Skip to main content
Top
Published in: Gut Pathogens 1/2022

Open Access 01-12-2022 | Rifaximin | Short report

Myxopyronin B inhibits growth of a Fidaxomicin-resistant Clostridioides difficile isolate and interferes with toxin synthesis

Authors: Madita Brauer, Jennifer Herrmann, Daniela Zühlke, Rolf Müller, Katharina Riedel, Susanne Sievers

Published in: Gut Pathogens | Issue 1/2022

Login to get access

Abstract

The anaerobic, gastrointestinal pathogen Clostridioides difficile can cause severe forms of enterocolitis which is mainly mediated by the toxins it produces. The RNA polymerase inhibitor Fidaxomicin is the current gold standard for the therapy of C. difficile infections due to several beneficial features including its ability to suppress toxin synthesis in C. difficile. In contrast to the Rifamycins, Fidaxomicin binds to the RNA polymerase switch region, which is also the binding site for Myxopyronin B. Here, serial broth dilution assays were performed to test the susceptibility of C. difficile and other anaerobes to Myxopyronin B, proving that the natural product is considerably active against C. difficile and that there is no cross-resistance between Fidaxomicin and Myxopyronin B in a Fidaxomicin-resistant C. difficile strain. Moreover, mass spectrometry analysis indicated that Myxopyronin B is able to suppress early phase toxin synthesis in C. difficile to the same degree as Fidaxomicin. Conclusively, Myxopyronin B is proposed as a new lead structure for the design of novel antibiotics for the therapy of C. difficile infections.
Appendix
Available only for authorised users
Literature
1.
go back to reference Theriot CM, Bowman AA, Young VB. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere. 2016;1(1):e00045-15.PubMedPubMedCentralCrossRef Theriot CM, Bowman AA, Young VB. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere. 2016;1(1):e00045-15.PubMedPubMedCentralCrossRef
2.
go back to reference Knetsch CW, Kumar N, Forster SC, Connor TR, Browne HP, Harmanus C, et al. Zoonotic transfer of Clostridium difficile harboring antimicrobial resistance between farm animals and humans. J Clin Microbiol. 2018;56(3):e01384-17.PubMedPubMedCentralCrossRef Knetsch CW, Kumar N, Forster SC, Connor TR, Browne HP, Harmanus C, et al. Zoonotic transfer of Clostridium difficile harboring antimicrobial resistance between farm animals and humans. J Clin Microbiol. 2018;56(3):e01384-17.PubMedPubMedCentralCrossRef
3.
go back to reference McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, et al. Clinical practice guidelines for clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):e1–48.PubMedPubMedCentralCrossRef McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, et al. Clinical practice guidelines for clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):e1–48.PubMedPubMedCentralCrossRef
4.
go back to reference Ghimire S, Roy C, Wongkuna S, Antony L, Maji A, Keena MC, et al. Identification of Clostridioides difficile-inhibiting gut commensals using culturomics, phenotyping, and combinatorial community assembly. mSystems. 2020;5(1):e00620-19.PubMedPubMedCentralCrossRef Ghimire S, Roy C, Wongkuna S, Antony L, Maji A, Keena MC, et al. Identification of Clostridioides difficile-inhibiting gut commensals using culturomics, phenotyping, and combinatorial community assembly. mSystems. 2020;5(1):e00620-19.PubMedPubMedCentralCrossRef
5.
go back to reference Gupta S, Mullish BH, Allegretti JR. Fecal microbiota transplantation: the evolving risk landscape. Am J Gastroenterol. 2021;116(4):647–56.PubMedCrossRef Gupta S, Mullish BH, Allegretti JR. Fecal microbiota transplantation: the evolving risk landscape. Am J Gastroenterol. 2021;116(4):647–56.PubMedCrossRef
6.
go back to reference Normington C, Moura IB, Bryant JA, Ewin DJ, Clark EV, Kettle MJ, et al. Biofilms harbour Clostridioides difficile, serving as a reservoir for recurrent infection. NPJ Biofilms Microbiomes. 2021;7(1):16.PubMedPubMedCentralCrossRef Normington C, Moura IB, Bryant JA, Ewin DJ, Clark EV, Kettle MJ, et al. Biofilms harbour Clostridioides difficile, serving as a reservoir for recurrent infection. NPJ Biofilms Microbiomes. 2021;7(1):16.PubMedPubMedCentralCrossRef
7.
