarditis in a 21-year-old female patient [published online ahead of print, 2020 Apr 13]. Eur Heart J. 2020;ehaa288. Kim IC, Kim JY, Kim HA, Han S. COVID-19-related myocarditis in a 21-year-old female patient [published online ahead of print, 2020 Apr 13]. Eur Heart J. 2020;ehaa288.
33.
38.
go back to reference Fanelli V, Fiorentino M, Cantaluppi V, et al. Acute kidney injury in SARS-CoV-2 infected patients. Crit Care. 2020;24(1):155. Published 2020 Apr 16. Fanelli V, Fiorentino M, Cantaluppi V, et al. Acute kidney injury in SARS-CoV-2 infected patients. Crit Care. 2020;24(1):155. Published 2020 Apr 16.
39.
go back to reference Chu KH, Tsang WK, Tang CS, et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int. 2005;67(2):698–705. Chu KH, Tsang WK, Tang CS, et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int. 2005;67(2):698–705.
42.
go back to reference Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19 [published online ahead of print, 2020 Apr 10]. Thromb Res. 2020;S0049-3848(20)30120-1. Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19 [published online ahead of print, 2020 Apr 10]. Thromb Res. 2020;S0049-3848(20)30120-1.
43.
44.
go back to reference Panigada M, Bottino N, Tagliabue P, et al. Hypercoagulability of COVID-19 patients in Intensive Care Unit. A Report of Thromboelastography Findings and other Parameters of Hemostasis [published online ahead of print, 2020 Apr 17]. J Thromb Haemost. 2020;https://doi.org/10.1111/jth.14850. Panigada M, Bottino N, Tagliabue P, et al. Hypercoagulability of COVID-19 patients in Intensive Care Unit. A Report of Thromboelastography Findings and other Parameters of Hemostasis [published online ahead of print, 2020 Apr 17]. J Thromb Haemost. 2020;https://​doi.​org/​10.​1111/​jth.​14850.
47.
go back to reference Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past [published online ahead of print, 2020 Apr 9]. J Clin Virol. 2020;127:104362. Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past [published online ahead of print, 2020 Apr 9]. J Clin Virol. 2020;127:104362.
49.
51.
go back to reference Offringa A, Montijn R, Singh S, Paul M, Pinto YM, Pinto-Sietsma SJ. The mechanistic overview of SARS-CoV-2 using angiotensin-converting enzyme 2 to enter the cell for replication: possible treatment options related to the renin-angiotensin system [published online ahead of print, 2020 May 28]. Eur Heart J Cardiovasc Pharmacother. 2020;pvaa053. Offringa A, Montijn R, Singh S, Paul M, Pinto YM, Pinto-Sietsma SJ. The mechanistic overview of SARS-CoV-2 using angiotensin-converting enzyme 2 to enter the cell for replication: possible treatment options related to the renin-angiotensin system [published online ahead of print, 2020 May 28]. Eur Heart J Cardiovasc Pharmacother. 2020;pvaa053.
52.
go back to reference Liu DD, Hsu YH, Chen HI. Endotoxin-induced acute lung injury is enhanced in rats with spontaneous hypertension. Clin Exp Pharmacol Physiol. 2007;34(1-2):61-69. Liu DD, Hsu YH, Chen HI. Endotoxin-induced acute lung injury is enhanced in rats with spontaneous hypertension. Clin Exp Pharmacol Physiol. 2007;34(1-2):61-69.
53.
go back to reference Biggest COVID-19 trial tests repurposed drugs first. Nat Biotechnol. 2020;38(5):510. Biggest COVID-19 trial tests repurposed drugs first. Nat Biotechnol. 2020;38(5):510.
54.
go back to reference Shaughnessy AF. Old drugs, new tricks. BMJ. 2011;342:d741. Shaughnessy AF. Old drugs, new tricks. BMJ. 2011;342:d741.
55.
go back to reference O'Connor KA, Roth BL. Finding new tricks for old drugs: an efficient route for public-sector drug discovery. Nat Rev Drug Discov. 2005;4(12):1005-1014. O'Connor KA, Roth BL. Finding new tricks for old drugs: an efficient route for public-sector drug discovery. Nat Rev Drug Discov. 2005;4(12):1005-1014.
56.
go back to reference Mercorelli B, Palù G, Loregian A. Drug Repurposing for Viral Infectious Diseases: How Far Are We?. Trends Microbiol. 2018;26(10):865-876. Mercorelli B, Palù G, Loregian A. Drug Repurposing for Viral Infectious Diseases: How Far Are We?. Trends Microbiol. 2018;26(10):865-876.
59.
go back to reference Inciardi RM, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol2020;March 27:[Epub ahead of print]. Inciardi RM, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol2020;March 27:[Epub ahead of print].
60.
go back to reference Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state. JAMA2020;March 19:[Epub ahead of print]. Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state. JAMA2020;March 19:[Epub ahead of print].
61.
go back to reference Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020;March 27:[Epub ahead of print]. Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020;March 27:[Epub ahead of print].
62.
go back to reference Mokra D, Mikolka P, Kosutova P, Mokry J. Corticosteroids in Acute Lung Injury: The Dilemma Continues. Int J Mol Sci. 2019;20(19):4765. Published 2019 Sep 25. Mokra D, Mikolka P, Kosutova P, Mokry J. Corticosteroids in Acute Lung Injury: The Dilemma Continues. Int J Mol Sci. 2019;20(19):4765. Published 2019 Sep 25.
63.
go back to reference Tang BM, Craig JC, Eslick GD, Seppelt I, McLean AS. Use of corticosteroids in acute lung injury and acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care Med. 2009;37(5):1594-1603. Tang BM, Craig JC, Eslick GD, Seppelt I, McLean AS. Use of corticosteroids in acute lung injury and acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care Med. 2009;37(5):1594-1603.
65.
go back to reference ClinicalTrials.gov (Last accessed July 23rd, 2020). ClinicalTrials.gov (Last accessed July 23rd, 2020).
66.
go back to reference Zhang W, Zhao Y, Zhang F, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol. 2020;214:108393. Zhang W, Zhao Y, Zhang F, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol. 2020;214:108393.
68.
go back to reference Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395(10223):473-475. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395(10223):473-475.
69.
go back to reference Shang L, Zhao J, Hu Y, Du R, Cao B. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet. 2020;395(10225):683-684. Shang L, Zhao J, Hu Y, Du R, Cao B. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet. 2020;395(10225):683-684.
70.
go back to reference Halpin DMG, Singh D, Hadfield RM. Inhaled corticosteroids and COVID-19: a systematic review and clinical perspective. Eur Respir J. 2020;55(5):2001009. Published 2020 May 7. Halpin DMG, Singh D, Hadfield RM. Inhaled corticosteroids and COVID-19: a systematic review and clinical perspective. Eur Respir J. 2020;55(5):2001009. Published 2020 May 7.
71.
go back to reference Qin YY, Zhou YH, Lu YQ, et al. Effectiveness of glucocorticoid therapy in patients with severe coronavirus disease 2019: protocol of a randomized controlled trial. Chin Med J (Engl). 2020;133(9):1080-1086. Qin YY, Zhou YH, Lu YQ, et al. Effectiveness of glucocorticoid therapy in patients with severe coronavirus disease 2019: protocol of a randomized controlled trial. Chin Med J (Engl). 2020;133(9):1080-1086.
73.
go back to reference Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China [published online ahead of print, 2020 Mar 13]. JAMA Intern Med. 2020;e200994. Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China [published online ahead of print, 2020 Mar 13]. JAMA Intern Med. 2020;e200994.
74.
go back to reference Zhou W, Liu Y, Tian D, et al. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct Target Ther. 2020;5(1):18. Published 2020 Feb 21. Zhou W, Liu Y, Tian D, et al. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct Target Ther. 2020;5(1):18. Published 2020 Feb 21.
75.
go back to reference Wyrwoll CS, Mark PJ, Waddell BJ. Developmental programming of renal glucocorticoid sensitivity and the renin-angiotensin system. Hypertension. 2007;50(3):579–84.PubMedCrossRef Wyrwoll CS, Mark PJ, Waddell BJ. Developmental programming of renal glucocorticoid sensitivity and the renin-angiotensin system. Hypertension. 2007;50(3):579–84.PubMedCrossRef
76.
go back to reference Yongtao Z, Kunzheng W, Jingjing Z, et al. Glucocorticoids activate the local renin-angiotensin system in bone: possible mechanism for glucocorticoid-induced osteoporosis. Endocrine. 2014;47(2):598–608.PubMedCrossRef Yongtao Z, Kunzheng W, Jingjing Z, et al. Glucocorticoids activate the local renin-angiotensin system in bone: possible mechanism for glucocorticoid-induced osteoporosis. Endocrine. 2014;47(2):598–608.PubMedCrossRef
77.
go back to reference Kino T, Chrousos GP. Glucocorticoid and mineralocorticoid receptors and associated diseases. Essays Biochem. 2004;40:137–55.PubMedCrossRef Kino T, Chrousos GP. Glucocorticoid and mineralocorticoid receptors and associated diseases. Essays Biochem. 2004;40:137–55.PubMedCrossRef
78.
go back to reference Fuller PJ, Lim-Tio SS, Brennan FE. Specificity in mineralocorticoid versus glucocorticoid action. Kidney Int. 2000;57(4):1256–64.PubMedCrossRef Fuller PJ, Lim-Tio SS, Brennan FE. Specificity in mineralocorticoid versus glucocorticoid action. Kidney Int. 2000;57(4):1256–64.PubMedCrossRef
79.
go back to reference Rashid S, Lewis GF. The mechanisms of differential glucocorticoid and mineralocorticoid action in the brain and peripheral tissues. Clin Biochem. 2005;38(5):401–9.PubMedCrossRef Rashid S, Lewis GF. The mechanisms of differential glucocorticoid and mineralocorticoid action in the brain and peripheral tissues. Clin Biochem. 2005;38(5):401–9.PubMedCrossRef
80.
go back to reference Pozzilli P, Lenzi A. Commentary: Testosterone, a key hormone in the context of COVID-19 pandemic [published online ahead of print, 2020 Apr 27]. Metabolism. 2020;108:154252.PubMedPubMedCentralCrossRef Pozzilli P, Lenzi A. Commentary: Testosterone, a key hormone in the context of COVID-19 pandemic [published online ahead of print, 2020 Apr 27]. Metabolism. 2020;108:154252.PubMedPubMedCentralCrossRef
82.
go back to reference Wambier CG, Vaño-Galván S, McCoy J, et al. Androgenetic Alopecia Present in the Majority of Hospitalized COVID-19 Patients - the "Gabrin sign" [published online ahead of print, 2020 May 21]. J Am Acad Dermatol. 2020;S0190-9622(20)30948-8. Wambier CG, Vaño-Galván S, McCoy J, et al. Androgenetic Alopecia Present in the Majority of Hospitalized COVID-19 Patients - the "Gabrin sign" [published online ahead of print, 2020 May 21]. J Am Acad Dermatol. 2020;S0190-9622(20)30948-8.
83.
go back to reference Wambier CG, Goren A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is likely to be androgen mediated [published online ahead of print, 2020 Apr 10]. J Am Acad Dermatol. 2020;S0190-9622(20)30608-3. Wambier CG, Goren A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is likely to be androgen mediated [published online ahead of print, 2020 Apr 10]. J Am Acad Dermatol. 2020;S0190-9622(20)30608-3.
84.
go back to reference McCoy J, Wambier CG, Vano-Galvan S, et al. Racial Variations in COVID-19 Deaths May Be Due to Androgen Receptor Genetic Variants Associated with Prostate Cancer and Androgenetic Alopecia. Are Anti-Androgens a Potential Treatment for COVID-19? [published online ahead of print, 2020 Apr 25]. J Cosmet Dermatol. 2020;https://doi.org/10.1111/jocd.13455. McCoy J, Wambier CG, Vano-Galvan S, et al. Racial Variations in COVID-19 Deaths May Be Due to Androgen Receptor Genetic Variants Associated with Prostate Cancer and Androgenetic Alopecia. Are Anti-Androgens a Potential Treatment for COVID-19? [published online ahead of print, 2020 Apr 25]. J Cosmet Dermatol. 2020;https://​doi.​org/​10.​1111/​jocd.​13455.
85.
go back to reference Montopoli M, Zumerle S, Vettor R, et al. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N = 4532) [published online ahead of print, 2020 May 6]. Ann Oncol. 2020;S0923-7534(20)39797-0. Montopoli M, Zumerle S, Vettor R, et al. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N = 4532) [published online ahead of print, 2020 May 6]. Ann Oncol. 2020;S0923-7534(20)39797-0.
86.
go back to reference Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection. J Virol. 2019;93(6):e01815-18. Published 2019 Mar 5. Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection. J Virol. 2019;93(6):e01815-18. Published 2019 Mar 5.
87.
go back to reference Maric-Bilkan C, Manigrasso MB. Sex differences in hypertension: contribution of the renin-angiotensin system. Gend Med. 2012;9(4):287–91.PubMedCrossRef Maric-Bilkan C, Manigrasso MB. Sex differences in hypertension: contribution of the renin-angiotensin system. Gend Med. 2012;9(4):287–91.PubMedCrossRef
88.
go back to reference Arefi S, Mottaghi S, Sharifi AM. Studying the correlation of renin-angiotensin-system (RAS) components and insulin resistance in polycystic ovary syndrome (PCOs). Gynecol Endocrinol. 2013;29(5):470–3.PubMedCrossRef Arefi S, Mottaghi S, Sharifi AM. Studying the correlation of renin-angiotensin-system (RAS) components and insulin resistance in polycystic ovary syndrome (PCOs). Gynecol Endocrinol. 2013;29(5):470–3.PubMedCrossRef
89.
go back to reference Mishra JS, More AS, Gopalakrishnan K, Kumar S. Testosterone plays a permissive role in angiotensin II-induced hypertension and cardiac hypertrophy in male rats. Biol Reprod. 2019;100(1):139–48.PubMedCrossRef Mishra JS, More AS, Gopalakrishnan K, Kumar S. Testosterone plays a permissive role in angiotensin II-induced hypertension and cardiac hypertrophy in male rats. Biol Reprod. 2019;100(1):139–48.PubMedCrossRef
90.
go back to reference Georgianos PI, Vaios V, Eleftheriadis T, Zebekakis P, Liakopoulos V. Mineralocorticoid Antagonists in ESRD: An Overview of Clinical Trial Evidence. Curr Vasc Pharmacol. 2017;15(6):599–606.PubMedCrossRef Georgianos PI, Vaios V, Eleftheriadis T, Zebekakis P, Liakopoulos V. Mineralocorticoid Antagonists in ESRD: An Overview of Clinical Trial Evidence. Curr Vasc Pharmacol. 2017;15(6):599–606.PubMedCrossRef
91.
go back to reference Hermidorff MM, Faria Gde O, Amâncio Gde C, de Assis LV, Isoldi MC. Non-genomic effects of spironolactone and eplerenone in cardiomyocytes of neonatal Wistar rats: do they evoke cardioprotective pathways? Biochem Cell Biol. 2015;93(1):83–93.PubMedCrossRef Hermidorff MM, Faria Gde O, Amâncio Gde C, de Assis LV, Isoldi MC. Non-genomic effects of spironolactone and eplerenone in cardiomyocytes of neonatal Wistar rats: do they evoke cardioprotective pathways? Biochem Cell Biol. 2015;93(1):83–93.PubMedCrossRef
92.
go back to reference Cadegiani FA. Can spironolactone be used to prevent COVID-19-induced acute respiratory distress syndrome in patients with hypertension?. Am J Physiol. Cadegiani FA. Can spironolactone be used to prevent COVID-19-induced acute respiratory distress syndrome in patients with hypertension?. Am J Physiol.
