Skip to main content
Top
Published in: Clinical Reviews in Allergy & Immunology 3/2017

01-06-2017

Role of Mast Cells in the Pathogenesis of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis

Authors: Daniel Elieh-Ali-Komi, Yonghao Cao

Published in: Clinical Reviews in Allergy & Immunology | Issue 3/2017

Login to get access

Abstract

Multiple sclerosis (MS) is a neurological autoimmune disorder of the central nervous system (CNS), characterized by recurrent episodes of inflammatory demyelination and consequent axonal deterioration. The hallmark of the disease is the demyelinated plaque, a hypocellular area characterized by formation of astrocytic scars and infiltration of mononuclear cells. Recent studies have revealed that both innate and adaptive immune cells contribute to the pathogenesis of MS and its experimental autoimmune encephalomyelitis (EAE) model. Here, we review the current understanding of the role of mast cells in the pathogenesis of MS and EAE. Mast cells may act at the early stage that promote demyelination through interactions among mast cells, neurons, and other immune cells to mediate neuroinflammation. Studies from EAE model suggest that mast cells regulate adaptive autoimmune responses, present myelin antigens to T cells, disrupt the blood–brain barrier, and permit the entry of inflammatory cells and mediators into the CNS. Depletion or limiting mast cells could be a new promising therapeutic target for MS and EAE.
Literature
3.
5.
go back to reference Mahad DH, Trapp BD, Lassmann H (2015) Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 14(2):183–193CrossRefPubMed Mahad DH, Trapp BD, Lassmann H (2015) Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 14(2):183–193CrossRefPubMed
6.
go back to reference Piconese S et al (2011) Exacerbated experimental autoimmune encephalomyelitis in mast-cell-deficient Kit W-sh/W-sh mice. Lab Investig 91(4):627–641CrossRefPubMed Piconese S et al (2011) Exacerbated experimental autoimmune encephalomyelitis in mast-cell-deficient Kit W-sh/W-sh mice. Lab Investig 91(4):627–641CrossRefPubMed
7.
go back to reference Christy AL, Brown MA (2007) The multitasking mast cell: positive and negative roles in the progression of autoimmunity. J Immunol 179(5):2673–2679CrossRefPubMed Christy AL, Brown MA (2007) The multitasking mast cell: positive and negative roles in the progression of autoimmunity. J Immunol 179(5):2673–2679CrossRefPubMed
8.
go back to reference Mallucci G et al (2015) The role of immune cells, glia and neurons in white and gray matter pathology in multiple sclerosis. Prog Neurobiol 127-128:1–22CrossRefPubMed Mallucci G et al (2015) The role of immune cells, glia and neurons in white and gray matter pathology in multiple sclerosis. Prog Neurobiol 127-128:1–22CrossRefPubMed
9.
go back to reference Bennett JL et al (2009) Bone marrow-derived mast cells accumulate in the central nervous system during inflammation but are dispensable for experimental autoimmune encephalomyelitis pathogenesis. J Immunol 182(9):5507–5514CrossRefPubMed Bennett JL et al (2009) Bone marrow-derived mast cells accumulate in the central nervous system during inflammation but are dispensable for experimental autoimmune encephalomyelitis pathogenesis. J Immunol 182(9):5507–5514CrossRefPubMed
10.
go back to reference Yu X, Kasprick A, Petersen F (2015) Revisiting the role of mast cells in autoimmunity. Autoimmun Rev 14(9):751–759CrossRefPubMed Yu X, Kasprick A, Petersen F (2015) Revisiting the role of mast cells in autoimmunity. Autoimmun Rev 14(9):751–759CrossRefPubMed
11.
go back to reference Costanza M, Colombo MP, Pedotti R (2012) Mast cells in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. Int J Mol Sci 13(11):15107–15125CrossRefPubMedPubMedCentral Costanza M, Colombo MP, Pedotti R (2012) Mast cells in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. Int J Mol Sci 13(11):15107–15125CrossRefPubMedPubMedCentral
12.
13.