go back to reference Eyre DW, Walker AS, Wyllie D, Dingle KE, Griffiths D, Finney J, et al. Predictors of first recurrence of Clostridium difficile infection: implications for initial management. Clin Infect Dis. 2012;55(Suppl 2):S77-87.PubMedPubMedCentralCrossRef Eyre DW, Walker AS, Wyllie D, Dingle KE, Griffiths D, Finney J, et al. Predictors of first recurrence of Clostridium difficile infection: implications for initial management. Clin Infect Dis. 2012;55(Suppl 2):S77-87.PubMedPubMedCentralCrossRef
8.
go back to reference Sensi P, Margalith P, Timbal MT. Rifomycin, a new antibiotic; preliminary report. Il Farmaco Ed Sci. 1959;14(2):146–7. Sensi P, Margalith P, Timbal MT. Rifomycin, a new antibiotic; preliminary report. Il Farmaco Ed Sci. 1959;14(2):146–7.
10.
go back to reference Johnson S, Schriever C, Patel U, Patel T, Hecht DW, Gerding DN. Rifaximin Redux: treatment of recurrent Clostridium difficile infections with rifaximin immediately post-vancomycin treatment. Anaerobe. 2009;15(6):290–1.PubMedCrossRef Johnson S, Schriever C, Patel U, Patel T, Hecht DW, Gerding DN. Rifaximin Redux: treatment of recurrent Clostridium difficile infections with rifaximin immediately post-vancomycin treatment. Anaerobe. 2009;15(6):290–1.PubMedCrossRef
11.
go back to reference Ackermann G, Löffler B, Adler D, Rodloff AC. In vitro activity of OPT-80 against Clostridium difficile. Antimicrob Agents Chemother. 2004;48(6):2280–2.PubMedPubMedCentralCrossRef Ackermann G, Löffler B, Adler D, Rodloff AC. In vitro activity of OPT-80 against Clostridium difficile. Antimicrob Agents Chemother. 2004;48(6):2280–2.PubMedPubMedCentralCrossRef
12.
go back to reference Aldape MJ, Packham AE, Heeney DD, Rice SN, Bryant AE, Stevens DL. Fidaxomicin reduces early toxin A and B production and sporulation in Clostridium difficile in vitro. J Med Microbiol. 2017;66(10):1393–9.PubMedCrossRef Aldape MJ, Packham AE, Heeney DD, Rice SN, Bryant AE, Stevens DL. Fidaxomicin reduces early toxin A and B production and sporulation in Clostridium difficile in vitro. J Med Microbiol. 2017;66(10):1393–9.PubMedCrossRef
13.
go back to reference Louie TJ, Cannon K, Byrne B, Emery J, Ward L, Eyben M, et al. Fidaxomicin preserves the intestinal microbiome during and after treatment of Clostridium difficile infection (CDI) and reduces both toxin reexpression and recurrence of CDI. Clin Infect Dis. 2012;55(Suppl 2):S132–42.PubMedPubMedCentralCrossRef Louie TJ, Cannon K, Byrne B, Emery J, Ward L, Eyben M, et al. Fidaxomicin preserves the intestinal microbiome during and after treatment of Clostridium difficile infection (CDI) and reduces both toxin reexpression and recurrence of CDI. Clin Infect Dis. 2012;55(Suppl 2):S132–42.PubMedPubMedCentralCrossRef
14.
go back to reference Koon HW, Wang J, Mussatto CC, Ortiz C, Lee EC, Tran DH-N, et al. Fidaxomicin and OP-1118 inhibit Clostridium difficile toxin a- and b-mediated inflammatory responses via inhibition of NF-κB activity. Antimicrob Agents Chemother. 2018;62(1):e01513-17.PubMedCrossRef Koon HW, Wang J, Mussatto CC, Ortiz C, Lee EC, Tran DH-N, et al. Fidaxomicin and OP-1118 inhibit Clostridium difficile toxin a- and b-mediated inflammatory responses via inhibition of NF-κB activity. Antimicrob Agents Chemother. 2018;62(1):e01513-17.PubMedCrossRef
15.
go back to reference Babakhani F, Bouillaut L, Sears P, Sims C, Gomez A, Sonenshein AL. Fidaxomicin inhibits toxin production in Clostridium difficile. J Antimicrob Chemother. 2013;68(3):515–22.PubMedCrossRef Babakhani F, Bouillaut L, Sears P, Sims C, Gomez A, Sonenshein AL. Fidaxomicin inhibits toxin production in Clostridium difficile. J Antimicrob Chemother. 2013;68(3):515–22.PubMedCrossRef
16.