93.
go back to reference Nakano S, Kobayashi N, Yoshida K, Ohno T, Matsuoka H. Cardioprotective mechanisms of spironolactone associated with the angiotensin-converting enzyme/epidermal growth factor receptor/extracellular signal-regulated kinases, NAD(P)H oxidase/lectin-like oxidized low-density lipoprotein receptor-1, and Rho-kinase pathways in aldosterone/salt-induced hypertensive rats. Hypertens Res. 2005;28(11):925–36.PubMedCrossRef Nakano S, Kobayashi N, Yoshida K, Ohno T, Matsuoka H. Cardioprotective mechanisms of spironolactone associated with the angiotensin-converting enzyme/epidermal growth factor receptor/extracellular signal-regulated kinases, NAD(P)H oxidase/lectin-like oxidized low-density lipoprotein receptor-1, and Rho-kinase pathways in aldosterone/salt-induced hypertensive rats. Hypertens Res. 2005;28(11):925–36.PubMedCrossRef
94.
go back to reference Dieterich HA, Wendt C, Saborowski F. Cardioprotection by aldosterone receptor antagonism in heart failure. Part I. The role of aldosterone in heart failure. Fiziol Cheloveka. 2005;31(6):97–105.PubMed Dieterich HA, Wendt C, Saborowski F. Cardioprotection by aldosterone receptor antagonism in heart failure. Part I. The role of aldosterone in heart failure. Fiziol Cheloveka. 2005;31(6):97–105.PubMed
95.
go back to reference Taira M, Toba H, Murakami M, et al. Spironolactone exhibits direct renoprotective effects and inhibits renal renin-angiotensin-aldosterone system in diabetic rats. Eur J Pharmacol. 2008;589(1-3):264–71.PubMedCrossRef Taira M, Toba H, Murakami M, et al. Spironolactone exhibits direct renoprotective effects and inhibits renal renin-angiotensin-aldosterone system in diabetic rats. Eur J Pharmacol. 2008;589(1-3):264–71.PubMedCrossRef
96.
go back to reference Schjoedt KJ. The renin-angiotensin-aldosterone system and its blockade in diabetic nephropathy: main focus on the role of aldosterone. Dan Med Bull. 2011;58(4):B4265.PubMed Schjoedt KJ. The renin-angiotensin-aldosterone system and its blockade in diabetic nephropathy: main focus on the role of aldosterone. Dan Med Bull. 2011;58(4):B4265.PubMed
97.
go back to reference Kong EL, Zhang JM, An N, Tao Y, Yu WF, Wu FX. Spironolactone rescues renal dysfunction in obstructive jaundice rats by upregulating ACE2 expression. J Cell Commun Signal. 2019;13(1):17–26.PubMedCrossRef Kong EL, Zhang JM, An N, Tao Y, Yu WF, Wu FX. Spironolactone rescues renal dysfunction in obstructive jaundice rats by upregulating ACE2 expression. J Cell Commun Signal. 2019;13(1):17–26.PubMedCrossRef
98.
go back to reference Takeda Y, Zhu A, Yoneda T, Usukura M, Takata H, Yamagishi M. Effects of aldosterone and angiotensin II receptor blockade on cardiac angiotensinogen and angiotensin-converting enzyme 2 expression in Dahl salt-sensitive hypertensive rats. Am J Hypertens. 2007;20(10):1119–24.PubMedCrossRef Takeda Y, Zhu A, Yoneda T, Usukura M, Takata H, Yamagishi M. Effects of aldosterone and angiotensin II receptor blockade on cardiac angiotensinogen and angiotensin-converting enzyme 2 expression in Dahl salt-sensitive hypertensive rats. Am J Hypertens. 2007;20(10):1119–24.PubMedCrossRef
99.
go back to reference Zhu A, Yoneda T, Demura M, et al. Effect of mineralocorticoid receptor blockade on the renal renin-angiotensin system in Dahl salt-sensitive hypertensive rats. J Hypertens. 2009;27(4):800–5.PubMedCrossRef Zhu A, Yoneda T, Demura M, et al. Effect of mineralocorticoid receptor blockade on the renal renin-angiotensin system in Dahl salt-sensitive hypertensive rats. J Hypertens. 2009;27(4):800–5.PubMedCrossRef
100.
go back to reference Keidar S, Gamliel-Lazarovich A, Kaplan M, et al. Mineralocorticoid receptor blocker increases angiotensin-converting enzyme 2 activity in congestive heart failure patients. Circ Res. 2005;97(9):946–53.PubMedCrossRef Keidar S, Gamliel-Lazarovich A, Kaplan M, et al. Mineralocorticoid receptor blocker increases angiotensin-converting enzyme 2 activity in congestive heart failure patients. Circ Res. 2005;97(9):946–53.PubMedCrossRef
101.
go back to reference Te Riet L, van Esch JH, Roks AJ, van den Meiracker AH, Danser AH. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res. 2015;116(6):960–75.CrossRef Te Riet L, van Esch JH, Roks AJ, van den Meiracker AH, Danser AH. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res. 2015;116(6):960–75.CrossRef
103.
go back to reference Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother. 2017;94:317–25.PubMedCrossRef Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother. 2017;94:317–25.PubMedCrossRef
104.
105.
go back to reference Sert M, Tetiker T, Kirim S. Comparison of the efficiency of anti-androgenic regimens consisting of spironolactone, Diane 35, and cyproterone acetate in hirsutism. Acta Med Okayama. 2003;57(2):73–6.PubMed Sert M, Tetiker T, Kirim S. Comparison of the efficiency of anti-androgenic regimens consisting of spironolactone, Diane 35, and cyproterone acetate in hirsutism. Acta Med Okayama. 2003;57(2):73–6.PubMed
106.
go back to reference Steelman SL, Brooks JR, Morgan ER, Patanelli DJ. Anti-androgenic activity of spironolactone. Steroids. 1969;14(4):449–50.PubMedCrossRef Steelman SL, Brooks JR, Morgan ER, Patanelli DJ. Anti-androgenic activity of spironolactone. Steroids. 1969;14(4):449–50.PubMedCrossRef
107.
go back to reference Broulik PD, Stárka L. Antiandrogenic and antirenotropic effect of spironolactone. Endokrinologie. 1976;68(1):35–9.PubMed Broulik PD, Stárka L. Antiandrogenic and antirenotropic effect of spironolactone. Endokrinologie. 1976;68(1):35–9.PubMed
108.
go back to reference Vecchiola A, Fuentes CA, Solar I, et al. Eplerenone Implantation Improved Adipose Dysfunction Averting RAAS Activation and Cell Division. Front Endocrinol (Lausanne). 2020;11:223. Published 2020 Apr 21. Vecchiola A, Fuentes CA, Solar I, et al. Eplerenone Implantation Improved Adipose Dysfunction Averting RAAS Activation and Cell Division. Front Endocrinol (Lausanne). 2020;11:223. Published 2020 Apr 21.
109.
go back to reference Feraco A, Armani A, Mammi C, Fabbri A, Rosano GM, Caprio M. Role of mineralocorticoid receptor and renin-angiotensin-aldosterone system in adipocyte dysfunction and obesity. J Steroid Biochem Mol Biol. 2013;137:99–106.PubMedCrossRef Feraco A, Armani A, Mammi C, Fabbri A, Rosano GM, Caprio M. Role of mineralocorticoid receptor and renin-angiotensin-aldosterone system in adipocyte dysfunction and obesity. J Steroid Biochem Mol Biol. 2013;137:99–106.PubMedCrossRef
111.
go back to reference SP-mediated mineralocorticoid receptor antagonism contributes to inflammatory monocyte/macrophage modulation via an inhibitory effect on Ly6C(hi) monocytosis-directed M2 polarization of alveolar macrophage. SP-mediated mineralocorticoid receptor antagonism contributes to inflammatory monocyte/macrophage modulation via an inhibitory effect on Ly6C(hi) monocytosis-directed M2 polarization of alveolar macrophage.
112.
115.
go back to reference Ozacmak HS, Ozacmak VH, Barut F, Araslı M, Ucan BH. Pretreatment with mineralocorticoid receptor blocker reduces intestinal injury induced by ischemia and reperfusion: involvement of inhibition of inflammatory response, oxidative stress, nuclear factor κB, and inducible nitric oxide synthase. J Surg Res. 2014;191(2):350–61. https://doi.org/10.1016/j.jss.2014.04.040.CrossRefPubMed Ozacmak HS, Ozacmak VH, Barut F, Araslı M, Ucan BH. Pretreatment with mineralocorticoid receptor blocker reduces intestinal injury induced by ischemia and reperfusion: involvement of inhibition of inflammatory response, oxidative stress, nuclear factor κB, and inducible nitric oxide synthase. J Surg Res. 2014;191(2):350–61. https://​doi.​org/​10.​1016/​j.​jss.​2014.​04.​040.CrossRefPubMed
118.
go back to reference Fraccarollo D, Galuppo P, Schraut S, et al. Immediate mineralocorticoid receptor blockade improves myocardial infarct healing by modulation of the inflammatory response. Hypertension. 2008;51(4):905–14.PubMedCrossRef Fraccarollo D, Galuppo P, Schraut S, et al. Immediate mineralocorticoid receptor blockade improves myocardial infarct healing by modulation of the inflammatory response. Hypertension. 2008;51(4):905–14.PubMedCrossRef
121.
go back to reference Yartaş Dumanlı G, Dilken O, Ürkmez S. Use of Spironolactone in SARS-CoV-2 ARDS Patients. Turk J Anaesthesiol Reanim 30 April 2020; DOI: 10.5152/ TJAR.2020.569. Yartaş Dumanlı G, Dilken O, Ürkmez S. Use of Spironolactone in SARS-CoV-2 ARDS Patients. Turk J Anaesthesiol Reanim 30 April 2020; DOI: 10.5152/ TJAR.2020.569.
125.
go back to reference Rozner RN, Freites-Martinez A, Shapiro J, Geer EB, Goldfarb S, Lacouture ME. Safety of 5α-reductase inhibitors and spironolactone in breast cancer patients receiving endocrine therapies. Breast Cancer Res Treat. 2019;174(1):15–26.PubMedCrossRef Rozner RN, Freites-Martinez A, Shapiro J, Geer EB, Goldfarb S, Lacouture ME. Safety of 5α-reductase inhibitors and spironolactone in breast cancer patients receiving endocrine therapies. Breast Cancer Res Treat. 2019;174(1):15–26.PubMedCrossRef
126.
go back to reference Almohanna HM, Perper M, Tosti A. Safety concerns when using novel medications to treat alopecia. Expert Opin Drug Saf. 2018;17(11):1115–28.PubMedCrossRef Almohanna HM, Perper M, Tosti A. Safety concerns when using novel medications to treat alopecia. Expert Opin Drug Saf. 2018;17(11):1115–28.PubMedCrossRef
127.
go back to reference Andriole GL, Kirby R. Safety and tolerability of the dual 5alpha-reductase inhibitor dutasteride in the treatment of benign prostatic hyperplasia. Eur Urol. 2003;44(1):82–8.PubMedCrossRef Andriole GL, Kirby R. Safety and tolerability of the dual 5alpha-reductase inhibitor dutasteride in the treatment of benign prostatic hyperplasia. Eur Urol. 2003;44(1):82–8.PubMedCrossRef
128.
go back to reference Mostaghel EA, Geng L, Holcomb I, et al. Variability in the androgen response of prostate epithelium to 5alpha-reductase inhibition: implications for prostate cancer chemoprevention. Cancer Res. 2010;70(4):1286–95.PubMedPubMedCentralCrossRef Mostaghel EA, Geng L, Holcomb I, et al. Variability in the androgen response of prostate epithelium to 5alpha-reductase inhibition: implications for prostate cancer chemoprevention. Cancer Res. 2010;70(4):1286–95.PubMedPubMedCentralCrossRef
129.
go back to reference Wu Y, Godoy A, Azzouni F, Wilton JH, Ip C, Mohler JL. Prostate cancer cells differ in testosterone accumulation, dihydrotestosterone conversion, and androgen receptor signaling response to steroid 5α-reductase inhibitors. Prostate. 2013;73(13):1470–82.PubMedPubMedCentralCrossRef Wu Y, Godoy A, Azzouni F, Wilton JH, Ip C, Mohler JL. Prostate cancer cells differ in testosterone accumulation, dihydrotestosterone conversion, and androgen receptor signaling response to steroid 5α-reductase inhibitors. Prostate. 2013;73(13):1470–82.PubMedPubMedCentralCrossRef
130.
go back to reference Tindall DJ, Rittmaster RS. The rationale for inhibiting 5alpha-reductase isoenzymes in the prevention and treatment of prostate cancer [published correction appears in J Urol. 2008 Jun;179(6):2490]. J Urol. 2008;179(4):1235–42.PubMedPubMedCentralCrossRef Tindall DJ, Rittmaster RS. The rationale for inhibiting 5alpha-reductase isoenzymes in the prevention and treatment of prostate cancer [published correction appears in J Urol. 2008 Jun;179(6):2490]. J Urol. 2008;179(4):1235–42.PubMedPubMedCentralCrossRef
132.
go back to reference Anti-androgens may protect against severe COVID-19 outcomes: results from a prospective cohort study of 77 hospitalized men. J Am Acad Derm. In review. Anti-androgens may protect against severe COVID-19 outcomes: results from a prospective cohort study of 77 hospitalized men. J Am Acad Derm. In review.