go back to reference Xu Y, Chen G (2015) Mast cell and autoimmune diseases. Mediat Inflamm 2015:246126 Xu Y, Chen G (2015) Mast cell and autoimmune diseases. Mediat Inflamm 2015:246126
15.
go back to reference Bruck W (2005) The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. J Neurol 252(Suppl 5):v3–v9CrossRefPubMed Bruck W (2005) The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. J Neurol 252(Suppl 5):v3–v9CrossRefPubMed
16.
go back to reference Brown MA, Tanzola MB, Robbie-Ryan M (2002) Mechanisms underlying mast cell influence on EAE disease course. Mol Immunol 38(16–18):1373–1378CrossRefPubMed Brown MA, Tanzola MB, Robbie-Ryan M (2002) Mechanisms underlying mast cell influence on EAE disease course. Mol Immunol 38(16–18):1373–1378CrossRefPubMed
17.
go back to reference Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15(9):545–558CrossRefPubMed Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15(9):545–558CrossRefPubMed
18.
go back to reference Segal BM (2014) Stage-specific immune dysregulation in multiple sclerosis. J Interf Cytokine Res 34(8):633–640CrossRef Segal BM (2014) Stage-specific immune dysregulation in multiple sclerosis. J Interf Cytokine Res 34(8):633–640CrossRef
19.
go back to reference Lock C et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8(5):500–508CrossRefPubMed Lock C et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8(5):500–508CrossRefPubMed
20.
go back to reference Yuan H et al (2010) Role of mast cell activation in inducing microglial cells to release neurotrophin. J Neurosci Res 88(6):1348–1354PubMed Yuan H et al (2010) Role of mast cell activation in inducing microglial cells to release neurotrophin. J Neurosci Res 88(6):1348–1354PubMed
21.
go back to reference Hemmer B et al (2006) Immunopathogenesis and immunotherapy of multiple sclerosis. Nat Clin Pract Neurol 2(4):201–211CrossRefPubMed Hemmer B et al (2006) Immunopathogenesis and immunotherapy of multiple sclerosis. Nat Clin Pract Neurol 2(4):201–211CrossRefPubMed
22.
go back to reference Friese MA, Schattling B, Fugger L (2014) Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol 10(4):225–238CrossRefPubMed Friese MA, Schattling B, Fugger L (2014) Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol 10(4):225–238CrossRefPubMed
24.
go back to reference Walker ME, Hatfield JK, Brown MA (2012) New insights into the role of mast cells in autoimmunity: evidence for a common mechanism of action? Biochim Biophys Acta 1822(1):57–65CrossRefPubMed Walker ME, Hatfield JK, Brown MA (2012) New insights into the role of mast cells in autoimmunity: evidence for a common mechanism of action? Biochim Biophys Acta 1822(1):57–65CrossRefPubMed
25.
go back to reference Zappulla JP et al (2002) Mast cells: new targets for multiple sclerosis therapy? J Neuroimmunol 131(1–2):5–20CrossRefPubMed Zappulla JP et al (2002) Mast cells: new targets for multiple sclerosis therapy? J Neuroimmunol 131(1–2):5–20CrossRefPubMed
27.
go back to reference Theoharides TC et al (2007) Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol Rev 217:65–78CrossRefPubMed Theoharides TC et al (2007) Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol Rev 217:65–78CrossRefPubMed
28.
go back to reference Gregory GD et al (2005) Mast cells are required for optimal autoreactive T cell responses in a murine model of multiple sclerosis. Eur J Immunol 35(12):3478–3486CrossRefPubMed Gregory GD et al (2005) Mast cells are required for optimal autoreactive T cell responses in a murine model of multiple sclerosis. Eur J Immunol 35(12):3478–3486CrossRefPubMed
29.
go back to reference Johnson D, Seeldrayers PA, Weiner HL (1988) The role of mast cells in demyelination. 1. Myelin proteins are degraded by mast cell proteases and myelin basic protein and P2 can stimulate mast cell degranulation. Brain Res 444(1):195–198CrossRefPubMed Johnson D, Seeldrayers PA, Weiner HL (1988) The role of mast cells in demyelination. 1. Myelin proteins are degraded by mast cell proteases and myelin basic protein and P2 can stimulate mast cell degranulation. Brain Res 444(1):195–198CrossRefPubMed