go back to reference Mukhopadhyay J, Das K, Ismail S, Koppstein D, Jang M, Hudson B, et al. The RNA polymerase “switch region” is a target for inhibitors. Cell. 2008;135(2):295–307.PubMedPubMedCentralCrossRef Mukhopadhyay J, Das K, Ismail S, Koppstein D, Jang M, Hudson B, et al. The RNA polymerase “switch region” is a target for inhibitors. Cell. 2008;135(2):295–307.PubMedPubMedCentralCrossRef
17.
go back to reference Srivastava A, Talaue M, Liu S, Degen D, Ebright RY, Sineva E, et al. New target for inhibition of bacterial RNA polymerase: ‘switch region.’ Curr Opin Microbiol. 2011;14(5):532–43.PubMedPubMedCentralCrossRef Srivastava A, Talaue M, Liu S, Degen D, Ebright RY, Sineva E, et al. New target for inhibition of bacterial RNA polymerase: ‘switch region.’ Curr Opin Microbiol. 2011;14(5):532–43.PubMedPubMedCentralCrossRef
18.
go back to reference Babakhani F, Seddon J, Sears P. Comparative microbiological studies of transcription inhibitors fidaxomicin and the rifamycins in Clostridium difficile. Antimicrob Agents Chemother. 2014;58(5):2934–7.PubMedPubMedCentralCrossRef Babakhani F, Seddon J, Sears P. Comparative microbiological studies of transcription inhibitors fidaxomicin and the rifamycins in Clostridium difficile. Antimicrob Agents Chemother. 2014;58(5):2934–7.PubMedPubMedCentralCrossRef
19.
go back to reference Artsimovitch I, Seddon J, Sears P. Fidaxomicin is an inhibitor of the initiation of bacterial RNA synthesis. Clin Infect Dis. 2012;55(Suppl 2):S127–31.PubMedPubMedCentralCrossRef Artsimovitch I, Seddon J, Sears P. Fidaxomicin is an inhibitor of the initiation of bacterial RNA synthesis. Clin Infect Dis. 2012;55(Suppl 2):S127–31.PubMedPubMedCentralCrossRef
20.
go back to reference Sucipto H, Pogorevc D, Luxenburger E, Wenzel SC, Müller R. Heterologous production of myxobacterial α-pyrone antibiotics in Myxococcus xanthus. Metab Eng. 2017;44:160–70.PubMedCrossRef Sucipto H, Pogorevc D, Luxenburger E, Wenzel SC, Müller R. Heterologous production of myxobacterial α-pyrone antibiotics in Myxococcus xanthus. Metab Eng. 2017;44:160–70.PubMedCrossRef
21.
go back to reference Schwanbeck J, Riedel T, Laukien F, Schober I, Oehmig I, Zimmermann O, et al. Characterization of a clinical Clostridioides difficile isolate with markedly reduced fidaxomicin susceptibility and a V1143D mutation in rpoB. J Antimicrob Chemother. 2019;74(1):6–10.PubMedCrossRef Schwanbeck J, Riedel T, Laukien F, Schober I, Oehmig I, Zimmermann O, et al. Characterization of a clinical Clostridioides difficile isolate with markedly reduced fidaxomicin susceptibility and a V1143D mutation in rpoB. J Antimicrob Chemother. 2019;74(1):6–10.PubMedCrossRef
22.
go back to reference Irschik H, Gerth K, Höfle G, Kohl W, Reichenbach H. The myxopyronins, new inhibitors of bacterial RNA synthesis from Myxococcus fulvus (Myxobacterales). J Antibiot (Tokyo). 1983;36(12):1651–8.CrossRef Irschik H, Gerth K, Höfle G, Kohl W, Reichenbach H. The myxopyronins, new inhibitors of bacterial RNA synthesis from Myxococcus fulvus (Myxobacterales). J Antibiot (Tokyo). 1983;36(12):1651–8.CrossRef
23.
go back to reference Tupin A, Gualtieri M, Brodolin K, Leonetti J-P. Myxopyronin: a punch in the jaws of bacterial RNA polymerase. Future Microbiol. 2009;4(2):145–9.PubMedCrossRef Tupin A, Gualtieri M, Brodolin K, Leonetti J-P. Myxopyronin: a punch in the jaws of bacterial RNA polymerase. Future Microbiol. 2009;4(2):145–9.PubMedCrossRef
24.
go back to reference Lin W, Das K, Degen D, Mazumder A, Duchi D, Wang D, et al. Structural basis of transcription inhibition by fidaxomicin (lipiarmycin A3). Mol Cell. 2018;70(1):60-71.e15.PubMedPubMedCentralCrossRef Lin W, Das K, Degen D, Mazumder A, Duchi D, Wang D, et al. Structural basis of transcription inhibition by fidaxomicin (lipiarmycin A3). Mol Cell. 2018;70(1):60-71.e15.PubMedPubMedCentralCrossRef
25.