134.
go back to reference Bedi O, Dhawan V, Sharma PL, Kumar P. Pleiotropic effects of statins: new therapeutic targets in drug design. Naunyn Schmiedebergs Arch Pharmacol. 2016;389(7):695–712.PubMedCrossRef Bedi O, Dhawan V, Sharma PL, Kumar P. Pleiotropic effects of statins: new therapeutic targets in drug design. Naunyn Schmiedebergs Arch Pharmacol. 2016;389(7):695–712.PubMedCrossRef
136.
go back to reference Williams EA, Russo V, Ceraso S, Gupta D, Barrett-Jolley R. Anti-arrhythmic properties of non-antiarrhythmic medications. Pharmacol Res. 2020;156:104762.PubMedPubMedCentralCrossRef Williams EA, Russo V, Ceraso S, Gupta D, Barrett-Jolley R. Anti-arrhythmic properties of non-antiarrhythmic medications. Pharmacol Res. 2020;156:104762.PubMedPubMedCentralCrossRef
137.
go back to reference Fan E, Brodie D, Slutsky AS. Acute Respiratory Distress Syndrome: Advances in Diagnosis and Treatment. JAMA. 2018;319(7):698–710.PubMedCrossRef Fan E, Brodie D, Slutsky AS. Acute Respiratory Distress Syndrome: Advances in Diagnosis and Treatment. JAMA. 2018;319(7):698–710.PubMedCrossRef
138.
go back to reference Feng Y. Efficacy of statin therapy in patients with acute respiratory distress syndrome/acute lung injury: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 2018;22(10):3190–8.PubMed Feng Y. Efficacy of statin therapy in patients with acute respiratory distress syndrome/acute lung injury: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 2018;22(10):3190–8.PubMed
139.
go back to reference Xiong B, Wang C, Tan J, et al. Statins for the prevention and treatment of acute lung injury and acute respiratory distress syndrome: A systematic review and meta-analysis. Respirology. 2016;21(6):1026–33.PubMedCrossRef Xiong B, Wang C, Tan J, et al. Statins for the prevention and treatment of acute lung injury and acute respiratory distress syndrome: A systematic review and meta-analysis. Respirology. 2016;21(6):1026–33.PubMedCrossRef
141.
go back to reference Grommes J, Vijayan S, Drechsler M, et al. Simvastatin reduces endotoxin-induced acute lung injury by decreasing neutrophil recruitment and radical formation. PLoS One. 2012;7(6):e38917.PubMedPubMedCentralCrossRef Grommes J, Vijayan S, Drechsler M, et al. Simvastatin reduces endotoxin-induced acute lung injury by decreasing neutrophil recruitment and radical formation. PLoS One. 2012;7(6):e38917.PubMedPubMedCentralCrossRef
142.
go back to reference Fedson DS, Opal SM, Rordam OM. Hiding in Plain Sight: an Approach to Treating Patients with Severe COVID-19 Infection. mBio. 2020;11(2):e00398-20. Published 2020 Mar 20. Fedson DS, Opal SM, Rordam OM. Hiding in Plain Sight: an Approach to Treating Patients with Severe COVID-19 Infection. mBio. 2020;11(2):e00398-20. Published 2020 Mar 20.
143.
go back to reference Castiglione V, Chiriacò M, Emdin M, Taddei S, Vergaro G. Statin therapy in COVID-19 infection [published online ahead of print, 2020 Apr 29]. Eur Heart J Cardiovasc Pharmacother. 2020;pvaa042. Castiglione V, Chiriacò M, Emdin M, Taddei S, Vergaro G. Statin therapy in COVID-19 infection [published online ahead of print, 2020 Apr 29]. Eur Heart J Cardiovasc Pharmacother. 2020;pvaa042.
144.
go back to reference Alijotas-Reig J, Esteve-Valverde E, Belizna C, et al. Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: A comprehensive review. Autoimmun Rev. 2020;19(7):102569.PubMedPubMedCentralCrossRef Alijotas-Reig J, Esteve-Valverde E, Belizna C, et al. Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: A comprehensive review. Autoimmun Rev. 2020;19(7):102569.PubMedPubMedCentralCrossRef
145.
go back to reference Reiner Ž, Hatamipour M, Banach M, et al. Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch Med Sci. 2020;16(3):490-496. Published 2020 Apr 25. Reiner Ž, Hatamipour M, Banach M, et al. Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch Med Sci. 2020;16(3):490-496. Published 2020 Apr 25.
146.
go back to reference Baudrand R, Pojoga LH, Vaidya A, et al. Statin Use and Adrenal Aldosterone Production in Hypertensive and Diabetic Subjects. Circulation. 2015;132(19):1825–33.PubMedPubMedCentralCrossRef Baudrand R, Pojoga LH, Vaidya A, et al. Statin Use and Adrenal Aldosterone Production in Hypertensive and Diabetic Subjects. Circulation. 2015;132(19):1825–33.PubMedPubMedCentralCrossRef
147.
go back to reference Borghi C, Urso R, Cicero AF. Renin-angiotensin system at the crossroad of hypertension and hypercholesterolemia. Nutr Metab Cardiovasc Dis. 2017;27(2):115–20.PubMedCrossRef Borghi C, Urso R, Cicero AF. Renin-angiotensin system at the crossroad of hypertension and hypercholesterolemia. Nutr Metab Cardiovasc Dis. 2017;27(2):115–20.PubMedCrossRef
148.
go back to reference Drapala A, Sikora M, Ufnal M. Statins, the renin-angiotensin-aldosterone system and hypertension - a tale of another beneficial effect of statins. J Renin Angiotensin Aldosterone Syst. 2014;15(3):250–8.PubMedCrossRef Drapala A, Sikora M, Ufnal M. Statins, the renin-angiotensin-aldosterone system and hypertension - a tale of another beneficial effect of statins. J Renin Angiotensin Aldosterone Syst. 2014;15(3):250–8.PubMedCrossRef
156.
go back to reference Facchiano A, Facchiano A, Bartoli M, Ricci A, Facchiano F. Reply to Jakovac: About COVID-19 and vitamin D. Am J Physiol Endocrinol Metab. 2020;318(6):E838. Facchiano A, Facchiano A, Bartoli M, Ricci A, Facchiano F. Reply to Jakovac: About COVID-19 and vitamin D. Am J Physiol Endocrinol Metab. 2020;318(6):E838.
157.
go back to reference Aygun H. Vitamin D can prevent COVID-19 infection-induced multiple organ damage [published online ahead of print, 2020 May 25]. Naunyn Schmiedebergs Arch Pharmacol. 2020;1-4. Aygun H. Vitamin D can prevent COVID-19 infection-induced multiple organ damage [published online ahead of print, 2020 May 25]. Naunyn Schmiedebergs Arch Pharmacol. 2020;1-4.
159.
go back to reference Glinsky GV. Tripartite Combination of Candidate Pandemic Mitigation Agents: Vitamin D, Quercetin, and Estradiol Manifest Properties of Medicinal Agents for Targeted Mitigation of the COVID-19 Pandemic Defined by Genomics-Guided Tracing of SARS-CoV-2 Targets in Human Cells. Biomedicines. 2020;8(5):E129. Published 2020 May 21. Glinsky GV. Tripartite Combination of Candidate Pandemic Mitigation Agents: Vitamin D, Quercetin, and Estradiol Manifest Properties of Medicinal Agents for Targeted Mitigation of the COVID-19 Pandemic Defined by Genomics-Guided Tracing of SARS-CoV-2 Targets in Human Cells. Biomedicines. 2020;8(5):E129. Published 2020 May 21.
160.
go back to reference Grant WB, Lahore H, McDonnell SL, et al. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 2020;12(4):988. Published 2020 Apr 2. Grant WB, Lahore H, McDonnell SL, et al. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 2020;12(4):988. Published 2020 Apr 2.
161.
go back to reference Teymoori-Rad M, Shokri F, Salimi V, Marashi SM. The interplay between vitamin D and viral infections. Rev Med Virol. 2019;29(2):e2032.PubMedCrossRef Teymoori-Rad M, Shokri F, Salimi V, Marashi SM. The interplay between vitamin D and viral infections. Rev Med Virol. 2019;29(2):e2032.PubMedCrossRef
163.
go back to reference de Sa Del Fiol F, Barberato-Filho S, Lopes LC, de Cassia Bergamaschi C. Vitamin D and respiratory infections. J Infect Dev Ctries. 2015;9(4):355-361. Published 2015 Apr 15. de Sa Del Fiol F, Barberato-Filho S, Lopes LC, de Cassia Bergamaschi C. Vitamin D and respiratory infections. J Infect Dev Ctries. 2015;9(4):355-361. Published 2015 Apr 15.
164.
go back to reference Bartley J. Vitamin D, innate immunity and upper respiratory tract infection. J Laryngol Otol. 2010;124(5):465–9.PubMedCrossRef Bartley J. Vitamin D, innate immunity and upper respiratory tract infection. J Laryngol Otol. 2010;124(5):465–9.PubMedCrossRef
165.
go back to reference Gruber-Bzura BM. Vitamin D and Influenza-Prevention or Therapy?. Int J Mol Sci. 2018;19(8):2419. Published 2018 Aug 16. Gruber-Bzura BM. Vitamin D and Influenza-Prevention or Therapy?. Int J Mol Sci. 2018;19(8):2419. Published 2018 Aug 16.
167.
go back to reference Hastie CE, Mackay DF, Ho F, et al. Vitamin D concentrations and COVID-19 infection in UK Biobank [published online ahead of print, 2020 May 7]. Diabetes Metab Syndr. 2020;14(4):561–5.PubMedPubMedCentralCrossRef Hastie CE, Mackay DF, Ho F, et al. Vitamin D concentrations and COVID-19 infection in UK Biobank [published online ahead of print, 2020 May 7]. Diabetes Metab Syndr. 2020;14(4):561–5.PubMedPubMedCentralCrossRef
168.
go back to reference Xu J, Yang J, Chen J, Luo Q, Zhang Q, Zhang H. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Mol Med Rep. 2017;16(5):7432–8.PubMedPubMedCentralCrossRef Xu J, Yang J, Chen J, Luo Q, Zhang Q, Zhang H. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Mol Med Rep. 2017;16(5):7432–8.PubMedPubMedCentralCrossRef
169.
go back to reference Wang D, Chai XQ, Magnussen CG, et al. Renin-angiotensin-system, a potential pharmacological candidate, in acute respiratory distress syndrome during mechanical ventilation. Pulm Pharmacol Ther. 2019;58:101833.PubMedPubMedCentralCrossRef Wang D, Chai XQ, Magnussen CG, et al. Renin-angiotensin-system, a potential pharmacological candidate, in acute respiratory distress syndrome during mechanical ventilation. Pulm Pharmacol Ther. 2019;58:101833.PubMedPubMedCentralCrossRef
170.
go back to reference Shi YY, Liu TJ, Fu JH, et al. Vitamin D/VDR signaling attenuates lipopolysaccharide-induced acute lung injury by maintaining the integrity of the pulmonary epithelial barrier. Mol Med Rep. 2016;13(2):1186–94.PubMedCrossRef Shi YY, Liu TJ, Fu JH, et al. Vitamin D/VDR signaling attenuates lipopolysaccharide-induced acute lung injury by maintaining the integrity of the pulmonary epithelial barrier. Mol Med Rep. 2016;13(2):1186–94.PubMedCrossRef
171.
go back to reference Zheng S, Yang J, Hu X, et al. Vitamin D attenuates lung injury via stimulating epithelial repair, reducing epithelial cell apoptosis and inhibits TGF-β induced epithelial to mesenchymal transition [published online ahead of print, 2020 Apr 3]. Biochem Pharmacol. 2020;113955:177. Zheng S, Yang J, Hu X, et al. Vitamin D attenuates lung injury via stimulating epithelial repair, reducing epithelial cell apoptosis and inhibits TGF-β induced epithelial to mesenchymal transition [published online ahead of print, 2020 Apr 3]. Biochem Pharmacol. 2020;113955:177.
172.
go back to reference Klaff LS, Gill SE, Wisse BE, et al. Lipopolysaccharide-induced lung injury is independent of serum vitamin D concentration. PLoS One. 2012;7(11):e49076.PubMedPubMedCentralCrossRef Klaff LS, Gill SE, Wisse BE, et al. Lipopolysaccharide-induced lung injury is independent of serum vitamin D concentration. PLoS One. 2012;7(11):e49076.PubMedPubMedCentralCrossRef
173.
go back to reference Barnett N, Zhao Z, Koyama T, et al. Vitamin D deficiency and risk of acute lung injury in severe sepsis and severe trauma: a case-control study. Ann Intensive Care. 2014;4(1):5. Published 2014 Feb 24. Barnett N, Zhao Z, Koyama T, et al. Vitamin D deficiency and risk of acute lung injury in severe sepsis and severe trauma: a case-control study. Ann Intensive Care. 2014;4(1):5. Published 2014 Feb 24.
174.
go back to reference Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest. 2002;110(2):229–38.PubMedPubMedCentralCrossRef Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest. 2002;110(2):229–38.PubMedPubMedCentralCrossRef
175.
go back to reference Leung PS. The Modulatory Action of Vitamin D on the Renin-Angiotensin System and the Determination of Hepatic Insulin Resistance. Molecules. 2019;24(13):2479. Published 2019 Jul 5. Leung PS. The Modulatory Action of Vitamin D on the Renin-Angiotensin System and the Determination of Hepatic Insulin Resistance. Molecules. 2019;24(13):2479. Published 2019 Jul 5.