30.
go back to reference Rozniecki JJ et al (1995) Elevated mast cell tryptase in cerebrospinal fluid of multiple sclerosis patients. Ann Neurol 37(1):63–66CrossRefPubMed Rozniecki JJ et al (1995) Elevated mast cell tryptase in cerebrospinal fluid of multiple sclerosis patients. Ann Neurol 37(1):63–66CrossRefPubMed
31.
go back to reference Larochelle C, Alvarez JI, Prat A (2011) How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett 585(23):3770–3780CrossRefPubMed Larochelle C, Alvarez JI, Prat A (2011) How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett 585(23):3770–3780CrossRefPubMed
32.
go back to reference Anand P, Singh B, Jaggi AS, Singh N (2012) Mast cells: an expanding pathophysiological role from allergy to other disorders. Naunyn Schmiedeberg’s Arch Pharmacol 385(7):657–670CrossRef Anand P, Singh B, Jaggi AS, Singh N (2012) Mast cells: an expanding pathophysiological role from allergy to other disorders. Naunyn Schmiedeberg’s Arch Pharmacol 385(7):657–670CrossRef
33.
go back to reference Sayed BA et al (2010) Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment? J Immunol 184(12):6891–6900CrossRefPubMed Sayed BA et al (2010) Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment? J Immunol 184(12):6891–6900CrossRefPubMed
34.
go back to reference Skaper SD, Giusti P, Facci L (2012) Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J 26(8):3103–3117CrossRefPubMed Skaper SD, Giusti P, Facci L (2012) Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J 26(8):3103–3117CrossRefPubMed
35.
go back to reference Dietsch GN, Hinrichs DJ (1991) Mast cell proteases liberate stable encephalitogenic fragments from intact myelin. Cell Immunol 135(2):541–548CrossRefPubMed Dietsch GN, Hinrichs DJ (1991) Mast cell proteases liberate stable encephalitogenic fragments from intact myelin. Cell Immunol 135(2):541–548CrossRefPubMed
36.
go back to reference Medic N et al (2008) Mast cell activation by myelin through scavenger receptor. J Neuroimmunol 200(1–2):27–40CrossRefPubMed Medic N et al (2008) Mast cell activation by myelin through scavenger receptor. J Neuroimmunol 200(1–2):27–40CrossRefPubMed
37.
go back to reference Gregory GD et al (2006) Mast cell IL-4 expression is regulated by Ikaros and influences encephalitogenic Th1 responses in EAE. J Clin Invest 116(5):1327–1336CrossRefPubMedPubMedCentral Gregory GD et al (2006) Mast cell IL-4 expression is regulated by Ikaros and influences encephalitogenic Th1 responses in EAE. J Clin Invest 116(5):1327–1336CrossRefPubMedPubMedCentral
38.
go back to reference Tanzola MB et al (2003) Mast cells exert effects outside the central nervous system to influence experimental allergic encephalomyelitis disease course. J Immunol 171(8):4385–4391CrossRefPubMed Tanzola MB et al (2003) Mast cells exert effects outside the central nervous system to influence experimental allergic encephalomyelitis disease course. J Immunol 171(8):4385–4391CrossRefPubMed
39.
go back to reference Sheng J, Xu Z (2016) Three decades of research on angiogenin: a review and perspective. Acta Biochim Biophys Sin Shanghai 48(5):399–410CrossRefPubMed Sheng J, Xu Z (2016) Three decades of research on angiogenin: a review and perspective. Acta Biochim Biophys Sin Shanghai 48(5):399–410CrossRefPubMed
40.
go back to reference Russi AE, Walker-Caulfield ME, Brown MA (2016) Mast cell inflammasome activity in the meninges regulates EAE disease severity. Clin Immunol. pii: S1521-6616(16)30068-7 Russi AE, Walker-Caulfield ME, Brown MA (2016) Mast cell inflammasome activity in the meninges regulates EAE disease severity. Clin Immunol. pii: S1521-6616(16)30068-7
41.