go back to reference Schneeberg A, Neubauer H, Schmoock G, Baier S, Harlizius J, Nienhoff H, et al. Clostridium difficile genotypes in piglet populations in Germany. J Clin Microbiol. 2013;51(11):3796–803.PubMedPubMedCentralCrossRef Schneeberg A, Neubauer H, Schmoock G, Baier S, Harlizius J, Nienhoff H, et al. Clostridium difficile genotypes in piglet populations in Germany. J Clin Microbiol. 2013;51(11):3796–803.PubMedPubMedCentralCrossRef
26.
go back to reference Neumann-Schaal M, Hofmann JD, Will SE, Schomburg D. Time-resolved amino acid uptake of Clostridium difficile 630Δerm and concomitant fermentation product and toxin formation. BMC Microbiol. 2015;15:281.PubMedPubMedCentralCrossRef Neumann-Schaal M, Hofmann JD, Will SE, Schomburg D. Time-resolved amino acid uptake of Clostridium difficile 630Δerm and concomitant fermentation product and toxin formation. BMC Microbiol. 2015;15:281.PubMedPubMedCentralCrossRef
27.
go back to reference Mücke P-A, Maaß S, Kohler TP, Hammerschmidt S, Becher D. Proteomic adaptation of Streptococcus pneumoniae to the human antimicrobial peptide LL-37. Microorganisms. 2020;8(3):413.PubMedCentralCrossRef Mücke P-A, Maaß S, Kohler TP, Hammerschmidt S, Becher D. Proteomic adaptation of Streptococcus pneumoniae to the human antimicrobial peptide LL-37. Microorganisms. 2020;8(3):413.PubMedCentralCrossRef
28.
go back to reference Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10(4):1794–805.PubMedCrossRef Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10(4):1794–805.PubMedCrossRef
29.
go back to reference Zhu Y, Orre LM, Zhou Tran Y, Mermelekas G, Johansson HJ, Malyutina A, et al. DEqMS: a method for accurate variance estimation in differential protein expression analysis. Mol Cell Proteomics. 2020;19(6):1047–57.PubMedPubMedCentralCrossRef Zhu Y, Orre LM, Zhou Tran Y, Mermelekas G, Johansson HJ, Malyutina A, et al. DEqMS: a method for accurate variance estimation in differential protein expression analysis. Mol Cell Proteomics. 2020;19(6):1047–57.PubMedPubMedCentralCrossRef
30.
go back to reference Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, et al. The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res. 2020;48(D1):D606–12.PubMed Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, et al. The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res. 2020;48(D1):D606–12.PubMed
31.
go back to reference Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26(13):1608–15.PubMedPubMedCentralCrossRef Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26(13):1608–15.PubMedPubMedCentralCrossRef
32.
go back to reference Dehal PS, Joachimiak MP, Price MN, Bates JT, Baumohl JK, Chivian D, et al. MicrobesOnline: an integrated portal for comparative and functional genomics. Nucleic Acids Res. 2010;38(Database issue):D396-400.PubMedCrossRef Dehal PS, Joachimiak MP, Price MN, Bates JT, Baumohl JK, Chivian D, et al. MicrobesOnline: an integrated portal for comparative and functional genomics. Nucleic Acids Res. 2010;38(Database issue):D396-400.PubMedCrossRef
35.
go back to reference Henkel D, Tatge H, Schöttelndreier D, Tao L, Dong M, Gerhard R. Receptor binding domains of TcdB from Clostridioides difficile for chondroitin sulfate proteoglycan-4 and frizzled proteins are functionally independent and additive. Toxins (Basel). 2020;12(12):736.CrossRef Henkel D, Tatge H, Schöttelndreier D, Tao L, Dong M, Gerhard R. Receptor binding domains of TcdB from Clostridioides difficile for chondroitin sulfate proteoglycan-4 and frizzled proteins are functionally independent and additive. Toxins (Basel). 2020;12(12):736.CrossRef
38.
go back to reference Sholeh M, Krutova M, Forouzesh M, Mironov S, Sadeghifard N, Molaeipour L, et al. Antimicrobial resistance in Clostridioides (Clostridium) difficile derived from humans: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2020;9(1):158.PubMedPubMedCentralCrossRef Sholeh M, Krutova M, Forouzesh M, Mironov S, Sadeghifard N, Molaeipour L, et al. Antimicrobial resistance in Clostridioides (Clostridium) difficile derived from humans: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2020;9(1):158.PubMedPubMedCentralCrossRef
39.