176.
go back to reference Turin A, Bax JJ, Doukas D, et al. Interactions Among Vitamin D, Atrial Fibrillation, and the Renin-Angiotensin-Aldosterone System. Am J Cardiol. 2018;122(5):780–4.PubMedCrossRef Turin A, Bax JJ, Doukas D, et al. Interactions Among Vitamin D, Atrial Fibrillation, and the Renin-Angiotensin-Aldosterone System. Am J Cardiol. 2018;122(5):780–4.PubMedCrossRef
177.
go back to reference McMullan CJ, Borgi L, Curhan GC, Fisher N, Forman JP. The effect of vitamin D on renin-angiotensin system activation and blood pressure: a randomized control trial. J Hypertens. 2017;35(4):822–9.PubMedPubMedCentralCrossRef McMullan CJ, Borgi L, Curhan GC, Fisher N, Forman JP. The effect of vitamin D on renin-angiotensin system activation and blood pressure: a randomized control trial. J Hypertens. 2017;35(4):822–9.PubMedPubMedCentralCrossRef
178.
go back to reference Washington MN. Weigel NL. 1{alpha},25-Dihydroxyvitamin D3 inhibits growth of VCaP prostate cancer cells despite inducing the growth-promoting TMPRSS2:ERG gene fusion. Endocrinology. 2010;151(4):1409–17.PubMedPubMedCentralCrossRef Washington MN. Weigel NL. 1{alpha},25-Dihydroxyvitamin D3 inhibits growth of VCaP prostate cancer cells despite inducing the growth-promoting TMPRSS2:ERG gene fusion. Endocrinology. 2010;151(4):1409–17.PubMedPubMedCentralCrossRef
179.
go back to reference Murthy S, Agoulnik IU, Weigel NL. Androgen receptor signaling and vitamin D receptor action in prostate cancer cells. Prostate. 2005;64(4):362–72.PubMedCrossRef Murthy S, Agoulnik IU, Weigel NL. Androgen receptor signaling and vitamin D receptor action in prostate cancer cells. Prostate. 2005;64(4):362–72.PubMedCrossRef
181.
go back to reference Sekhar RV, Patel SG, Guthikonda AP, Reid M, Balasubramanyam A, Taffet GE. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. Am J Clin Nutr. 2011;94:847–53.PubMedPubMedCentralCrossRef Sekhar RV, Patel SG, Guthikonda AP, Reid M, Balasubramanyam A, Taffet GE. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. Am J Clin Nutr. 2011;94:847–53.PubMedPubMedCentralCrossRef
183.
go back to reference Whillier S, Raftos JE, Chapman B, Kuchel PW. Role of N-acetylcysteine and cystine in glutathione synthesis in human erythrocytes. Redox Rep. 2009;14:115–24.PubMedCrossRef Whillier S, Raftos JE, Chapman B, Kuchel PW. Role of N-acetylcysteine and cystine in glutathione synthesis in human erythrocytes. Redox Rep. 2009;14:115–24.PubMedCrossRef
184.
go back to reference Sekhar RV, McKay SV, Patel SG, Guthikonda AP, Reddy VT, Balasubramanyam A. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care. 2011;34:162–7.PubMedCrossRef Sekhar RV, McKay SV, Patel SG, Guthikonda AP, Reddy VT, Balasubramanyam A. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care. 2011;34:162–7.PubMedCrossRef
185.
go back to reference Kavanagh TJ, Grossmann A, Jaecks EP, Jinneman JC, Eaton DL, Martin GM. Proliferative capacity of human peripheral blood lymphocytes sorted on the basis of glutathione content. J Cell Physiol. 1990;145:472–80.PubMedCrossRef Kavanagh TJ, Grossmann A, Jaecks EP, Jinneman JC, Eaton DL, Martin GM. Proliferative capacity of human peripheral blood lymphocytes sorted on the basis of glutathione content. J Cell Physiol. 1990;145:472–80.PubMedCrossRef
186.
go back to reference Kao SJ, Wang D, Lin HI, Chen HI. N-acetylcysteine abrogates acute lung injury induced by endotoxin. Clin Exp Pharmacol Physiol. 2006;33(1-2):33–40.PubMedCrossRef Kao SJ, Wang D, Lin HI, Chen HI. N-acetylcysteine abrogates acute lung injury induced by endotoxin. Clin Exp Pharmacol Physiol. 2006;33(1-2):33–40.PubMedCrossRef
187.
go back to reference Shen Y, Miao NJ, Xu JL, et al. N-acetylcysteine alleviates angiotensin II-mediated renal fibrosis in mouse obstructed kidneys. Acta Pharmacol Sin. 2016;37(5):637–44.PubMedPubMedCentralCrossRef Shen Y, Miao NJ, Xu JL, et al. N-acetylcysteine alleviates angiotensin II-mediated renal fibrosis in mouse obstructed kidneys. Acta Pharmacol Sin. 2016;37(5):637–44.PubMedPubMedCentralCrossRef
188.
go back to reference Boesgaard S, Aldershvile J, Poulsen HE, Christensen S, Dige-Petersen H, Giese J. N-acetylcysteine inhibits angiotensin converting enzyme in vivo. J Pharmacol Exp Ther. 1993;265(3):1239–44.PubMed Boesgaard S, Aldershvile J, Poulsen HE, Christensen S, Dige-Petersen H, Giese J. N-acetylcysteine inhibits angiotensin converting enzyme in vivo. J Pharmacol Exp Ther. 1993;265(3):1239–44.PubMed
189.
go back to reference Assimakopoulos SF, Marangos M. N-acetyl-cysteine may prevent COVID-19-associated cytokine storm and acute respiratory distress syndrome [published online ahead of print, 2020 Apr 22]. Med Hypotheses. 2020;140:109778.PubMedPubMedCentralCrossRef Assimakopoulos SF, Marangos M. N-acetyl-cysteine may prevent COVID-19-associated cytokine storm and acute respiratory distress syndrome [published online ahead of print, 2020 Apr 22]. Med Hypotheses. 2020;140:109778.PubMedPubMedCentralCrossRef
190.
go back to reference Andreou A, Trantza S, Filippou D, Sipsas N, Tsiodras S. COVID-19: The Potential Role of Copper and N-acetylcysteine (NAC) in a Combination of Candidate Antiviral Treatments Against SARS-CoV-2. In Vivo. 2020;34(3 Suppl):1567–88.PubMedCrossRefPubMedCentral Andreou A, Trantza S, Filippou D, Sipsas N, Tsiodras S. COVID-19: The Potential Role of Copper and N-acetylcysteine (NAC) in a Combination of Candidate Antiviral Treatments Against SARS-CoV-2. In Vivo. 2020;34(3 Suppl):1567–88.PubMedCrossRefPubMedCentral
191.
go back to reference Horowitz RI, Freeman PR. Three novel prevention, diagnostic, and treatment options for COVID-19 urgently necessitating controlled randomized trials [published online ahead of print, 2020 May 22]. Med Hypotheses. 2020;143:109851.PubMedPubMedCentralCrossRef Horowitz RI, Freeman PR. Three novel prevention, diagnostic, and treatment options for COVID-19 urgently necessitating controlled randomized trials [published online ahead of print, 2020 May 22]. Med Hypotheses. 2020;143:109851.PubMedPubMedCentralCrossRef
192.
go back to reference Poe FL, Corn J. N-Acetylcysteine: A potential therapeutic agent for SARS-CoV-2 [published online ahead of print, 2020 May 30]. Med Hypotheses. 2020;143:109862. Poe FL, Corn J. N-Acetylcysteine: A potential therapeutic agent for SARS-CoV-2 [published online ahead of print, 2020 May 30]. Med Hypotheses. 2020;143:109862.
199.
go back to reference Brotons C, Benamouzig R, Filipiak KJ, Limmroth V, Borghi C. A systematic review of aspirin in primary prevention: is it time for a new approach? Am J Cardiovasc Drugs. 2015;15(2):113–33.PubMedCrossRef Brotons C, Benamouzig R, Filipiak KJ, Limmroth V, Borghi C. A systematic review of aspirin in primary prevention: is it time for a new approach? Am J Cardiovasc Drugs. 2015;15(2):113–33.PubMedCrossRef
200.
go back to reference Win TT, Aye SN, Lau Chui Fern J, Ong Fei C. Aspirin and Reducing Risk of Gastric Cancer: Systematic Review and Meta-Analysis of the Observational Studies. J Gastrointestin Liver Dis. 2020;29(2):191-198. Published 2020 Jun 3. Win TT, Aye SN, Lau Chui Fern J, Ong Fei C. Aspirin and Reducing Risk of Gastric Cancer: Systematic Review and Meta-Analysis of the Observational Studies. J Gastrointestin Liver Dis. 2020;29(2):191-198. Published 2020 Jun 3.
201.
go back to reference Tacconelli S, Contursi A, Falcone L, et al. Characterization of cyclooxygenase-2 acetylation and prostanoid inhibition by aspirin in cellular systems [published online ahead of print, 2020 Jun 11]. Biochem Pharmacol. 2020;114094. Tacconelli S, Contursi A, Falcone L, et al. Characterization of cyclooxygenase-2 acetylation and prostanoid inhibition by aspirin in cellular systems [published online ahead of print, 2020 Jun 11]. Biochem Pharmacol. 2020;114094.
202.
go back to reference Burn J, Sheth H, Elliott F, et al. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: a double-blind, randomised, placebo-controlled trial. Lancet. 2020;395(10240):1855–63.PubMedPubMedCentralCrossRef Burn J, Sheth H, Elliott F, et al. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: a double-blind, randomised, placebo-controlled trial. Lancet. 2020;395(10240):1855–63.PubMedPubMedCentralCrossRef
203.
go back to reference Bem D, Dretzke J, Stevens S, et al. Investigating the effectiveness of different aspirin dosing regimens and the timing of aspirin intake in primary and secondary prevention of cardiovascular disease: protocol for a systematic review. Syst Rev. 2015;4:88. Published 2015 Jun 19. Bem D, Dretzke J, Stevens S, et al. Investigating the effectiveness of different aspirin dosing regimens and the timing of aspirin intake in primary and secondary prevention of cardiovascular disease: protocol for a systematic review. Syst Rev. 2015;4:88. Published 2015 Jun 19.
204.
go back to reference Meune C, Mourad JJ, Bergmann JF, Spaulding C. Interaction between cyclooxygenase and the renin-angiotensin-aldosterone system: rationale and clinical relevance. J Renin Angiotensin Aldosterone Syst. 2003;4(3):149–54.PubMedCrossRef Meune C, Mourad JJ, Bergmann JF, Spaulding C. Interaction between cyclooxygenase and the renin-angiotensin-aldosterone system: rationale and clinical relevance. J Renin Angiotensin Aldosterone Syst. 2003;4(3):149–54.PubMedCrossRef
205.
go back to reference Nawarskas JJ, Spinler SA. Does aspirin interfere with the therapeutic efficacy of angiotensin-converting enzyme inhibitors in hypertension or congestive heart failure? Pharmacotherapy. 1998;18(5):1041–52.PubMed Nawarskas JJ, Spinler SA. Does aspirin interfere with the therapeutic efficacy of angiotensin-converting enzyme inhibitors in hypertension or congestive heart failure? Pharmacotherapy. 1998;18(5):1041–52.PubMed
206.
go back to reference Gawrys J, Gawrys K, Szahidewicz-Krupska E, Derkacz A, Mochol J, Doroszko A. Interactions between the Cyclooxygenase Metabolic Pathway and the Renin-Angiotensin-Aldosterone Systems: Their Effect on Cardiovascular Risk, from Theory to the Clinical Practice. Biomed Res Int. 2018;2018:7902081. Published 2018 Oct 2. Gawrys J, Gawrys K, Szahidewicz-Krupska E, Derkacz A, Mochol J, Doroszko A. Interactions between the Cyclooxygenase Metabolic Pathway and the Renin-Angiotensin-Aldosterone Systems: Their Effect on Cardiovascular Risk, from Theory to the Clinical Practice. Biomed Res Int. 2018;2018:7902081. Published 2018 Oct 2.
207.
go back to reference Yu H, Ni YN, Liang ZA, Liang BM, Wang Y. The effect of aspirin in preventing the acute respiratory distress syndrome/acute lung injury: A meta-analysis. Am J Emerg Med. 2018;36(8):1486–91.PubMedCrossRef Yu H, Ni YN, Liang ZA, Liang BM, Wang Y. The effect of aspirin in preventing the acute respiratory distress syndrome/acute lung injury: A meta-analysis. Am J Emerg Med. 2018;36(8):1486–91.PubMedCrossRef
208.
go back to reference Tilgner J, von Trotha KT, Gombert A, et al. Aspirin, but Not Tirofiban Displays Protective Effects in Endotoxin Induced Lung Injury. PLoS One. 2016;11(9):e0161218. Published 2016 Sep 1. Tilgner J, von Trotha KT, Gombert A, et al. Aspirin, but Not Tirofiban Displays Protective Effects in Endotoxin Induced Lung Injury. PLoS One. 2016;11(9):e0161218. Published 2016 Sep 1.
209.
go back to reference Liang H, Ding X, Li H, Li L, Sun T. Association Between Prior Aspirin Use and Acute Respiratory Distress Syndrome Incidence in At-Risk Patients: A Systematic Review and Meta-Analysis. Front Pharmacol. 2020;11:738. Published 2020 May 19. Liang H, Ding X, Li H, Li L, Sun T. Association Between Prior Aspirin Use and Acute Respiratory Distress Syndrome Incidence in At-Risk Patients: A Systematic Review and Meta-Analysis. Front Pharmacol. 2020;11:738. Published 2020 May 19.
210.
go back to reference Schuliga M, Jaffar J, Berhan A, et al. Annexin A2 contributes to lung injury and fibrosis by augmenting factor Xa fibrogenic activity. Am J Physiol Lung Cell Mol Physiol. 2017;312(5):L772–82.PubMedCrossRef Schuliga M, Jaffar J, Berhan A, et al. Annexin A2 contributes to lung injury and fibrosis by augmenting factor Xa fibrogenic activity. Am J Physiol Lung Cell Mol Physiol. 2017;312(5):L772–82.PubMedCrossRef
211.
go back to reference Shi M, Wang L, Zhou J, et al. Direct factor Xa inhibition attenuates acute lung injury progression via modulation of the PAR-2/NF-κB signaling pathway. Am J Transl Res. 2018;10(8):2335–49.PubMedPubMedCentral Shi M, Wang L, Zhou J, et al. Direct factor Xa inhibition attenuates acute lung injury progression via modulation of the PAR-2/NF-κB signaling pathway. Am J Transl Res. 2018;10(8):2335–49.PubMedPubMedCentral
216.
go back to reference Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell MC, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature Med 2005; 11:875–87. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell MC, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature Med 2005; 11:875–87.
217.
go back to reference Lu R, Zhao X, Li J, Niu P, Yang B, Wu H. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020;395:565–574. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020;395:565–574.
220.
go back to reference Williams B, Zhang Y. Hypertension, renin-angiotensin-aldosterone system inhibition, and COVID-19. Lancet. 2020;395(10238):1671-1673. Williams B, Zhang Y. Hypertension, renin-angiotensin-aldosterone system inhibition, and COVID-19. Lancet. 2020;395(10238):1671-1673.
222.
229.
go back to reference Shen LW, Mao HJ, Wu YL, Tanaka Y, Zhang W. TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections. Biochimie. 2017;142:1-10. Shen LW, Mao HJ, Wu YL, Tanaka Y, Zhang W. TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections. Biochimie. 2017;142:1-10.
230.
go back to reference Uno Y. Camostat mesilate therapy for COVID-19 [published online ahead of print, 2020 Apr 29]. Intern Emerg Med. 2020;1-2. Uno Y. Camostat mesilate therapy for COVID-19 [published online ahead of print, 2020 Apr 29]. Intern Emerg Med. 2020;1-2.