go back to reference Rozniecki JJ et al (1999) Morphological and functional demonstration of rat dura mater mast cell-neuron interactions in vitro and in vivo. Brain Res 849(1–2):1–15CrossRefPubMed Rozniecki JJ et al (1999) Morphological and functional demonstration of rat dura mater mast cell-neuron interactions in vitro and in vivo. Brain Res 849(1–2):1–15CrossRefPubMed
42.
go back to reference Christy AL et al (2013) Mast cell activation and neutrophil recruitment promotes early and robust inflammation in the meninges in EAE. J Autoimmun 42:50–61CrossRefPubMed Christy AL et al (2013) Mast cell activation and neutrophil recruitment promotes early and robust inflammation in the meninges in EAE. J Autoimmun 42:50–61CrossRefPubMed
43.
go back to reference Ribatti D (2015) The crucial role of mast cells in blood-brain barrier alterations. Exp Cell Res 338(1):119–125CrossRefPubMed Ribatti D (2015) The crucial role of mast cells in blood-brain barrier alterations. Exp Cell Res 338(1):119–125CrossRefPubMed
44.
go back to reference Karagkouni A, Alevizos M, Theoharides TC (2013) Effect of stress on brain inflammation and multiple sclerosis. Autoimmun Rev 12(10):947–953CrossRefPubMed Karagkouni A, Alevizos M, Theoharides TC (2013) Effect of stress on brain inflammation and multiple sclerosis. Autoimmun Rev 12(10):947–953CrossRefPubMed
45.
46.
go back to reference Li H et al (2011) Kit (W-sh) mice develop earlier and more severe experimental autoimmune encephalomyelitis due to absence of immune suppression. J Immunol 187(1):274–282CrossRefPubMedPubMedCentral Li H et al (2011) Kit (W-sh) mice develop earlier and more severe experimental autoimmune encephalomyelitis due to absence of immune suppression. J Immunol 187(1):274–282CrossRefPubMedPubMedCentral
47.
go back to reference Sayed BA, Walker ME, Brown MA (2011) Cutting edge: mast cells regulate disease severity in a relapsing-remitting model of multiple sclerosis. J Immunol 186(6):3294–3298CrossRefPubMed Sayed BA, Walker ME, Brown MA (2011) Cutting edge: mast cells regulate disease severity in a relapsing-remitting model of multiple sclerosis. J Immunol 186(6):3294–3298CrossRefPubMed
48.
go back to reference Brown MA, Hatfield JK (2012) Mast cells are important modifiers of autoimmune disease: with so much evidence, why is there still controversy? Front Immunol 3:147CrossRefPubMedPubMedCentral Brown MA, Hatfield JK (2012) Mast cells are important modifiers of autoimmune disease: with so much evidence, why is there still controversy? Front Immunol 3:147CrossRefPubMedPubMedCentral
49.
go back to reference Medic N et al (2010) Mast cell adhesion induces cytoskeletal modifications and programmed cell death in oligodendrocytes. J Neuroimmunol 218(1–2):57–66CrossRefPubMed Medic N et al (2010) Mast cell adhesion induces cytoskeletal modifications and programmed cell death in oligodendrocytes. J Neuroimmunol 218(1–2):57–66CrossRefPubMed
50.
go back to reference Hemmer B, Kerschensteiner M, Korn T (2015) Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol 14(4):406–419CrossRefPubMed Hemmer B, Kerschensteiner M, Korn T (2015) Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol 14(4):406–419CrossRefPubMed
51.
go back to reference Franklin RJ et al (2012) Neuroprotection and repair in multiple sclerosis. Nat Rev Neurol 8(11):624–634CrossRefPubMed Franklin RJ et al (2012) Neuroprotection and repair in multiple sclerosis. Nat Rev Neurol 8(11):624–634CrossRefPubMed
52.
go back to reference Kritas SK et al (2014) Impact of mast cells on multiple sclerosis: inhibitory effect of natalizumab. Int J Immunopathol Pharmacol 27(3):331–335CrossRefPubMed Kritas SK et al (2014) Impact of mast cells on multiple sclerosis: inhibitory effect of natalizumab. Int J Immunopathol Pharmacol 27(3):331–335CrossRefPubMed
53.
go back to reference Conti P, Kempuraj D (2016) Important role of mast cells in multiple sclerosis. Mult Scler Relat Disord 5:77–80CrossRefPubMed Conti P, Kempuraj D (2016) Important role of mast cells in multiple sclerosis. Mult Scler Relat Disord 5:77–80CrossRefPubMed
54.
