Skip to main content
Top
Published in: Diabetologia 3/2015

01-03-2015 | Review

Role of islet microRNAs in diabetes: which model for which question?

Authors: Claudiane Guay, Romano Regazzi

Published in: Diabetologia | Issue 3/2015

Login to get access

Abstract

MicroRNAs are important regulators of gene expression. The vast majority of the cells in our body rely on hundreds of these tiny non-coding RNA molecules to precisely adjust their protein repertoire and faithfully accomplish their tasks. Indeed, alterations in the microRNA profile can lead to cellular dysfunction that favours the appearance of several diseases. A specific set of microRNAs plays a crucial role in pancreatic beta cell differentiation and is essential for the fine-tuning of insulin secretion and for compensatory beta cell mass expansion in response to insulin resistance. Recently, several independent studies reported alterations in microRNA levels in the islets of animal models of diabetes and in islets isolated from diabetic patients. Surprisingly, many of the changes in microRNA expression observed in animal models of diabetes were not detected in the islets of diabetic patients and vice versa. These findings are unlikely to merely reflect species differences because microRNAs are highly conserved in mammals. These puzzling results are most probably explained by fundamental differences in the experimental approaches which selectively highlight the microRNAs directly contributing to diabetes development, the microRNAs predisposing individuals to the disease or the microRNAs displaying expression changes subsequent to the development of diabetes. In this review we will highlight the suitability of the different models for addressing each of these questions and propose future strategies that should allow us to obtain a better understanding of the contribution of microRNAs to the development of diabetes mellitus in humans.
Literature
1.
go back to reference Dumortier O, Hinault C, van Obberghen E (2013) MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab 18:312–324PubMedCrossRef Dumortier O, Hinault C, van Obberghen E (2013) MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab 18:312–324PubMedCrossRef
2.
go back to reference Eliasson L, Esguerra JL (2014) Role of non-coding RNAs in pancreatic beta-cell development and physiology. Acta Physiol (Oxf) 211:273–284CrossRef Eliasson L, Esguerra JL (2014) Role of non-coding RNAs in pancreatic beta-cell development and physiology. Acta Physiol (Oxf) 211:273–284CrossRef
3.
go back to reference Guay C, Roggli E, Nesca V, Jacovetti C, Regazzi R (2011) Diabetes mellitus, a microRNA-related disease? Transl Res 157:253–264PubMedCrossRef Guay C, Roggli E, Nesca V, Jacovetti C, Regazzi R (2011) Diabetes mellitus, a microRNA-related disease? Transl Res 157:253–264PubMedCrossRef
7.
go back to reference Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS (2007) MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56:2938–2945PubMedCrossRef Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS (2007) MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56:2938–2945PubMedCrossRef
9.
go back to reference Kalis M, Bolmeson C, Esguerra JL et al (2011) Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One 6:e29166PubMedCentralPubMedCrossRef Kalis M, Bolmeson C, Esguerra JL et al (2011) Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One 6:e29166PubMedCentralPubMedCrossRef
10.
go back to reference Mandelbaum AD, Melkman-Zehavi T, Oren R et al (2012) Dysregulation of Dicer1 in beta cells impairs islet architecture and glucose metabolism. Exp Diabetes Res 2012:470302PubMedCentralPubMedCrossRef Mandelbaum AD, Melkman-Zehavi T, Oren R et al (2012) Dysregulation of Dicer1 in beta cells impairs islet architecture and glucose metabolism. Exp Diabetes Res 2012:470302PubMedCentralPubMedCrossRef
11.
go back to reference Melkman-Zehavi T, Oren R, Kredo-Russo S et al (2011) miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J 30:835–845PubMedCentralPubMedCrossRef Melkman-Zehavi T, Oren R, Kredo-Russo S et al (2011) miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J 30:835–845PubMedCentralPubMedCrossRef
12.
go back to reference Bolmeson C, Esguerra JL, Salehi A, Speidel D, Eliasson L, Cilio CM (2011) Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects. Biochem Biophys Res Commun 404:16–22PubMedCrossRef Bolmeson C, Esguerra JL, Salehi A, Speidel D, Eliasson L, Cilio CM (2011) Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects. Biochem Biophys Res Commun 404:16–22PubMedCrossRef
13.
go back to reference Kameswaran V, Bramswig NC, McKenna LB et al (2014) Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab 19:135–145PubMedCentralPubMedCrossRef Kameswaran V, Bramswig NC, McKenna LB et al (2014) Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab 19:135–145PubMedCentralPubMedCrossRef