231.
go back to reference Lobo-Galo N, Terrazas-López M, Martínez-Martínez A, Díaz-Sánchez ÁG. FDA-approved thiol-reacting drugs that potentially bind into the SARS-CoV-2 main protease, essential for viral replication [published online ahead of print, 2020 May 14]. Lobo-Galo N, Terrazas-López M, Martínez-Martínez A, Díaz-Sánchez ÁG. FDA-approved thiol-reacting drugs that potentially bind into the SARS-CoV-2 main protease, essential for viral replication [published online ahead of print, 2020 May 14].
244.
go back to reference Wright TJ, Dillon EL, Durham WJ, et al. A randomized trial of adjunct testosterone for cancer-related muscle loss in men and women. J Cachexia Sarcopenia Muscle. 2018;9(3):482–96.PubMedPubMedCentralCrossRef Wright TJ, Dillon EL, Durham WJ, et al. A randomized trial of adjunct testosterone for cancer-related muscle loss in men and women. J Cachexia Sarcopenia Muscle. 2018;9(3):482–96.PubMedPubMedCentralCrossRef
245.
go back to reference Rolfe M, Kamel A, Ahmed MM, Kramer J. Pharmacological management of cardiac cachexia: a review of potential therapy options. Heart Fail Rev. 2019;24(5):617–23.PubMedCrossRef Rolfe M, Kamel A, Ahmed MM, Kramer J. Pharmacological management of cardiac cachexia: a review of potential therapy options. Heart Fail Rev. 2019;24(5):617–23.PubMedCrossRef
246.
247.
go back to reference Breithaupt-Faloppa AC, Correia CJ, Prado CM, Stilhano RS, Ureshino RP, Moreira LFP. 17β-Estradiol, a potential ally to alleviate SARS-CoV-2 infection. Clinics (Sao Paulo). 2020;75:e1980.PubMedCentralCrossRef Breithaupt-Faloppa AC, Correia CJ, Prado CM, Stilhano RS, Ureshino RP, Moreira LFP. 17β-Estradiol, a potential ally to alleviate SARS-CoV-2 infection. Clinics (Sao Paulo). 2020;75:e1980.PubMedCentralCrossRef
248.
go back to reference Grandi G, Facchinetti F, Bitzer J. The gendered impact of coronavirus disease (COVID-19): do estrogens play a role? [published online ahead of print, 2020 May 29]. Eur J Contracept Reprod Health Care. 2020;1-2. Grandi G, Facchinetti F, Bitzer J. The gendered impact of coronavirus disease (COVID-19): do estrogens play a role? [published online ahead of print, 2020 May 29]. Eur J Contracept Reprod Health Care. 2020;1-2.
249.
go back to reference Suba Z. Prevention and therapy of COVID-19 via exogenous estrogen treatment for both male and female patients. J Pharm Pharm Sci. 2020;23(1):75–85.PubMedCrossRef Suba Z. Prevention and therapy of COVID-19 via exogenous estrogen treatment for both male and female patients. J Pharm Pharm Sci. 2020;23(1):75–85.PubMedCrossRef
250.
go back to reference Manning JT, Fink B. Understanding COVID-19: Digit ratio (2D:4D) and sex differences in national case fatality rates [published online ahead of print, 2020 May 14]. Early Hum Dev. 2020;146:105074.PubMedPubMedCentralCrossRef Manning JT, Fink B. Understanding COVID-19: Digit ratio (2D:4D) and sex differences in national case fatality rates [published online ahead of print, 2020 May 14]. Early Hum Dev. 2020;146:105074.PubMedPubMedCentralCrossRef
251.
go back to reference Stelzig KE, Canepa-Escaro F, Schiliro M, Berdnikovs S, Prakash YS, Chiarella SE. Estrogen regulates the expression of SARS-CoV-2 receptor ACE2 in differentiated airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2020;318(6):L1280–1.PubMedPubMedCentralCrossRef Stelzig KE, Canepa-Escaro F, Schiliro M, Berdnikovs S, Prakash YS, Chiarella SE. Estrogen regulates the expression of SARS-CoV-2 receptor ACE2 in differentiated airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2020;318(6):L1280–1.PubMedPubMedCentralCrossRef
252.
go back to reference Di Stadio A, Della Volpe A, Ralli M. Ricci G. Gender differences in COVID-19 infection. The estrogen effect on upper and lower airways. Can it help to figure out a treatment? Eur Rev Med Pharmacol Sci. 2020;24(10):5195–6.PubMed Di Stadio A, Della Volpe A, Ralli M. Ricci G. Gender differences in COVID-19 infection. The estrogen effect on upper and lower airways. Can it help to figure out a treatment? Eur Rev Med Pharmacol Sci. 2020;24(10):5195–6.PubMed
253.
go back to reference Cutolo M, Smith V, Paolino S. Understanding immune effects of oestrogens to explain the reduced morbidity and mortality in female versus male COVID-19 patients. Comparisons with autoimmunity and vaccination. Clin Exp Rheumatol. 2020;38(3):383–6.PubMed Cutolo M, Smith V, Paolino S. Understanding immune effects of oestrogens to explain the reduced morbidity and mortality in female versus male COVID-19 patients. Comparisons with autoimmunity and vaccination. Clin Exp Rheumatol. 2020;38(3):383–6.PubMed
254.
go back to reference Doucet D, Badami C, Palange D, et al. Estrogen receptor hormone agonists limit trauma hemorrhage shock-induced gut and lung injury in rats. PLoS One. 2010;5(2):e9421. Published 2010 Feb 25. Doucet D, Badami C, Palange D, et al. Estrogen receptor hormone agonists limit trauma hemorrhage shock-induced gut and lung injury in rats. PLoS One. 2010;5(2):e9421. Published 2010 Feb 25.
255.
go back to reference Kan WH, Hsu JT, Schwacha MG, Choudhry MA, Bland KI, Chaudry IH. Estrogen ameliorates trauma-hemorrhage-induced lung injury via endothelial nitric oxide synthase-dependent activation of protein kinase G. Ann Surg. 2008;248(2):294–302.PubMedCrossRef Kan WH, Hsu JT, Schwacha MG, Choudhry MA, Bland KI, Chaudry IH. Estrogen ameliorates trauma-hemorrhage-induced lung injury via endothelial nitric oxide synthase-dependent activation of protein kinase G. Ann Surg. 2008;248(2):294–302.PubMedCrossRef
256.
go back to reference Hamidi SA, Dickman KG, Berisha H, Said SI. 17β-estradiol protects the lung against acute injury: possible mediation by vasoactive intestinal polypeptide. Endocrinology. 2011;152(12):4729–37.PubMedPubMedCentralCrossRef Hamidi SA, Dickman KG, Berisha H, Said SI. 17β-estradiol protects the lung against acute injury: possible mediation by vasoactive intestinal polypeptide. Endocrinology. 2011;152(12):4729–37.PubMedPubMedCentralCrossRef
257.
go back to reference Kawasaki T, Chaudry IH. The effects of estrogen on various organs: therapeutic approach for sepsis, trauma, and reperfusion injury. Part 1: central nervous system, lung, and heart. J Anesth. 2012;26(6):883–91.PubMedCrossRef Kawasaki T, Chaudry IH. The effects of estrogen on various organs: therapeutic approach for sepsis, trauma, and reperfusion injury. Part 1: central nervous system, lung, and heart. J Anesth. 2012;26(6):883–91.PubMedCrossRef
258.
go back to reference Speyer CL, Rancilio NJ, McClintock SD, et al. Regulatory effects of estrogen on acute lung inflammation in mice. Am J Physiol Cell Physiol. 2005;288(4):C881–90.PubMedCrossRef Speyer CL, Rancilio NJ, McClintock SD, et al. Regulatory effects of estrogen on acute lung inflammation in mice. Am J Physiol Cell Physiol. 2005;288(4):C881–90.PubMedCrossRef
259.
go back to reference Vieira RF, Breithaupt-Faloppa AC, Matsubara BC, et al. 17β-Estradiol protects against lung injuries after brain death in male rats. J Heart Lung Transplant. 2018;37(11):1381–7.PubMedCrossRef Vieira RF, Breithaupt-Faloppa AC, Matsubara BC, et al. 17β-Estradiol protects against lung injuries after brain death in male rats. J Heart Lung Transplant. 2018;37(11):1381–7.PubMedCrossRef
260.
go back to reference Komukai K, Mochizuki S, Yoshimura M. Gender and the renin-angiotensin-aldosterone system. Fundam Clin Pharmacol. 2010;24(6):687–98.PubMedCrossRef Komukai K, Mochizuki S, Yoshimura M. Gender and the renin-angiotensin-aldosterone system. Fundam Clin Pharmacol. 2010;24(6):687–98.PubMedCrossRef
261.
go back to reference Hilliard LM, Sampson AK, Brown RD, Denton KM. The "his and hers" of the renin-angiotensin system. Curr Hypertens Rep. 2013;15(1):71–9.PubMedCrossRef Hilliard LM, Sampson AK, Brown RD, Denton KM. The "his and hers" of the renin-angiotensin system. Curr Hypertens Rep. 2013;15(1):71–9.PubMedCrossRef
262.
go back to reference O'Donnell E, Floras JS, Harvey PJ. Estrogen status and the renin angiotensin aldosterone system. Am J Physiol Regul Integr Comp Physiol. 2014;307(5):R498–500.PubMedCrossRef O'Donnell E, Floras JS, Harvey PJ. Estrogen status and the renin angiotensin aldosterone system. Am J Physiol Regul Integr Comp Physiol. 2014;307(5):R498–500.PubMedCrossRef
263.
go back to reference Kim H, Datta A, Talwar S, Saleem SN, Mondal D, Abdel-Mageed AB. Estradiol-ERβ2 signaling axis confers growth and migration of CRPC cells through TMPRSS2-ETV5 gene fusion. Oncotarget. 2016;8(38):62820-62833. Published 2016 Aug 17. Kim H, Datta A, Talwar S, Saleem SN, Mondal D, Abdel-Mageed AB. Estradiol-ERβ2 signaling axis confers growth and migration of CRPC cells through TMPRSS2-ETV5 gene fusion. Oncotarget. 2016;8(38):62820-62833. Published 2016 Aug 17.
264.
go back to reference Bonkhoff H, Berges R. The evolving role of oestrogens and their receptors in the development and progression of prostate cancer. Eur Urol. 2009;55(3):533–42.PubMedCrossRef Bonkhoff H, Berges R. The evolving role of oestrogens and their receptors in the development and progression of prostate cancer. Eur Urol. 2009;55(3):533–42.PubMedCrossRef
265.
go back to reference Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033–40.PubMedCrossRef Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033–40.PubMedCrossRef
266.
go back to reference Haematology TL. COVID-19 coagulopathy: an evolving story. Lancet Haematol. 2020;7(6):e425.CrossRef Haematology TL. COVID-19 coagulopathy: an evolving story. Lancet Haematol. 2020;7(6):e425.CrossRef
268.
go back to reference Scheres LJJ, van Hylckama Vlieg A, Ballieux BEPB, et al. Endogenous sex hormones and risk of venous thromboembolism in young women. J Thromb Haemost. 2019;17(8):1297–304.PubMedPubMedCentralCrossRef Scheres LJJ, van Hylckama Vlieg A, Ballieux BEPB, et al. Endogenous sex hormones and risk of venous thromboembolism in young women. J Thromb Haemost. 2019;17(8):1297–304.PubMedPubMedCentralCrossRef
269.
go back to reference Laliberté F, Dea K, Duh MS, Kahler KH, Rolli M, Lefebvre P. Does the route of administration for estrogen hormone therapy impact the risk of venous thromboembolism? Estradiol transdermal system versus oral estrogen-only hormone therapy. Menopause. 2018;25(11):1297–305.PubMedCrossRef Laliberté F, Dea K, Duh MS, Kahler KH, Rolli M, Lefebvre P. Does the route of administration for estrogen hormone therapy impact the risk of venous thromboembolism? Estradiol transdermal system versus oral estrogen-only hormone therapy. Menopause. 2018;25(11):1297–305.PubMedCrossRef
270.
go back to reference Simon JA, Laliberté F, Duh MS, et al. Venous thromboembolism and cardiovascular disease complications in menopausal women using transdermal versus oral estrogen therapy. Menopause. 2016;23(6):600–10.PubMedCrossRef Simon JA, Laliberté F, Duh MS, et al. Venous thromboembolism and cardiovascular disease complications in menopausal women using transdermal versus oral estrogen therapy. Menopause. 2016;23(6):600–10.PubMedCrossRef
271.
go back to reference Rovinski D, Ramos RB, Fighera TM, Casanova GK, Spritzer PM. Risk of venous thromboembolism events in postmenopausal women using oral versus non-oral hormone therapy: A systematic review and meta-analysis. Thromb Res. 2018;168:83–95.PubMedCrossRef Rovinski D, Ramos RB, Fighera TM, Casanova GK, Spritzer PM. Risk of venous thromboembolism events in postmenopausal women using oral versus non-oral hormone therapy: A systematic review and meta-analysis. Thromb Res. 2018;168:83–95.PubMedCrossRef
273.
go back to reference Cariou B, Hadjadj S, Wargny M, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study [published online ahead of print, 2020 May 29]. Diabetologia. 2020;1-16. Cariou B, Hadjadj S, Wargny M, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study [published online ahead of print, 2020 May 29]. Diabetologia. 2020;1-16.
274.
go back to reference Scheen AJ, Marre M, Thivolet C. Prognostic factors in patients with diabetes hospitalized for COVID-19: Findings from the CORONADO study and other recent reports [published online ahead of print, 2020 May 21]. Diabetes Metab. 2020;S1262-3636(20)30085-9. Scheen AJ, Marre M, Thivolet C. Prognostic factors in patients with diabetes hospitalized for COVID-19: Findings from the CORONADO study and other recent reports [published online ahead of print, 2020 May 21]. Diabetes Metab. 2020;S1262-3636(20)30085-9.
275.
go back to reference Wang YW, He SJ, Feng X, et al. Metformin: a review of its potential indications. Drug Des Devel Ther. 2017;11:2421-2429. Published 2017 Aug 22. Wang YW, He SJ, Feng X, et al. Metformin: a review of its potential indications. Drug Des Devel Ther. 2017;11:2421-2429. Published 2017 Aug 22.
276.
go back to reference Shurrab NT, Arafa EA. Metformin: A review of its therapeutic efficacy and adverse effects. Obes Med. 2020;17:100186. Shurrab NT, Arafa EA. Metformin: A review of its therapeutic efficacy and adverse effects. Obes Med. 2020;17:100186.