go back to reference Leeds JA, Sachdeva M, Mullin S, Barnes SW, Ruzin A. In vitro selection, via serial passage, of Clostridium difficile mutants with reduced susceptibility to fidaxomicin or vancomycin. J Antimicrob Chemother. 2014;69(1):41–4.PubMedCrossRef Leeds JA, Sachdeva M, Mullin S, Barnes SW, Ruzin A. In vitro selection, via serial passage, of Clostridium difficile mutants with reduced susceptibility to fidaxomicin or vancomycin. J Antimicrob Chemother. 2014;69(1):41–4.PubMedCrossRef
40.
go back to reference Srivastava A, Degen D, Ebright YW, Ebright RH. Frequency, spectrum, and nonzero fitness costs of resistance to myxopyronin in Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56(12):6250–5.PubMedPubMedCentralCrossRef Srivastava A, Degen D, Ebright YW, Ebright RH. Frequency, spectrum, and nonzero fitness costs of resistance to myxopyronin in Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56(12):6250–5.PubMedPubMedCentralCrossRef
41.
go back to reference Aldape MJ, Rice SN, Field KP, Bryant AE, Stevens DL. Sub-lethal doses of surotomycin and vancomycin have similar effects on Clostridium difficile virulence factor production in vitro. J Med Microbiol. 2018;67(12):1689–97.PubMedPubMedCentralCrossRef Aldape MJ, Rice SN, Field KP, Bryant AE, Stevens DL. Sub-lethal doses of surotomycin and vancomycin have similar effects on Clostridium difficile virulence factor production in vitro. J Med Microbiol. 2018;67(12):1689–97.PubMedPubMedCentralCrossRef
42.
go back to reference Aldape MJ, Heeney DD, Bryant AE, Stevens DL. Tigecycline suppresses toxin A and B production and sporulation in Clostridium difficile. J Antimicrob Chemother. 2015;70(1):153–9.PubMedCrossRef Aldape MJ, Heeney DD, Bryant AE, Stevens DL. Tigecycline suppresses toxin A and B production and sporulation in Clostridium difficile. J Antimicrob Chemother. 2015;70(1):153–9.PubMedCrossRef
43.
go back to reference Aldape MJ, Packham AE, Nute DW, Bryant AE, Stevens DL. Effects of ciprofloxacin on the expression and production of exotoxins by Clostridium difficile. J Med Microbiol. 2013;62(Pt 5):741–7.PubMedPubMedCentralCrossRef Aldape MJ, Packham AE, Nute DW, Bryant AE, Stevens DL. Effects of ciprofloxacin on the expression and production of exotoxins by Clostridium difficile. J Med Microbiol. 2013;62(Pt 5):741–7.PubMedPubMedCentralCrossRef
44.
go back to reference Martin-Verstraete I, Peltier J, Dupuy B. The regulatory networks that control Clostridium difficile toxin synthesis. Toxins (Basel). 2016;8(5):153.CrossRef Martin-Verstraete I, Peltier J, Dupuy B. The regulatory networks that control Clostridium difficile toxin synthesis. Toxins (Basel). 2016;8(5):153.CrossRef
45.
go back to reference Willing SE, Richards EJ, Sempere L, Dale AG, Cutting SM, Fairweather NF. Increased toxin expression in a Clostridium difficile mfd mutant. BMC Microbiol. 2015;15(1):280.PubMedPubMedCentralCrossRef Willing SE, Richards EJ, Sempere L, Dale AG, Cutting SM, Fairweather NF. Increased toxin expression in a Clostridium difficile mfd mutant. BMC Microbiol. 2015;15(1):280.PubMedPubMedCentralCrossRef
46.
go back to reference Walter BM, Rupnik M, Hodnik V, Anderluh G, Dupuy B, Paulič N, et al. The LexA regulated genes of the Clostridium difficile. BMC Microbiol. 2014;14:88.PubMedPubMedCentralCrossRef Walter BM, Rupnik M, Hodnik V, Anderluh G, Dupuy B, Paulič N, et al. The LexA regulated genes of the Clostridium difficile. BMC Microbiol. 2014;14:88.PubMedPubMedCentralCrossRef
47.
go back to reference O’Rourke A, Beyhan S, Choi Y, Morales P, Chan AP, Espinoza JL, et al. Mechanism-of-action classification of antibiotics by global transcriptome profiling. Antimicrob Agents Chemother. 2020;64(3):e01207-19.PubMedPubMedCentralCrossRef O’Rourke A, Beyhan S, Choi Y, Morales P, Chan AP, Espinoza JL, et al. Mechanism-of-action classification of antibiotics by global transcriptome profiling. Antimicrob Agents Chemother. 2020;64(3):e01207-19.PubMedPubMedCentralCrossRef
48.