14.
go back to reference Bravo-Egana V, Rosero S, Molano RD et al (2008) Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem Biophys Res Commun 366:922–926PubMedCentralPubMedCrossRef Bravo-Egana V, Rosero S, Molano RD et al (2008) Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem Biophys Res Commun 366:922–926PubMedCentralPubMedCrossRef
15.
go back to reference van de Bunt M, Gaulton KJ, Parts L et al (2013) The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis. PLoS One 8:e55272PubMedCentralPubMedCrossRef van de Bunt M, Gaulton KJ, Parts L et al (2013) The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis. PLoS One 8:e55272PubMedCentralPubMedCrossRef
16.
17.
go back to reference El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E (2008) miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57:2708–2717PubMedCentralPubMedCrossRef El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E (2008) miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57:2708–2717PubMedCentralPubMedCrossRef
18.
go back to reference Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5:e203PubMedCentralPubMedCrossRef Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5:e203PubMedCentralPubMedCrossRef
19.
go back to reference Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230PubMedCrossRef Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230PubMedCrossRef
20.
21.
go back to reference Nesca V, Guay C, Jacovetti C et al (2013) Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 56:2203–2212PubMedCrossRef Nesca V, Guay C, Jacovetti C et al (2013) Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 56:2203–2212PubMedCrossRef
22.
go back to reference Joglekar MV, Joglekar VM, Hardikar AA (2009) Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9:109–113PubMedCrossRef Joglekar MV, Joglekar VM, Hardikar AA (2009) Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9:109–113PubMedCrossRef
23.
go back to reference Nieto M, Hevia P, Garcia E et al (2012) Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds. Cell Transplant 21:1761–1774PubMedCrossRef Nieto M, Hevia P, Garcia E et al (2012) Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds. Cell Transplant 21:1761–1774PubMedCrossRef
24.
go back to reference Wang Y, Liu J, Liu C, Naji A, Stoffers DA (2013) MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic beta-cells. Diabetes 62:887–895PubMedCentralPubMedCrossRef Wang Y, Liu J, Liu C, Naji A, Stoffers DA (2013) MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic beta-cells. Diabetes 62:887–895PubMedCentralPubMedCrossRef
26.
go back to reference Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906PubMedCrossRef Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906PubMedCrossRef
27.
go back to reference Su JL, Chen PS, Johansson G, Kuo ML (2012) Function and regulation of Let-7 family microRNAs. MicroRNA 1:34–39PubMedCrossRef Su JL, Chen PS, Johansson G, Kuo ML (2012) Function and regulation of Let-7 family microRNAs. MicroRNA 1:34–39PubMedCrossRef
28.
go back to reference Frost RJ, Olson EN (2011) Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci U S A 108:21075–21080PubMedCentralPubMedCrossRef Frost RJ, Olson EN (2011) Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci U S A 108:21075–21080PubMedCentralPubMedCrossRef
29.
go back to reference Esguerra JL, Bolmeson C, Cilio CM, Eliasson L (2011) Differential glucose-regulation of MicroRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One 6:e18613PubMedCentralPubMedCrossRef Esguerra JL, Bolmeson C, Cilio CM, Eliasson L (2011) Differential glucose-regulation of MicroRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One 6:e18613PubMedCentralPubMedCrossRef
30.
go back to reference Zhao E, Keller MP, Rabaglia ME et al (2009) Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice. Mamm Genome 20:476–485PubMedCentralPubMedCrossRef Zhao E, Keller MP, Rabaglia ME et al (2009) Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice. Mamm Genome 20:476–485PubMedCentralPubMedCrossRef
31.
go back to reference Jacovetti C, Abderrahmani A, Parnaud G et al (2012) MicroRNAs contribute to compensatory beta cell expansion during pregnancy and obesity. J Clin Invest 122:3541–3551PubMedCentralPubMedCrossRef Jacovetti C, Abderrahmani A, Parnaud G et al (2012) MicroRNAs contribute to compensatory beta cell expansion during pregnancy and obesity. J Clin Invest 122:3541–3551PubMedCentralPubMedCrossRef
32.
go back to reference Roggli E, Britan A, Gattesco S et al (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59:978–986PubMedCentralPubMedCrossRef Roggli E, Britan A, Gattesco S et al (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59:978–986PubMedCentralPubMedCrossRef