280.
281.
go back to reference Dalan R. Metformin, Neutrophils and COVID-19 Infection [published online ahead of print, 2020 May 21]. Diabetes Res Clin Pract. 2020;108230. Dalan R. Metformin, Neutrophils and COVID-19 Infection [published online ahead of print, 2020 May 21]. Diabetes Res Clin Pract. 2020;108230.
282.
go back to reference Penlioglou T, Papachristou S, Papanas N. COVID-19 and Diabetes Mellitus: May Old Anti-diabetic Agents Become the New Philosopher's Stone? [published online ahead of print, 2020 May 7]. Diabetes Ther. 2020;1-3. Penlioglou T, Papachristou S, Papanas N. COVID-19 and Diabetes Mellitus: May Old Anti-diabetic Agents Become the New Philosopher's Stone? [published online ahead of print, 2020 May 7]. Diabetes Ther. 2020;1-3.
283.
go back to reference Sharma S, Ray A, Sadasivam B. Metformin in COVID-19: A possible role beyond diabetes [published online ahead of print, 2020 Apr 30]. Diabetes Res Clin Pract. 2020;164:108183.PubMedPubMedCentralCrossRef Sharma S, Ray A, Sadasivam B. Metformin in COVID-19: A possible role beyond diabetes [published online ahead of print, 2020 Apr 30]. Diabetes Res Clin Pract. 2020;164:108183.PubMedPubMedCentralCrossRef
285.
go back to reference Vaez H, Najafi M, Toutounchi NS, Barar J, Barzegari A, Garjani A. Metformin Alleviates Lipopolysaccharide-induced Acute Lung Injury through Suppressing Toll-like Receptor 4 Signaling. Iran J Allergy Asthma Immunol. 2016;15(6):498–507.PubMed Vaez H, Najafi M, Toutounchi NS, Barar J, Barzegari A, Garjani A. Metformin Alleviates Lipopolysaccharide-induced Acute Lung Injury through Suppressing Toll-like Receptor 4 Signaling. Iran J Allergy Asthma Immunol. 2016;15(6):498–507.PubMed
286.
go back to reference Jian MY, Alexeyev MF, Wolkowicz PE, Zmijewski JW, Creighton JR. Metformin-stimulated AMPK-α1 promotes microvascular repair in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2013;305(11):L844–55.PubMedPubMedCentralCrossRef Jian MY, Alexeyev MF, Wolkowicz PE, Zmijewski JW, Creighton JR. Metformin-stimulated AMPK-α1 promotes microvascular repair in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2013;305(11):L844–55.PubMedPubMedCentralCrossRef
287.
go back to reference Zhang X, Shang F, Hui L, Zang K, Sun G. The alleviative effects of metformin for lipopolysaccharide-induced acute lung injury rat model and its underlying mechanism. Saudi Pharm J. 2017;25(4):666–70.PubMedPubMedCentralCrossRef Zhang X, Shang F, Hui L, Zang K, Sun G. The alleviative effects of metformin for lipopolysaccharide-induced acute lung injury rat model and its underlying mechanism. Saudi Pharm J. 2017;25(4):666–70.PubMedPubMedCentralCrossRef
288.
go back to reference Yu LL, Zhu M, Huang Y, et al. Metformin relieves acute respiratory distress syndrome by reducing miR-138 expression. Eur Rev Med Pharmacol Sci. 2018;22(16):5355–63.PubMed Yu LL, Zhu M, Huang Y, et al. Metformin relieves acute respiratory distress syndrome by reducing miR-138 expression. Eur Rev Med Pharmacol Sci. 2018;22(16):5355–63.PubMed
289.
go back to reference Ghavimi H, Sheidaei S, Vaez H, Zolali E, Asgharian P, Hamishehkar H. Metformin-attenuated sepsis-induced oxidative damages: a novel role for metformin. Iran J Basic Med Sci. 2018;21(5):469–75.PubMedPubMedCentral Ghavimi H, Sheidaei S, Vaez H, Zolali E, Asgharian P, Hamishehkar H. Metformin-attenuated sepsis-induced oxidative damages: a novel role for metformin. Iran J Basic Med Sci. 2018;21(5):469–75.PubMedPubMedCentral
290.
go back to reference Tsai WL, Chang TH, Sun WC, et al. Metformin activates type I interferon signaling against HCV via activation of adenosine monophosphate-activated protein kinase. Oncotarget. 2017;8(54):91928-91937. Published 2017 Aug 14. Tsai WL, Chang TH, Sun WC, et al. Metformin activates type I interferon signaling against HCV via activation of adenosine monophosphate-activated protein kinase. Oncotarget. 2017;8(54):91928-91937. Published 2017 Aug 14.
291.
go back to reference Xun YH, Zhang YJ, Pan QC, et al. Metformin inhibits hepatitis B virus protein production and replication in human hepatoma cells. J Viral Hepat. 2014;21(8):597–603.PubMedCrossRef Xun YH, Zhang YJ, Pan QC, et al. Metformin inhibits hepatitis B virus protein production and replication in human hepatoma cells. J Viral Hepat. 2014;21(8):597–603.PubMedCrossRef
292.
go back to reference Xiao Y, Liu F, Li S, et al. Metformin promotes innate immunity through a conserved PMK-1/p38 MAPK pathway. Virulence. 2020;11(1):39–48.PubMedCrossRef Xiao Y, Liu F, Li S, et al. Metformin promotes innate immunity through a conserved PMK-1/p38 MAPK pathway. Virulence. 2020;11(1):39–48.PubMedCrossRef
294.
go back to reference Diaz A, Romero M, Vazquez T, Lechner S, Blomberg BB, Frasca D. Metformin improves in vivo and in vitro B cell function in individuals with obesity and Type-2 Diabetes. Vaccine. 2017;35(20):2694–700.PubMedPubMedCentralCrossRef Diaz A, Romero M, Vazquez T, Lechner S, Blomberg BB, Frasca D. Metformin improves in vivo and in vitro B cell function in individuals with obesity and Type-2 Diabetes. Vaccine. 2017;35(20):2694–700.PubMedPubMedCentralCrossRef
295.
go back to reference Lalau JD, Kajbaf F, Protti A, Christensen MM, De Broe ME, Wiernsperger N. Metformin-associated lactic acidosis (MALA): Moving towards a new paradigm. Diabetes Obes Metab. 2017;19(11):1502–12.PubMedCrossRef Lalau JD, Kajbaf F, Protti A, Christensen MM, De Broe ME, Wiernsperger N. Metformin-associated lactic acidosis (MALA): Moving towards a new paradigm. Diabetes Obes Metab. 2017;19(11):1502–12.PubMedCrossRef
296.
go back to reference Shin SJ, Chung S, Kim SJ, et al. Effect of Sodium-Glucose Co-Transporter 2 Inhibitor, Dapagliflozin, on Renal Renin-Angiotensin System in an Animal Model of Type 2 Diabetes. PLoS One. 2016;11(11):e0165703. Published 2016 Nov 1. Shin SJ, Chung S, Kim SJ, et al. Effect of Sodium-Glucose Co-Transporter 2 Inhibitor, Dapagliflozin, on Renal Renin-Angiotensin System in an Animal Model of Type 2 Diabetes. PLoS One. 2016;11(11):e0165703. Published 2016 Nov 1.
297.
go back to reference Bonora BM, Avogaro A, Fadini GP. Extraglycemic Effects of SGLT2 Inhibitors: A Review of the Evidence. Diabetes Metab Syndr Obes. 2020;13:161-174. Published 2020 Jan 21. Bonora BM, Avogaro A, Fadini GP. Extraglycemic Effects of SGLT2 Inhibitors: A Review of the Evidence. Diabetes Metab Syndr Obes. 2020;13:161-174. Published 2020 Jan 21.
299.
go back to reference Li L, Konishi Y, Morikawa T, et al. Effect of a SGLT2 inhibitor on the systemic and intrarenal renin-angiotensin system in subtotally nephrectomized rats. J Pharmacol Sci. 2018;137(2):220–223.PubMedCrossRef Li L, Konishi Y, Morikawa T, et al. Effect of a SGLT2 inhibitor on the systemic and intrarenal renin-angiotensin system in subtotally nephrectomized rats. J Pharmacol Sci. 2018;137(2):220–223.PubMedCrossRef
300.
go back to reference Tentolouris A, Vlachakis P, Tzeravini E, Eleftheriadou I, Tentolouris N. SGLT2 Inhibitors: A Review of Their Antidiabetic and Cardioprotective Effects. Int J Environ Res Public Health. 2019;16(16):2965. Published 2019 Aug 17. doi:https://doi.org/10.3390/ijerph16162965. Tentolouris A, Vlachakis P, Tzeravini E, Eleftheriadou I, Tentolouris N. SGLT2 Inhibitors: A Review of Their Antidiabetic and Cardioprotective Effects. Int J Environ Res Public Health. 2019;16(16):2965. Published 2019 Aug 17. doi:https://​doi.​org/​10.​3390/​ijerph16162965.
301.
go back to reference Petrykiv S, Laverman GD, de Zeeuw D, Heerspink HJL. Does SGLT2 inhibition with dapagliflozin overcome individual therapy resistance to RAAS inhibition?. Diabetes Obes Metab. 2018;20(1):224-227. Petrykiv S, Laverman GD, de Zeeuw D, Heerspink HJL. Does SGLT2 inhibition with dapagliflozin overcome individual therapy resistance to RAAS inhibition?. Diabetes Obes Metab. 2018;20(1):224-227.
302.
go back to reference Schork A, Saynisch J, Vosseler A, et al. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovasc Diabetol. 2019;18(1):46. Published 2019 Apr 5. Schork A, Saynisch J, Vosseler A, et al. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovasc Diabetol. 2019;18(1):46. Published 2019 Apr 5.
305.
go back to reference Cure E, Cumhur Cure M. Can dapagliflozin have a protective effect against COVID-19 infection? A hypothesis [published online ahead of print, 2020 Apr 21]. Diabetes Metab Syndr. 2020;14(4):405-406. Cure E, Cumhur Cure M. Can dapagliflozin have a protective effect against COVID-19 infection? A hypothesis [published online ahead of print, 2020 Apr 21]. Diabetes Metab Syndr. 2020;14(4):405-406.
306.
go back to reference Mirabelli M, Chiefari E, Puccio L, Foti DP, Brunetti A. Potential Benefits and Harms of Novel Antidiabetic Drugs During COVID-19 Crisis. Int J Environ Res Public Health. 2020;17(10):E3664. Published 2020 May 22. Mirabelli M, Chiefari E, Puccio L, Foti DP, Brunetti A. Potential Benefits and Harms of Novel Antidiabetic Drugs During COVID-19 Crisis. Int J Environ Res Public Health. 2020;17(10):E3664. Published 2020 May 22.
307.
go back to reference Zhu T, Li C, Zhang X, et al. GLP-1 Analogue Liraglutide Enhances SP-A Expression in LPS-Induced Acute Lung Injury through the TTF-1 Signaling Pathway. Mediators Inflamm. 2018;2018:3601454. Published 2018 May 22. Zhu T, Li C, Zhang X, et al. GLP-1 Analogue Liraglutide Enhances SP-A Expression in LPS-Induced Acute Lung Injury through the TTF-1 Signaling Pathway. Mediators Inflamm. 2018;2018:3601454. Published 2018 May 22.
308.
go back to reference Xu J, Wei G, Wang J, et al. Glucagon-like peptide-1 receptor activation alleviates lipopolysaccharide-induced acute lung injury in mice via maintenance of endothelial barrier function. Lab Invest. 2019;99(4):577–87.PubMedCrossRef Xu J, Wei G, Wang J, et al. Glucagon-like peptide-1 receptor activation alleviates lipopolysaccharide-induced acute lung injury in mice via maintenance of endothelial barrier function. Lab Invest. 2019;99(4):577–87.PubMedCrossRef
309.
go back to reference Zhou F, Zhang Y, Chen J, Hu X, Xu Y. Liraglutide attenuates lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol. 2016;791:735–40.PubMedCrossRef Zhou F, Zhang Y, Chen J, Hu X, Xu Y. Liraglutide attenuates lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol. 2016;791:735–40.PubMedCrossRef
310.
go back to reference Rowlands J, Heng J, Newsholme P, Carlessi R. Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Front Endocrinol (Lausanne). 2018;9:672. Published 2018 Nov 23. Rowlands J, Heng J, Newsholme P, Carlessi R. Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Front Endocrinol (Lausanne). 2018;9:672. Published 2018 Nov 23.
311.
go back to reference Muskiet MHA, Wheeler DC, Heerspink HJL. New pharmacological strategies for protecting kidney function in type 2 diabetes [published correction appears in Lancet Diabetes Endocrinol. 2019 Feb 4;:]. Lancet Diabetes Endocrinol. 2019;7(5):397-412. Muskiet MHA, Wheeler DC, Heerspink HJL. New pharmacological strategies for protecting kidney function in type 2 diabetes [published correction appears in Lancet Diabetes Endocrinol. 2019 Feb 4;:]. Lancet Diabetes Endocrinol. 2019;7(5):397-412.
312.
go back to reference Jiménez DL, Babkowski MC, Miramontes González JP. GLP-1 and the renin-angiotensin-aldosterone system. Lancet Diabetes Endocrinol. 2019;7(5):337.PubMedCrossRef Jiménez DL, Babkowski MC, Miramontes González JP. GLP-1 and the renin-angiotensin-aldosterone system. Lancet Diabetes Endocrinol. 2019;7(5):337.PubMedCrossRef
313.
go back to reference Skov J, Pedersen M, Holst JJ, et al. Short-term effects of liraglutide on kidney function and vasoactive hormones in type 2 diabetes: a randomized clinical trial. Diabetes Obes Metab. 2016;18(6):581–9.PubMedCrossRef Skov J, Pedersen M, Holst JJ, et al. Short-term effects of liraglutide on kidney function and vasoactive hormones in type 2 diabetes: a randomized clinical trial. Diabetes Obes Metab. 2016;18(6):581–9.PubMedCrossRef
314.
go back to reference Skov J, Persson F, Frøkiær J, Christiansen JS. Tissue Renin-Angiotensin systems: a unifying hypothesis of metabolic disease. Front Endocrinol (Lausanne). 2014;5:23.PubMedPubMedCentralCrossRef Skov J, Persson F, Frøkiær J, Christiansen JS. Tissue Renin-Angiotensin systems: a unifying hypothesis of metabolic disease. Front Endocrinol (Lausanne). 2014;5:23.PubMedPubMedCentralCrossRef
315.
go back to reference Skov J, Dejgaard A, Frøkiær J, et al. Glucagon-like peptide-1 (GLP-1): effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J Clin Endocrinol Metab. 2013;98(4):E664–71.PubMedCrossRef Skov J, Dejgaard A, Frøkiær J, et al. Glucagon-like peptide-1 (GLP-1): effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J Clin Endocrinol Metab. 2013;98(4):E664–71.PubMedCrossRef
316.
go back to reference Li Y, Zhang Z, Yang L, et al. The MERS-CoV Receptor DPP4 as a Candidate Binding Target of the SARS-CoV-2 Spike [published online ahead of print, 2020 May 13]. iScience. 2020;23(6):101160. Li Y, Zhang Z, Yang L, et al. The MERS-CoV Receptor DPP4 as a Candidate Binding Target of the SARS-CoV-2 Spike [published online ahead of print, 2020 May 13]. iScience. 2020;23(6):101160.