go back to reference Tsakou F, Jersie-Christensen R, Jenssen H, Mojsoska B. The role of proteomics in bacterial response to antibiotics. Pharmaceuticals (Basel). 2020;13(9):214.CrossRef Tsakou F, Jersie-Christensen R, Jenssen H, Mojsoska B. The role of proteomics in bacterial response to antibiotics. Pharmaceuticals (Basel). 2020;13(9):214.CrossRef
49.
go back to reference Senges CHR, Stepanek JJ, Wenzel M, Raatschen N, Ay Ü, Märtens Y, et al. Comparison of Proteomic responses as global approach to antibiotic mechanism of action elucidation. Antimicrob Agents Chemother. 2020;65(1):e01373-20.PubMedPubMedCentralCrossRef Senges CHR, Stepanek JJ, Wenzel M, Raatschen N, Ay Ü, Märtens Y, et al. Comparison of Proteomic responses as global approach to antibiotic mechanism of action elucidation. Antimicrob Agents Chemother. 2020;65(1):e01373-20.PubMedPubMedCentralCrossRef
50.
go back to reference Giddey AD, de Kock E, Nakedi KC, Garnett S, Nel AJM, Soares NC, et al. A temporal proteome dynamics study reveals the molecular basis of induced phenotypic resistance in Mycobacterium smegmatis at sub-lethal rifampicin concentrations. Sci Rep. 2017;7(1):43858.PubMedPubMedCentralCrossRef Giddey AD, de Kock E, Nakedi KC, Garnett S, Nel AJM, Soares NC, et al. A temporal proteome dynamics study reveals the molecular basis of induced phenotypic resistance in Mycobacterium smegmatis at sub-lethal rifampicin concentrations. Sci Rep. 2017;7(1):43858.PubMedPubMedCentralCrossRef
51.
go back to reference Doan T-H-D, Yen-Nicolaÿ S, Bernet-Camard M-F, Martin-Verstraete I, Péchiné S. Impact of subinhibitory concentrations of metronidazole on proteome of Clostridioides difficile strains with different levels of susceptibility. PLoS ONE. 2020;15(11):e0241903.PubMedPubMedCentralCrossRef Doan T-H-D, Yen-Nicolaÿ S, Bernet-Camard M-F, Martin-Verstraete I, Péchiné S. Impact of subinhibitory concentrations of metronidazole on proteome of Clostridioides difficile strains with different levels of susceptibility. PLoS ONE. 2020;15(11):e0241903.PubMedPubMedCentralCrossRef
52.
go back to reference Wang Z, Karkossa I, Großkopf H, Rolle-Kampczyk U, Hackermüller J, von Bergen M, et al. Comparison of quantitation methods in proteomics to define relevant toxicological information on AhR activation of HepG2 cells by BaP. Toxicology. 2021;448:152652.PubMedCrossRef Wang Z, Karkossa I, Großkopf H, Rolle-Kampczyk U, Hackermüller J, von Bergen M, et al. Comparison of quantitation methods in proteomics to define relevant toxicological information on AhR activation of HepG2 cells by BaP. Toxicology. 2021;448:152652.PubMedCrossRef
53.
go back to reference Mitosch K, Rieckh G, Bollenbach T. Noisy response to antibiotic stress predicts subsequent single-cell survival in an acidic environment. Cels. 2017;4(4):393-403.e5. Mitosch K, Rieckh G, Bollenbach T. Noisy response to antibiotic stress predicts subsequent single-cell survival in an acidic environment. Cels. 2017;4(4):393-403.e5.
54.
go back to reference Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature. 2006;441(7095):840–6.PubMedCrossRef Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature. 2006;441(7095):840–6.PubMedCrossRef
55.
go back to reference Locke JCW, Young JW, Fontes M, Hernández Jiménez MJ, Elowitz MB. Stochastic pulse regulation in bacterial stress response. Science. 2011;334(6054):366–9.PubMedPubMedCentralCrossRef Locke JCW, Young JW, Fontes M, Hernández Jiménez MJ, Elowitz MB. Stochastic pulse regulation in bacterial stress response. Science. 2011;334(6054):366–9.PubMedPubMedCentralCrossRef
56.