go back to reference McFarland HF, Martin R (2007) Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 8(9):913–919CrossRefPubMed McFarland HF, Martin R (2007) Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 8(9):913–919CrossRefPubMed
56.
go back to reference Kaur G, Trowsdale J, Fugger L (2013) Natural killer cells and their receptors in multiple sclerosis. Brain 136(Pt 9):2657–2676CrossRefPubMed Kaur G, Trowsdale J, Fugger L (2013) Natural killer cells and their receptors in multiple sclerosis. Brain 136(Pt 9):2657–2676CrossRefPubMed
57.
58.
go back to reference Lopez-Diego RS, Weiner HL (2008) Novel therapeutic strategies for multiple sclerosis—a multifaceted adversary. Nat Rev Drug Discov 7(11):909–925CrossRefPubMed Lopez-Diego RS, Weiner HL (2008) Novel therapeutic strategies for multiple sclerosis—a multifaceted adversary. Nat Rev Drug Discov 7(11):909–925CrossRefPubMed
59.
go back to reference Prendergast CT, Anderton SM (2009) Immune cell entry to central nervous system—current understanding and prospective therapeutic targets. Endocr Metab Immune Disord Drug Targets 9(4):315–327CrossRefPubMed Prendergast CT, Anderton SM (2009) Immune cell entry to central nervous system—current understanding and prospective therapeutic targets. Endocr Metab Immune Disord Drug Targets 9(4):315–327CrossRefPubMed
60.
go back to reference Calabrese M et al (2015) Exploring the origins of grey matter damage in multiple sclerosis. Nat Rev Neurosci 16(3):147–158CrossRefPubMed Calabrese M et al (2015) Exploring the origins of grey matter damage in multiple sclerosis. Nat Rev Neurosci 16(3):147–158CrossRefPubMed
61.
go back to reference Betto E, et al. (2015) Mast cells contribute to autoimmune diabetes by releasing interleukin-6 and failing to acquire a tolerogenic IL-10+ phenotype. Clin Immunol Betto E, et al. (2015) Mast cells contribute to autoimmune diabetes by releasing interleukin-6 and failing to acquire a tolerogenic IL-10+ phenotype. Clin Immunol
62.
go back to reference Suurmond J, van der Velden D, Kuiper J, Bot I, Toes RE (2016) Mast cells in rheumatic disease. Euro J Pharmacol 778:116–124CrossRef Suurmond J, van der Velden D, Kuiper J, Bot I, Toes RE (2016) Mast cells in rheumatic disease. Euro J Pharmacol 778:116–124CrossRef
63.
go back to reference Martino L et al (2016) Mast cells infiltrate pancreatic islets in human type 1 diabetes. Diabetologia 58(11):2554–2562CrossRef Martino L et al (2016) Mast cells infiltrate pancreatic islets in human type 1 diabetes. Diabetologia 58(11):2554–2562CrossRef
64.
go back to reference Geoffrey R et al (2016) Evidence of a functional role for mast cells in the development of type 1 diabetes mellitus in the BioBreeding rat. J Immunol 177(10):7275–7286CrossRef Geoffrey R et al (2016) Evidence of a functional role for mast cells in the development of type 1 diabetes mellitus in the BioBreeding rat. J Immunol 177(10):7275–7286CrossRef
65.
go back to reference Wesing LA, Camara NO, Pereira FV (2014) Relationship between mast cells and autoimmune diseases. Austin J Clin Immunol 1(4):2381–9138 Wesing LA, Camara NO, Pereira FV (2014) Relationship between mast cells and autoimmune diseases. Austin J Clin Immunol 1(4):2381–9138
66.
go back to reference Nelissen S et al (2013) The role of mast cells in neuroinflammation. Acta Neuropathol 125(5):637–650CrossRefPubMed Nelissen S et al (2013) The role of mast cells in neuroinflammation. Acta Neuropathol 125(5):637–650CrossRefPubMed
Metadata
Title
Role of Mast Cells in the Pathogenesis of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis
Authors
Daniel Elieh-Ali-Komi
Yonghao Cao
Publication date
01-06-2017
Publisher
Springer US
Published in
Clinical Reviews in Allergy & Immunology / Issue 3/2017
Print ISSN: 1080-0549
Electronic ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-016-8595-y

Other articles of this Issue 3/2017

Clinical Reviews in Allergy & Immunology 3/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.