317.
go back to reference Fadini GP, Morieri ML, Longato E, et al. Exposure to DPP-4 inhibitors and COVID-19 among people with type 2 diabetes. A case-control study [published online ahead of print, 2020 May 28]. Diabetes Obes Metab. 2020;https://doi.org/10.1111/dom.14097. Fadini GP, Morieri ML, Longato E, et al. Exposure to DPP-4 inhibitors and COVID-19 among people with type 2 diabetes. A case-control study [published online ahead of print, 2020 May 28]. Diabetes Obes Metab. 2020;https://​doi.​org/​10.​1111/​dom.​14097.
318.
go back to reference Dalan R. Is DPP4 inhibition a comrade or adversary in COVID-19 infection [published online ahead of print, 2020 May 19]. Diabetes Res Clin Pract. 2020;164:108216. Dalan R. Is DPP4 inhibition a comrade or adversary in COVID-19 infection [published online ahead of print, 2020 May 19]. Diabetes Res Clin Pract. 2020;164:108216.
321.
go back to reference Kawasaki T, Chen W, Htwe YM, Tatsumi K, Dudek SM. DPP4 inhibition by sitagliptin attenuates LPS-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol. 2018;315(5):L834–45.PubMedCrossRef Kawasaki T, Chen W, Htwe YM, Tatsumi K, Dudek SM. DPP4 inhibition by sitagliptin attenuates LPS-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol. 2018;315(5):L834–45.PubMedCrossRef
322.
go back to reference Suzuki T, Tada Y, Gladson S, et al. Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide-induced lung injury by inhibiting endothelial-to-mesenchymal transition. Respir Res. 2017;18(1):177. Published 2017 Oct 16. Suzuki T, Tada Y, Gladson S, et al. Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide-induced lung injury by inhibiting endothelial-to-mesenchymal transition. Respir Res. 2017;18(1):177. Published 2017 Oct 16.
323.
go back to reference Beckers PAJ, Gielis JF, Van Schil PE, Adriaensen D. Lung ischemia reperfusion injury: the therapeutic role of dipeptidyl peptidase 4 inhibition. Ann Transl Med. 2017;5(6):129.PubMedPubMedCentralCrossRef Beckers PAJ, Gielis JF, Van Schil PE, Adriaensen D. Lung ischemia reperfusion injury: the therapeutic role of dipeptidyl peptidase 4 inhibition. Ann Transl Med. 2017;5(6):129.PubMedPubMedCentralCrossRef
324.
go back to reference Guo K, Jin F. Dipeptidyl peptidase-4 (DPP-4) inhibitor saxagliptin alleviates lipopolysaccharide-induced acute lung injury via regulating the Nrf-2/HO-1 and NF-κB pathways [published online ahead of print, 2019 Nov 7]. J Invest Surg. 2019;1-8. Guo K, Jin F. Dipeptidyl peptidase-4 (DPP-4) inhibitor saxagliptin alleviates lipopolysaccharide-induced acute lung injury via regulating the Nrf-2/HO-1 and NF-κB pathways [published online ahead of print, 2019 Nov 7]. J Invest Surg. 2019;1-8.
326.
327.
go back to reference Peck KM, Scobey T, Swanstrom J, et al. Permissivity of Dipeptidyl Peptidase 4 Orthologs to Middle East Respiratory Syndrome Coronavirus Is Governed by Glycosylation and Other Complex Determinants. J Virol. 2017;91(19):e00534–17.PubMedPubMedCentralCrossRef Peck KM, Scobey T, Swanstrom J, et al. Permissivity of Dipeptidyl Peptidase 4 Orthologs to Middle East Respiratory Syndrome Coronavirus Is Governed by Glycosylation and Other Complex Determinants. J Virol. 2017;91(19):e00534–17.PubMedPubMedCentralCrossRef
328.
go back to reference Dastan F, Abedini A, Shahabi S, Kiani A, Saffaei A, Zare A. Sitagliptin Repositioning in SARS-CoV-2: Effects on ACE-2, CD-26, and Inflammatory Cytokine Storms in the Lung. Iran J Allergy Asthma Immunol. 2020;19(S1):10–2.PubMed Dastan F, Abedini A, Shahabi S, Kiani A, Saffaei A, Zare A. Sitagliptin Repositioning in SARS-CoV-2: Effects on ACE-2, CD-26, and Inflammatory Cytokine Storms in the Lung. Iran J Allergy Asthma Immunol. 2020;19(S1):10–2.PubMed
332.
go back to reference Carboni E, Carta AR, Carboni E. Can pioglitazone be potentially useful therapeutically in treating patients with COVID-19? [published online ahead of print, 2020 Apr 22]. Med Hypotheses. 2020;140:109776. Carboni E, Carta AR, Carboni E. Can pioglitazone be potentially useful therapeutically in treating patients with COVID-19? [published online ahead of print, 2020 Apr 22]. Med Hypotheses. 2020;140:109776.
333.
go back to reference Kvandova M, Barancik M, Balis P, Puzserova A, Majzunova M, Dovinova I. The peroxisome proliferator-activated receptor gamma agonist pioglitazone improves nitric oxide availability, renin-angiotensin system and aberrant redox regulation in the kidney of pre-hypertensive rats. J Physiol Pharmacol. 2018;69(2):https://doi.org/10.26402/jpp.2018.2.09. Kvandova M, Barancik M, Balis P, Puzserova A, Majzunova M, Dovinova I. The peroxisome proliferator-activated receptor gamma agonist pioglitazone improves nitric oxide availability, renin-angiotensin system and aberrant redox regulation in the kidney of pre-hypertensive rats. J Physiol Pharmacol. 2018;69(2):https://​doi.​org/​10.​26402/​jpp.​2018.​2.​09.
334.
go back to reference Zhang W, Li C, Liu B, et al. Pioglitazone upregulates hepatic angiotensin converting enzyme 2 expression in rats with steatohepatitis. Ann Hepatol. 2013;12(6):892–900.PubMedCrossRef Zhang W, Li C, Liu B, et al. Pioglitazone upregulates hepatic angiotensin converting enzyme 2 expression in rats with steatohepatitis. Ann Hepatol. 2013;12(6):892–900.PubMedCrossRef
335.
go back to reference Zhang W, Xu YZ, Liu B, et al. Pioglitazone upregulates angiotensin converting enzyme 2 expression in insulin-sensitive tissues in rats with high-fat diet-induced nonalcoholic steatohepatitis. ScientificWorldJournal. 2014;2014:603409. Published 2014 Jan 14. Zhang W, Xu YZ, Liu B, et al. Pioglitazone upregulates angiotensin converting enzyme 2 expression in insulin-sensitive tissues in rats with high-fat diet-induced nonalcoholic steatohepatitis. ScientificWorldJournal. 2014;2014:603409. Published 2014 Jan 14.
336.
go back to reference Kurisu S, Iwasaki T, Ishibashi K, et al. Effects of low-dose pioglitazone on glucose control, lipid profiles, renin-angiotensin-aldosterone system and natriuretic peptides in diabetic patients with coronary artery disease. J Renin Angiotensin Aldosterone Syst. 2013;14(1):51–5.PubMedCrossRef Kurisu S, Iwasaki T, Ishibashi K, et al. Effects of low-dose pioglitazone on glucose control, lipid profiles, renin-angiotensin-aldosterone system and natriuretic peptides in diabetic patients with coronary artery disease. J Renin Angiotensin Aldosterone Syst. 2013;14(1):51–5.PubMedCrossRef
337.
go back to reference Kutsukake M, Matsutani T, Tamura K, et al. Pioglitazone attenuates lung injury by modulating adipose inflammation. J Surg Res. 2014;189(2):295–303.PubMedCrossRef Kutsukake M, Matsutani T, Tamura K, et al. Pioglitazone attenuates lung injury by modulating adipose inflammation. J Surg Res. 2014;189(2):295–303.PubMedCrossRef
338.
go back to reference Matsutani T, Tamura K, Kutsukake M, Matsuda A, Tachikawa E, Uchida E. Impact of Pioglitazone on Macrophage Dynamics in Adipose Tissues of Cecal Ligation and Puncture-Treated Mice. Biol Pharm Bull. 2017;40(5):638–44.PubMedCrossRef Matsutani T, Tamura K, Kutsukake M, Matsuda A, Tachikawa E, Uchida E. Impact of Pioglitazone on Macrophage Dynamics in Adipose Tissues of Cecal Ligation and Puncture-Treated Mice. Biol Pharm Bull. 2017;40(5):638–44.PubMedCrossRef
339.
go back to reference Grommes J, Mörgelin M, Soehnlein O. Pioglitazone attenuates endotoxin-induced acute lung injury by reducing neutrophil recruitment. Eur Respir J. 2012;40(2):416–23.PubMedCrossRef Grommes J, Mörgelin M, Soehnlein O. Pioglitazone attenuates endotoxin-induced acute lung injury by reducing neutrophil recruitment. Eur Respir J. 2012;40(2):416–23.PubMedCrossRef
340.
go back to reference Kaplan J, Nowell M, Chima R, Zingarelli B. Pioglitazone reduces inflammation through inhibition of NF-κB in polymicrobial sepsis. Innate Immun. 2014;20(5):519–28.PubMedCrossRef Kaplan J, Nowell M, Chima R, Zingarelli B. Pioglitazone reduces inflammation through inhibition of NF-κB in polymicrobial sepsis. Innate Immun. 2014;20(5):519–28.PubMedCrossRef
341.
go back to reference Ciavarella C, Motta I, Valente S, Pasquinelli G. Pharmacological (or Synthetic) and Nutritional Agonists of PPAR-γ as Candidates for Cytokine Storm Modulation in COVID-19 Disease. Molecules. 2020;25(9):2076.PubMedCentralCrossRef Ciavarella C, Motta I, Valente S, Pasquinelli G. Pharmacological (or Synthetic) and Nutritional Agonists of PPAR-γ as Candidates for Cytokine Storm Modulation in COVID-19 Disease. Molecules. 2020;25(9):2076.PubMedCentralCrossRef
342.
go back to reference Chojkier M, Elkhayat H, Sabry D, Donohue M, Buck M. Pioglitazone decreases hepatitis C viral load in overweight, treatment naïve, genotype 4 infected-patients: a pilot study. PLoS One. 2012;7(3):e31516.PubMedPubMedCentralCrossRef Chojkier M, Elkhayat H, Sabry D, Donohue M, Buck M. Pioglitazone decreases hepatitis C viral load in overweight, treatment naïve, genotype 4 infected-patients: a pilot study. PLoS One. 2012;7(3):e31516.PubMedPubMedCentralCrossRef
343.
go back to reference Fukano K, Tsukuda S, Oshima M, et al. Troglitazone Impedes the Oligomerization of Sodium Taurocholate Cotransporting Polypeptide and Entry of Hepatitis B Virus Into Hepatocytes. Front Microbiol. 2019;9:3257. Published 2019 Jan 8. Fukano K, Tsukuda S, Oshima M, et al. Troglitazone Impedes the Oligomerization of Sodium Taurocholate Cotransporting Polypeptide and Entry of Hepatitis B Virus Into Hepatocytes. Front Microbiol. 2019;9:3257. Published 2019 Jan 8.
344.
go back to reference Khattab M, Emad M, Abdelaleem A, et al. Pioglitazone improves virological response to peginterferon alpha-2b/ribavirin combination therapy in hepatitis C genotype 4 patients with insulin resistance. Liver Int. 2010;30(3):447-454. Khattab M, Emad M, Abdelaleem A, et al. Pioglitazone improves virological response to peginterferon alpha-2b/ribavirin combination therapy in hepatitis C genotype 4 patients with insulin resistance. Liver Int. 2010;30(3):447-454.
345.
go back to reference Guerrero CA, Murillo A, Acosta O. Inhibition of rotavirus infection in cultured cells by N-acetyl-cysteine, PPARγ agonists and NSAIDs [published correction appears in Antiviral Res. 2012 Nov;96(2):269. Guererero, Carlos A [corrected to Guerrero, Carlos A]]. Antiviral Res. 2012;96(1):1-12. Guerrero CA, Murillo A, Acosta O. Inhibition of rotavirus infection in cultured cells by N-acetyl-cysteine, PPARγ agonists and NSAIDs [published correction appears in Antiviral Res. 2012 Nov;96(2):269. Guererero, Carlos A [corrected to Guerrero, Carlos A]]. Antiviral Res. 2012;96(1):1-12.
347.
go back to reference Morath C, Ratzlaff K, Dechow C, et al. Chronic low-dose isotretinoin treatment limits renal damage in subtotally nephrectomized rats. J Mol Med (Berl). 2009;87(1):53–64.PubMedCrossRef Morath C, Ratzlaff K, Dechow C, et al. Chronic low-dose isotretinoin treatment limits renal damage in subtotally nephrectomized rats. J Mol Med (Berl). 2009;87(1):53–64.PubMedCrossRef
354.
go back to reference Vemuri VK, Janero DR, Makriyannis A. Pharmacotherapeutic targeting of the endocannabinoid signaling system: drugs for obesity and the metabolic syndrome. Physiol Behav. 2008;93(4-5):671–86.PubMedCrossRef Vemuri VK, Janero DR, Makriyannis A. Pharmacotherapeutic targeting of the endocannabinoid signaling system: drugs for obesity and the metabolic syndrome. Physiol Behav. 2008;93(4-5):671–86.PubMedCrossRef
355.
go back to reference Xie S, Furjanic MA, Ferrara JJ, et al. The endocannabinoid system and rimonabant: a new drug with a novel mechanism of action involving cannabinoid CB1 receptor antagonism--or inverse agonism--as potential obesity treatment and other therapeutic use. J Clin Pharm Ther. 2007;32(3):209–31.PubMedCrossRef Xie S, Furjanic MA, Ferrara JJ, et al. The endocannabinoid system and rimonabant: a new drug with a novel mechanism of action involving cannabinoid CB1 receptor antagonism--or inverse agonism--as potential obesity treatment and other therapeutic use. J Clin Pharm Ther. 2007;32(3):209–31.PubMedCrossRef
356.
go back to reference Topol EJ, Bousser MG, Fox KA, et al. Rimonabant for prevention of cardiovascular events (CRESCENDO): a randomised, multicentre, placebo-controlled trial. Lancet. 2010;376(9740):517–23.PubMedCrossRef Topol EJ, Bousser MG, Fox KA, et al. Rimonabant for prevention of cardiovascular events (CRESCENDO): a randomised, multicentre, placebo-controlled trial. Lancet. 2010;376(9740):517–23.PubMedCrossRef
357.
go back to reference Ludtke DD, Siteneski A, de Oliveira Galassi T, et al. High-intensity swimming exercise reduces inflammatory pain in mice by activation of the endocannabinoid system [published online ahead of print, 2020 May 1]. Scand J Med Sci Sports. Ludtke DD, Siteneski A, de Oliveira Galassi T, et al. High-intensity swimming exercise reduces inflammatory pain in mice by activation of the endocannabinoid system [published online ahead of print, 2020 May 1]. Scand J Med Sci Sports.