go back to reference Jones-Dias D, Carvalho AS, Moura IB, Manageiro V, Igrejas G, Caniça M, et al. Quantitative proteome analysis of an antibiotic resistant Escherichia coli exposed to tetracycline reveals multiple affected metabolic and peptidoglycan processes. J Proteomics. 2017;156:20–8.PubMedCrossRef Jones-Dias D, Carvalho AS, Moura IB, Manageiro V, Igrejas G, Caniça M, et al. Quantitative proteome analysis of an antibiotic resistant Escherichia coli exposed to tetracycline reveals multiple affected metabolic and peptidoglycan processes. J Proteomics. 2017;156:20–8.PubMedCrossRef
57.
go back to reference Yu Y, O’Rourke A, Lin Y-H, Singh H, Eguez RV, Beyhan S, et al. Predictive signatures of 19 antibiotic-induced Escherichia coli proteomes. ACS Infect Dis. 2020;6(8):2120–9.PubMedCrossRef Yu Y, O’Rourke A, Lin Y-H, Singh H, Eguez RV, Beyhan S, et al. Predictive signatures of 19 antibiotic-induced Escherichia coli proteomes. ACS Infect Dis. 2020;6(8):2120–9.PubMedCrossRef
58.
go back to reference Phan K, Ferenci T. The fitness costs and trade-off shapes associated with the exclusion of nine antibiotics by OmpF porin channels. ISME J. 2017;11(6):1472–82.PubMedPubMedCentralCrossRef Phan K, Ferenci T. The fitness costs and trade-off shapes associated with the exclusion of nine antibiotics by OmpF porin channels. ISME J. 2017;11(6):1472–82.PubMedPubMedCentralCrossRef
59.
go back to reference Martínez JL, Rojo F. Metabolic regulation of antibiotic resistance. FEMS Microbiol Rev. 2011;35(5):768–89.PubMedCrossRef Martínez JL, Rojo F. Metabolic regulation of antibiotic resistance. FEMS Microbiol Rev. 2011;35(5):768–89.PubMedCrossRef
61.
go back to reference Maaß S, Otto A, Albrecht D, Riedel K, Trautwein-Schult A, Becher D. Proteomic signatures of Clostridium difficile stressed with metronidazole, vancomycin, or fidaxomicin. Cells. 2018;7(11):213.PubMedCentralCrossRef Maaß S, Otto A, Albrecht D, Riedel K, Trautwein-Schult A, Becher D. Proteomic signatures of Clostridium difficile stressed with metronidazole, vancomycin, or fidaxomicin. Cells. 2018;7(11):213.PubMedCentralCrossRef
62.
go back to reference Stubbings W, Bostock J, Ingham E, Chopra I. Mechanisms of the post-antibiotic effects induced by rifampicin and gentamicin in Escherichia coli. J Antimicrob Chemother. 2006;58(2):444–8.PubMedCrossRef Stubbings W, Bostock J, Ingham E, Chopra I. Mechanisms of the post-antibiotic effects induced by rifampicin and gentamicin in Escherichia coli. J Antimicrob Chemother. 2006;58(2):444–8.PubMedCrossRef
63.
go back to reference Lobritz MA, Belenky P, Porter CBM, Gutierrez A, Yang JH, Schwarz EG, et al. Antibiotic efficacy is linked to bacterial cellular respiration. PNAS. 2015;112(27):8173–80.PubMedPubMedCentralCrossRef Lobritz MA, Belenky P, Porter CBM, Gutierrez A, Yang JH, Schwarz EG, et al. Antibiotic efficacy is linked to bacterial cellular respiration. PNAS. 2015;112(27):8173–80.PubMedPubMedCentralCrossRef
64.
65.
go back to reference Carter EL, Jager L, Gardner L, Hall CC, Willis S, Green JM. Escherichia coli abg genes enable uptake and cleavage of the folate catabolite p-aminobenzoyl-glutamate. J Bacteriol. 2007;189(9):3329–34.PubMedPubMedCentralCrossRef Carter EL, Jager L, Gardner L, Hall CC, Willis S, Green JM. Escherichia coli abg genes enable uptake and cleavage of the folate catabolite p-aminobenzoyl-glutamate. J Bacteriol. 2007;189(9):3329–34.PubMedPubMedCentralCrossRef
66.
go back to reference Smith AD, Jameson GNL, Dos Santos PC, Agar JN, Naik S, Krebs C, et al. NifS-mediated assembly of 4Fe-4S clusters in the N- and C-terminal domains of the NifU scaffold protein. Biochemistry. 2005;44(39):12955–69.PubMedCrossRef Smith AD, Jameson GNL, Dos Santos PC, Agar JN, Naik S, Krebs C, et al. NifS-mediated assembly of 4Fe-4S clusters in the N- and C-terminal domains of the NifU scaffold protein. Biochemistry. 2005;44(39):12955–69.PubMedCrossRef
67.