33.
go back to reference Soni MS, Rabaglia ME, Bhatnagar S et al (2014) Downregulation of carnitine acyl-carnitine translocase by miRNAs 132 and 212 amplifies glucose-stimulated insulin secretion. Diabetes 63:3805–3814PubMedCrossRef Soni MS, Rabaglia ME, Bhatnagar S et al (2014) Downregulation of carnitine acyl-carnitine translocase by miRNAs 132 and 212 amplifies glucose-stimulated insulin secretion. Diabetes 63:3805–3814PubMedCrossRef
34.
go back to reference Locke JM, da Silva Xavier G, Dawe HR, Rutter GA, Harries LW (2014) Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion. Diabetologia 57:122–128PubMedCentralPubMedCrossRef Locke JM, da Silva Xavier G, Dawe HR, Rutter GA, Harries LW (2014) Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion. Diabetologia 57:122–128PubMedCentralPubMedCrossRef
35.
go back to reference Locke JM, Harries LW (2012) MicroRNA expression profiling of human islets from individuals with and without type 2 diabetes: promises and pitfalls. Biochem Soc Trans 40:800–803PubMedCrossRef Locke JM, Harries LW (2012) MicroRNA expression profiling of human islets from individuals with and without type 2 diabetes: promises and pitfalls. Biochem Soc Trans 40:800–803PubMedCrossRef
36.
go back to reference Lindström P (2007) The physiology of obese-hyperglycemic mice [ob/ob mice]. ScientificWorldJournal 7:666–685PubMedCrossRef Lindström P (2007) The physiology of obese-hyperglycemic mice [ob/ob mice]. ScientificWorldJournal 7:666–685PubMedCrossRef
37.
go back to reference Shafrir E, Ziv E, Mosthaf L (1999) Nutritionally induced insulin resistance and receptor defect leading to beta-cell failure in animal models. Ann N Y Acad Sci 892:223–246PubMedCrossRef Shafrir E, Ziv E, Mosthaf L (1999) Nutritionally induced insulin resistance and receptor defect leading to beta-cell failure in animal models. Ann N Y Acad Sci 892:223–246PubMedCrossRef
38.
39.
go back to reference Luo J, Nguyen K, Chen M et al (2013) Evaluating insulin secretagogues in a humanized mouse model with functional human islets. Metabolism 62:90–99PubMedCrossRef Luo J, Nguyen K, Chen M et al (2013) Evaluating insulin secretagogues in a humanized mouse model with functional human islets. Metabolism 62:90–99PubMedCrossRef
40.
go back to reference Portha B, Lacraz G, Kergoat M et al (2009) The GK rat beta-cell: a prototype for the diseased human beta-cell in type 2 diabetes? Mol Cell Endocrinol 297:73–85PubMedCrossRef Portha B, Lacraz G, Kergoat M et al (2009) The GK rat beta-cell: a prototype for the diseased human beta-cell in type 2 diabetes? Mol Cell Endocrinol 297:73–85PubMedCrossRef
41.
go back to reference Peyot ML, Pepin E, Lamontagne J et al (2010) Beta-cell failure in diet-induced obese mice stratified according to body weight gain: secretory dysfunction and altered islet lipid metabolism without steatosis or reduced beta-cell mass. Diabetes 59:2178–2187PubMedCentralPubMedCrossRef Peyot ML, Pepin E, Lamontagne J et al (2010) Beta-cell failure in diet-induced obese mice stratified according to body weight gain: secretory dysfunction and altered islet lipid metabolism without steatosis or reduced beta-cell mass. Diabetes 59:2178–2187PubMedCentralPubMedCrossRef
42.
go back to reference Keller MP, Choi Y, Wang P et al (2008) A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Res 18:706–716PubMedCentralPubMedCrossRef Keller MP, Choi Y, Wang P et al (2008) A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Res 18:706–716PubMedCentralPubMedCrossRef
43.
go back to reference Lovis P, Roggli E, Laybutt DR et al (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57:2728–2736PubMedCentralPubMedCrossRef Lovis P, Roggli E, Laybutt DR et al (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57:2728–2736PubMedCentralPubMedCrossRef
44.
go back to reference Zhao X, Mohan R, Ozcan S, Tang X (2012) MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic beta-cells. J Biol Chem 287:31155–31164PubMedCentralPubMedCrossRef Zhao X, Mohan R, Ozcan S, Tang X (2012) MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic beta-cells. J Biol Chem 287:31155–31164PubMedCentralPubMedCrossRef
45.
go back to reference Xu G, Chen J, Jing G, Shalev A (2013) Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med 19:1141–1146PubMedCrossRef Xu G, Chen J, Jing G, Shalev A (2013) Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med 19:1141–1146PubMedCrossRef
Metadata
Title
Role of islet microRNAs in diabetes: which model for which question?
Authors
Claudiane Guay
Romano Regazzi
Publication date
01-03-2015
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 3/2015
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-014-3471-x

Other articles of this Issue 3/2015

Diabetologia 3/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.