358.
go back to reference Kaser S, Ebenbichler CF, Tilg H. Pharmacological and non-pharmacological treatment of non-alcoholic fatty liver disease. Int J Clin Pract. 2010;64(7):968–83.PubMedCrossRef Kaser S, Ebenbichler CF, Tilg H. Pharmacological and non-pharmacological treatment of non-alcoholic fatty liver disease. Int J Clin Pract. 2010;64(7):968–83.PubMedCrossRef
359.
go back to reference Schaich CL, Shaltout HA, Brosnihan KB, Howlett AC, Diz DI. Acute and chronic systemic CB1 cannabinoid receptor blockade improves blood pressure regulation and metabolic profile in hypertensive (mRen2)27 rats. Physiol Rep. 2014;2(8):e12108.PubMedPubMedCentralCrossRef Schaich CL, Shaltout HA, Brosnihan KB, Howlett AC, Diz DI. Acute and chronic systemic CB1 cannabinoid receptor blockade improves blood pressure regulation and metabolic profile in hypertensive (mRen2)27 rats. Physiol Rep. 2014;2(8):e12108.PubMedPubMedCentralCrossRef
360.
go back to reference Ciaglia E, Vecchione C, Puca AA. COVID-19 Infection and Circulating ACE2 Levels: Protective Role in Women and Children. Front Pediatr. 2020;8:206. Published 2020 Apr 23. Ciaglia E, Vecchione C, Puca AA. COVID-19 Infection and Circulating ACE2 Levels: Protective Role in Women and Children. Front Pediatr. 2020;8:206. Published 2020 Apr 23.
361.
go back to reference Mestre L, Carrillo-Salinas FJ, Mecha M, Feliú A, Guaza C. Gut microbiota, cannabinoid system and neuroimmune interactions: New perspectives in multiple sclerosis. Biochem Pharmacol. 2018;157:51–66.PubMedCrossRef Mestre L, Carrillo-Salinas FJ, Mecha M, Feliú A, Guaza C. Gut microbiota, cannabinoid system and neuroimmune interactions: New perspectives in multiple sclerosis. Biochem Pharmacol. 2018;157:51–66.PubMedCrossRef
362.
go back to reference Angelina A, Pérez-Diego M, López-Abente J, Palomares O. The Role of Cannabinoids in Allergic Diseases [published online ahead of print, 2020 Jun 11]. Int Arch Allergy Immunol. 2020:1–20. Angelina A, Pérez-Diego M, López-Abente J, Palomares O. The Role of Cannabinoids in Allergic Diseases [published online ahead of print, 2020 Jun 11]. Int Arch Allergy Immunol. 2020:1–20.
363.
go back to reference Rieder SA, Chauhan A, Singh U, Nagarkatti M, Nagarkatti P. Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression. Immunobiology. 2010;215(8):598–605.PubMedCrossRef Rieder SA, Chauhan A, Singh U, Nagarkatti M, Nagarkatti P. Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression. Immunobiology. 2010;215(8):598–605.PubMedCrossRef
364.
go back to reference Briand-Mésange F, Trudel S, Salles J, Ausseil J, Salles JP, Chap H. Possible Role of Adipose Tissue and Endocannabinoid System in COVID-19 Pathogenesis: Can Rimonabant Return? [published online ahead of print, 2020 May 28]. Obesity (Silver Spring). 2020;10.1002/oby.22916. Briand-Mésange F, Trudel S, Salles J, Ausseil J, Salles JP, Chap H. Possible Role of Adipose Tissue and Endocannabinoid System in COVID-19 Pathogenesis: Can Rimonabant Return? [published online ahead of print, 2020 May 28]. Obesity (Silver Spring). 2020;10.1002/oby.22916.
365.
go back to reference Rossi F, Tortora C, Argenziano M, Di Paola A, Punzo F. Cannabinoid Receptor Type 2: A Possible Target in SARS-CoV-2 (CoV-19) Infection?. Int J Mol Sci. 2020;21(11):E3809. Published 2020 May 27. Rossi F, Tortora C, Argenziano M, Di Paola A, Punzo F. Cannabinoid Receptor Type 2: A Possible Target in SARS-CoV-2 (CoV-19) Infection?. Int J Mol Sci. 2020;21(11):E3809. Published 2020 May 27.
366.
go back to reference Huang SA, Lie JD. Phosphodiesterase-5 (PDE5) Inhibitors In the Management of Erectile Dysfunction. P T. 2013;38(7):407–19.PubMedPubMedCentral Huang SA, Lie JD. Phosphodiesterase-5 (PDE5) Inhibitors In the Management of Erectile Dysfunction. P T. 2013;38(7):407–19.PubMedPubMedCentral
367.
go back to reference Wang G, Zhang Q, Yuan W, Wu J, Li C. Sildenafil Protects against Myocardial Ischemia-Reperfusion Injury Following Cardiac Arrest in a Porcine Model: Possible Role of the Renin-Angiotensin System. Int J Mol Sci. 2015;16(11):27015-27031. Published 2015 Nov 12. Wang G, Zhang Q, Yuan W, Wu J, Li C. Sildenafil Protects against Myocardial Ischemia-Reperfusion Injury Following Cardiac Arrest in a Porcine Model: Possible Role of the Renin-Angiotensin System. Int J Mol Sci. 2015;16(11):27015-27031. Published 2015 Nov 12.
368.
369.
go back to reference Guerra-Mora JR, Perales-Caldera E, Aguilar-León D, et al. Effects of Sildenafil and Tadalafil on Edema and Reactive Oxygen Species Production in an Experimental Model of Lung Ischemia-Reperfusion Injury. Transplant Proc. 2017;49(6):1461–6.PubMedCrossRef Guerra-Mora JR, Perales-Caldera E, Aguilar-León D, et al. Effects of Sildenafil and Tadalafil on Edema and Reactive Oxygen Species Production in an Experimental Model of Lung Ischemia-Reperfusion Injury. Transplant Proc. 2017;49(6):1461–6.PubMedCrossRef
370.
go back to reference Gokakin AK, Deveci K, Kurt A, et al. The protective effects of sildenafil in acute lung injury in a rat model of severe scald burn: A biochemical and histopathological study. Burns. 2013;39(6):1193–9.PubMedCrossRef Gokakin AK, Deveci K, Kurt A, et al. The protective effects of sildenafil in acute lung injury in a rat model of severe scald burn: A biochemical and histopathological study. Burns. 2013;39(6):1193–9.PubMedCrossRef
371.
go back to reference Kniotek M, Boguska A. Sildenafil Can Affect Innate and Adaptive Immune System in Both Experimental Animals and Patients. J Immunol Res. 2017;2017:4541958. Kniotek M, Boguska A. Sildenafil Can Affect Innate and Adaptive Immune System in Both Experimental Animals and Patients. J Immunol Res. 2017;2017:4541958.
373.
go back to reference Morgante G, Delia A, Musacchio MC, Severi FM, Petraglia F, De Leo V. Effects of raloxifene therapy on plasma renin and aldosterone levels and blood pressure in postmenopausal women. Gynecol Endocrinol. 2006;22(7):376–80.PubMedCrossRef Morgante G, Delia A, Musacchio MC, Severi FM, Petraglia F, De Leo V. Effects of raloxifene therapy on plasma renin and aldosterone levels and blood pressure in postmenopausal women. Gynecol Endocrinol. 2006;22(7):376–80.PubMedCrossRef
374.
go back to reference Sumino H, Ichikawa S, Kasama S, et al. Effects of raloxifene on the renin-angiotensin-aldosterone system and blood pressure in hypertensive and normotensive osteoporotic postmenopausal women. Geriatr Gerontol Int. 2010;10(1):70–7.PubMedCrossRef Sumino H, Ichikawa S, Kasama S, et al. Effects of raloxifene on the renin-angiotensin-aldosterone system and blood pressure in hypertensive and normotensive osteoporotic postmenopausal women. Geriatr Gerontol Int. 2010;10(1):70–7.PubMedCrossRef
375.
go back to reference Zhou GJ, Zhang H, Zhi SD, et al. Protective effect of raloxifene on lipopolysaccharide and acid- induced acute lung injury in rats. Acta Pharmacol Sin. 2007;28(10):1585–90.PubMedCrossRef Zhou GJ, Zhang H, Zhi SD, et al. Protective effect of raloxifene on lipopolysaccharide and acid- induced acute lung injury in rats. Acta Pharmacol Sin. 2007;28(10):1585–90.PubMedCrossRef
376.
go back to reference Ellis AJ, Hendrick VM, Williams R, Komm BS. Selective estrogen receptor modulators in clinical practice: a safety overview [published correction appears in Expert Opin Drug Saf. 2015;14(11):1799-1800]. Ellis AJ, Hendrick VM, Williams R, Komm BS. Selective estrogen receptor modulators in clinical practice: a safety overview [published correction appears in Expert Opin Drug Saf. 2015;14(11):1799-1800].
377.
go back to reference Boyack M, Lookinland S, Chasson S. Efficacy of raloxifene for treatment of menopause: a systematic review. J Am Acad Nurse Pract. 2002;14(4):150–65.PubMedCrossRef Boyack M, Lookinland S, Chasson S. Efficacy of raloxifene for treatment of menopause: a systematic review. J Am Acad Nurse Pract. 2002;14(4):150–65.PubMedCrossRef
378.
go back to reference Shekarforoush S, Koohpeyma F, Safari F. Alteration at transcriptional level of cardiac renin-angiotensin system by letrozole treatment. Acta Cardiol. 2019;74(2):109–13.PubMedCrossRef Shekarforoush S, Koohpeyma F, Safari F. Alteration at transcriptional level of cardiac renin-angiotensin system by letrozole treatment. Acta Cardiol. 2019;74(2):109–13.PubMedCrossRef
379.
go back to reference Chanplakorn N, Chanplakorn P, Suzuki T, et al. Increased 5α-reductase type 2 expression in human breast carcinoma following aromatase inhibitor therapy: the correlation with decreased tumor cell proliferation. Horm Cancer. 2011;2(1):73–81.PubMedCrossRef Chanplakorn N, Chanplakorn P, Suzuki T, et al. Increased 5α-reductase type 2 expression in human breast carcinoma following aromatase inhibitor therapy: the correlation with decreased tumor cell proliferation. Horm Cancer. 2011;2(1):73–81.PubMedCrossRef
380.
go back to reference Takagi K, Miki Y, Nagasaki S, et al. Increased intratumoral androgens in human breast carcinoma following aromatase inhibitor exemestane treatment. Endocr Relat Cancer. 2010;17(2):415-430. Published 2010 Apr 21. Takagi K, Miki Y, Nagasaki S, et al. Increased intratumoral androgens in human breast carcinoma following aromatase inhibitor exemestane treatment. Endocr Relat Cancer. 2010;17(2):415-430. Published 2010 Apr 21.
381.
go back to reference Hierweger AM, Engler JB, Friese MA, et al. Progesterone modulates the T-cell response via glucocorticoid receptor-dependent pathways. Am J Reprod Immunol. 2019;81(2):e13084.PubMedPubMedCentralCrossRef Hierweger AM, Engler JB, Friese MA, et al. Progesterone modulates the T-cell response via glucocorticoid receptor-dependent pathways. Am J Reprod Immunol. 2019;81(2):e13084.PubMedPubMedCentralCrossRef
382.
go back to reference Oelkers W. The renin-aldosterone system and drospirenone. Gynecol Endocrinol. 2002;16(1):83–7.PubMed Oelkers W. The renin-aldosterone system and drospirenone. Gynecol Endocrinol. 2002;16(1):83–7.PubMed
383.
go back to reference Keller-Wood M, Silbiger J, Wood CE. Progesterone-cortisol interaction in control of renin activity but not aldosterone. Am J Physiol. 1990;259(2 Pt 2):R350–6.PubMed Keller-Wood M, Silbiger J, Wood CE. Progesterone-cortisol interaction in control of renin activity but not aldosterone. Am J Physiol. 1990;259(2 Pt 2):R350–6.PubMed
384.
go back to reference Rogosnitzky M, Berkowitz E, Jadad AR. Delivering Benefits at Speed Through Real-World Repurposing of Off-Patent Drugs: The COVID-19 Pandemic as a Case in Point. JMIR Public Health Surveill. 2020;6(2):e19199. Published 2020 May 13. Rogosnitzky M, Berkowitz E, Jadad AR. Delivering Benefits at Speed Through Real-World Repurposing of Off-Patent Drugs: The COVID-19 Pandemic as a Case in Point. JMIR Public Health Surveill. 2020;6(2):e19199. Published 2020 May 13.
386.
go back to reference Jean SS, Hsueh PR. Old and re-purposed drugs for the treatment of COVID-19 [published online ahead of print, 2020 Jun 1]. Expert Rev Anti Infect Ther. 2020;1-5. Jean SS, Hsueh PR. Old and re-purposed drugs for the treatment of COVID-19 [published online ahead of print, 2020 Jun 1]. Expert Rev Anti Infect Ther. 2020;1-5.
Metadata
Title
Repurposing existing drugs for COVID-19: an endocrinology perspective
Author
Flavio A. Cadegiani
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Endocrine Disorders / Issue 1/2020
Electronic ISSN: 1472-6823
DOI
https://doi.org/10.1186/s12902-020-00626-0

Other articles of this Issue 1/2020

BMC Endocrine Disorders 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.