go back to reference Delmar JA, Yu EW. The AbgT family: a novel class of antimetabolite transporters. Protein Sci. 2016;25(2):322–37.PubMedCrossRef Delmar JA, Yu EW. The AbgT family: a novel class of antimetabolite transporters. Protein Sci. 2016;25(2):322–37.PubMedCrossRef
68.
go back to reference Alcalde-Rico M, Hernando-Amado S, Blanco P, Martínez JL. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front Microbiol. 2016;7:1483.PubMedPubMedCentralCrossRef Alcalde-Rico M, Hernando-Amado S, Blanco P, Martínez JL. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front Microbiol. 2016;7:1483.PubMedPubMedCentralCrossRef
69.
go back to reference Lebel S, Bouttier S, Lambert T. The cme gene of Clostridium difficile confers multidrug resistance in Enterococcus faecalis. FEMS Microbiol Lett. 2004;238(1):93–100.PubMed Lebel S, Bouttier S, Lambert T. The cme gene of Clostridium difficile confers multidrug resistance in Enterococcus faecalis. FEMS Microbiol Lett. 2004;238(1):93–100.PubMed
70.
go back to reference Ngernsombat C, Sreesai S, Harnvoravongchai P, Chankhamhaengdecha S, Janvilisri T. CD2068 potentially mediates multidrug efflux in Clostridium difficile. Sci Rep. 2017;7(1):9982.PubMedPubMedCentralCrossRef Ngernsombat C, Sreesai S, Harnvoravongchai P, Chankhamhaengdecha S, Janvilisri T. CD2068 potentially mediates multidrug efflux in Clostridium difficile. Sci Rep. 2017;7(1):9982.PubMedPubMedCentralCrossRef
71.
go back to reference Pipatthana M, Harnvoravongchai P, Pongchaikul P, Likhitrattanapisal S, Phanchana M, Chankhamhaengdecha S, et al. The repertoire of ABC proteins in Clostridioides difficile. Comput Struct Biotechnol J. 2021;19:2905–20.PubMedPubMedCentralCrossRef Pipatthana M, Harnvoravongchai P, Pongchaikul P, Likhitrattanapisal S, Phanchana M, Chankhamhaengdecha S, et al. The repertoire of ABC proteins in Clostridioides difficile. Comput Struct Biotechnol J. 2021;19:2905–20.PubMedPubMedCentralCrossRef
72.
go back to reference Woods EC, Edwards AN, Childress KO, Jones JB, McBride SM. The C. difficile clnRAB operon initiates adaptations to the host environment in response to LL-37. PLoS Pathog. 2018;14(8):e1007153.PubMedPubMedCentralCrossRef Woods EC, Edwards AN, Childress KO, Jones JB, McBride SM. The C. difficile clnRAB operon initiates adaptations to the host environment in response to LL-37. PLoS Pathog. 2018;14(8):e1007153.PubMedPubMedCentralCrossRef
73.
go back to reference Dorst A, Berg R, Gertzen CGW, Schäfle D, Zerbe K, Gwerder M, et al. Semisynthetic analogs of the antibiotic fidaxomicin-design, synthesis, and biological evaluation. ACS Med Chem Lett. 2020;11(12):2414–20.PubMedPubMedCentralCrossRef Dorst A, Berg R, Gertzen CGW, Schäfle D, Zerbe K, Gwerder M, et al. Semisynthetic analogs of the antibiotic fidaxomicin-design, synthesis, and biological evaluation. ACS Med Chem Lett. 2020;11(12):2414–20.PubMedPubMedCentralCrossRef
74.
go back to reference Petrosillo N, Granata G, Cataldo MA. Novel Antimicrobials for the Treatment of Clostridium difficile Infection. Front Med. 2018;5:96.CrossRef Petrosillo N, Granata G, Cataldo MA. Novel Antimicrobials for the Treatment of Clostridium difficile Infection. Front Med. 2018;5:96.CrossRef
Metadata
Title
Myxopyronin B inhibits growth of a Fidaxomicin-resistant Clostridioides difficile isolate and interferes with toxin synthesis
Authors
Madita Brauer
Jennifer Herrmann
Daniela Zühlke
Rolf Müller
Katharina Riedel
Susanne Sievers
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Gut Pathogens / Issue 1/2022
Electronic ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-021-00475-9

Other articles of this Issue 1/2022

Gut Pathogens 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.